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Surgery on the prostate and kidney, and other soft organs and tissues, is aided by robots

that perform procedures such as needle positioning and insertion.
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ABSTRACT | Until recently, computer-aided medical interven-

tions (CAMI) and medical robotics have focused on rigid and

nondeformable anatomical structures. Nowadays, special atten-

tion is paid to soft tissues, raising complex issues due to their

mobility and deformation. Mini-invasive digestive surgery was

probably one of the first fields where soft tissues were handled

through the development of simulators, tracking of anatomical

structures and specific assistance robots. However, other clinical

domains, for instance urology, are concerned. Indeed, laparo-

scopic surgery, new tumour destruction techniques (e.g., HIFU,

radiofrequency, or cryoablation), increasingly early detection of

cancer, and use of interventional and diagnostic imaging

modalities, recently opened new challenges to the urologist

and scientists involved in CAMI. This resulted in the last five

years in a very significant increase of research and develop-

ments of computer-aided urology systems. In this paper, we

propose a description of the main problems related to comput-

er-aided diagnostic and therapy of soft tissues and give a survey

of the different types of assistance offered to the urologist:

robotization, image fusion, surgical navigation. Both research

projects and operational industrial systems are discussed.
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I . INTRODUCTION

A. A Short Introduction to Urology
Urology concerns the exploration, diagnostic, and

medical or surgical treatment of both the urinary apparatus

of men and women and the genital apparatus of men. The

organs of interest are the bladder, kidney, ureter, urethra

and, for men, the prostate, penis and testicles (see Fig. 1).

Pathologies include among others: lithiases (stones),
cancers, traumas, stenoses, incontinence, infectious dis-

eases, malformations, and sterility. Urologic surgery also

includes kidney transplantation. The major targets for

robot or image-guided assistance are the prostate and the

kidneys as detailed below.

Prostate cancer is one the most common malignancy

among men. [37] reports year 2000 cancer statistics:

543 000 cases and 204 000 deaths were attributed to
prostate cancer worldwide. Its detection is based on digital

rectal examination (DRE) and prostate specific antigen

(PSA) rating and is confirmed through the anatomo-

pathologic analysis of biopsies. Treatments include watch-

ful waiting, surgery (laparoscopic or conventional radical

prostatectomy), chemotherapy, and destruction of the

tumour using different physical agents including radio-

therapy (radiation by external beams), brachytherapy
(radiation by implanted radioactive seeds), highly focused

ultrasound, radiofrequency, and cryoablation. Because of

the immediate anatomical environment of the prostate, in

particular the bladder and rectum, and because of the role

of this gland in the sexual life of patients, special attention

is paid to minimally invasive techniques. One objective is

to minimize induced morbidity. However, from the

clinician standpoint the earlier detection of cancers from
PSA screening and the development of laparoscopic

techniques, by targeting smaller area via smaller entry

ports, yield to increasing difficulties. Thus, computer or
robot assistance may be needed.

Percutaneous access to the kidneys is also a challenging

issue and concerns many patients. This technique can be

used for any introduction of a needle in the kidney for

diagnostic (biopsies) or therapeutic actions (radiofre-

quency cancer ablation or stone destruction for instance).

The destruction of stones is a major clinical application:

5% of the occidental population is concerned. Tradition-

ally, percutaneous access is controlled from real-time

imaging (ultrasounds or fluoroscopy) whose drawbacks

are, respectively, poor visibility and irradiation. There also,

assistance would be welcome.

B. Dealing With Soft Tissues
Because urology deals with soft tissues, it is a perfect

illustration of the difficulty to directly apply the computer-

assistance know-how from bony structures to mobile and

deformable tissues. Mobility and deformations have dif-

ferent origins.

• Intrinsic Origin: Some organs intrinsically move or

are deformed to perform natural physiological ac-

tivity such as breathing or cardiac rhythm. A foetus

organ also has an intrinsic mobility due to foetal

motion. Heart beating is quite predictable while

foetal motion is not.

• Anatomical Environment: Other organs move or are

deformed because of their anatomical environ-

ment. This is typically the case for the kidney that

is moved up and down according to the diaphrag-

matic activity during breathing; this is also true for

the prostate which position and orientation depend

on the bladder and rectal filling, and in a lesser

way, breathing.

Fig. 1. Anatomy in urology: (left) kidney and (right) prostate male anatomical environments

(respectively, from http://www.bartleby.com/images and http://www.liv.ac.uk/researchintelligence/issue21/images/).
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• Patient Position: The position and shape of some
structures depend on the patient posture or

position relatively to gravity. For example, the

prostate position partly depends on the flexion of

patient’s legs.

• External Action: Finally, the therapeutic (needle

insertion for instance) or diagnostic (e.g., ultra-

sound examination) action may move and deform

the organ of interest. This is the case for the kidney
and even more for the prostate, especially when an

endorectal ultrasonic exam is performed.

Very often, the motion and deformation of an organ has

multiple sources. For instance, the prostate moves and/or

is deformed due to: patient breathing, patient posture,

bladder and rectum natural or artificial filling, insertion of

a needle, oedema from multiple needle insertions.

In the case of the prostate, several groups worldwide
paid special attention in the mid-nineties to motion of the

gland in the context of radiotherapy; since most

intratreatment localization approaches were based on

X-Ray data where the prostate is not directly visible, it

was important to quantify prostate motion with respect to

bony structures. [52] performed separate computed

tomography (CT)/magnetic resonance (MR) bone and

prostate registrations to determine prostate mobility; rigid
chamfer matching on segmented surfaces was used; [5]

used implanted prostate fiducials and X-ray images to

perform a similar study. More recently deformation was

studied specially in the context of imaging involving

intrarectal probes or coils (see for instance [26]).

In order to be able to handle these anatomic changes

several issues must be solved: models must be designed

when the motion and/or deformation are predictable and
repeatable; tracking capabilities must be developed based

on intraoperative sensing (images, signals such as ECG);

real-time re-planning may be necessary for the guiding

system (for instance a robot) to adapt to these changes;

finally robots should be synchronized to those motions and

deformations in a discrete or continuous way. This raises

very challenging robustness and safety issues. One im-

portant characteristic of those anatomic changes is their
time scale with respect to the duration of the action to be

performed. Consequently, different strategies may be

selected: localization just before the action or tracking

during the whole action. In the following sections, the way

those questions have been solved in the case of urological

targets will be analyzed.

II . ROBOTICS AND UROLOGY

Historically, urology was one of the first clinical domains

where a robot was used for patients. At the timeVthe late

eightiesVwhere most people dealt with neurosurgery or

orthopaedics applications of robotics, the London Clinic

and the Imperial College of London developed PROBOT

[17]: a robot for the transurethral resection of the ad-

enomatous prostate, i.e., the removal from the inside of
the gland of extratissues compressing the urethra. The first

test on a patient started in April 1991. After a feasibility

study on five patients, a preclinical series with 40 patients

was undertaken. Several versions of this system where

developed; the first prototype was based on a PUMA 560

(from Unimation Inc.) connected to a passive frame. This

frame is an elegant solution to safety issues since it

constrains the tool movement inside a cone related to the
task to be executed. The current system consists of a

passive robot positioning a motorized frame with three

degrees of freedom (DOF)Vconical motion plus transla-

tion of the resectoscope. [42] reports the difficult task of

automatically controlling this robot for resection monitor-

ing from the real-time intraoperative ultrasound images.

Indeed, because soft tissues move and deform, two

types of strategies may be used in robot control. The ideal
approach would be to continuously and automatically close

the robot control loop using intraoperative information

about the organ motion. To our knowledge, such a solution

has not yet been developed for urology. However in

radiotherapy, where the tool is outside the body and the

planning is rather simple (beam orientation with respect

to the patient and duration of radiation), organ tracking

ability was introduced. In [15], the motions of intrabody
implanted fiducials are correlated to the motions of

infrared on-body markers for tracking breathing move-

ments this process is however rather invasive. [41] pro-

poses a noninvasive solution based on real-time image

correlation for the detection of a predefined stage in the

breathing cycle (full expiration for instance); this in-

formation is used for respiratory-gated radiotherapy

treatment. The other and much simpler approach is to
tele-operate robots: in that case the user closes the loop

between robot motion and real-time image information.

Such an approach is particularly interesting when opera-

tive planning is too complex to be explicitly defined.

Intermediate solutions consist in adding motion tracking

abilities to tele-operated robots (see [22]) or to close the

loop from imaging data in a more discrete way for simple

tasks (see Section II-B).

A. Tele-Operated Robots

1) Endoscope Holders: The first FDA1 approved medical

robot, AESOP (from Computer Motion Inc.) [40] had a

significant clinical and industrial success. Two thousand

AESOP were sold to around five hundred hospitals

between years 1994 and 2000. AESOP has a SCARA
architecture with 4 active and 2 passive (pivot rotation)

DOF; this tele-manipulator is voice controlled. Many other

robotic endoscope holders have been developed in the

academic and industrial tracks. One of them designed at

TIMC [8] has the interesting property of being directly put

1Food and Drug Administration.
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on the patient abdomen skin (see Fig. 2). Because the

robot is placed on the endoscope entry point, 3 DOF

(2 rotations and 1 translation) are sufficient to handle

the endoscope motions.

As compared to AESOP and to most of the other

systems which are positioned on the operating room (OR)

table, floor or ceiling, this very compact system follows the
patient motions and is very easy to install. It weights 625 g;

it is voice controlled and completely sterilizable. Interest-

ing evolutions of robotic endoscope holders deal with

automatically control of robots from image information in

order to track organs or instruments during the surgery

(see [54] for instance).

2) Tele-Surgery Robots: Based on the robotic endoscope
holders experience, instrument holders have naturally

been designed resulting in the so-called tele-surgery

robots. ZEUS, an evolution of the AESOP, is composed

of 3 separated 4 DOF arms (one endoscope holder and two

instrument holders). Another system, the DaVinci (from

Intuitive Surgical Inc.), is composed of 3 or 4 arms

mounted on a single basis. Articulated instruments provide

extra intrabody DOF (see Fig. 3). Both systems are based

on master-slave architectures; the arms are tele-operated2

by the surgeon from endoscopic images. DaVinci proposes

a Bhead-in[ stereoscopic display (see Fig. 3) while Zeus

includes a Bhead-mounted[ stereoscopic display or a
traditional screen. Intrabody DOF are a major advantage

of the DaVinci, increasing the surgeon’s possibilities near

open surgery conditions. Both systems are quite cumber-

some and expensive; none of them include force feedback

on the master workstation which may be a serious

limitation for anastomoses for instance. The DaVinci has

been extensively evaluated for urological applications.

First robot-assisted laparoscopic radical prostatectomies
were reported in [1], [9]. Very large series of patients have

Fig. 2. The Light Endoscopic Robot (TIMC, Grenoble Hospital and School of Medicine): on a phantom (left), urological intervention on

cadaver (right).

Fig. 3. The DaVinci robot (Intuitive Surgical Device Inc., http://www.intuitivesurgical.com): the master-slave system (left and middle);

and one of its articulated instruments showing intrabody DOF (right).

2Technically, nothing really constrains the surgeon on the master
console to be close to the slave robot; in practiceVexcept for some
concept demonstrations such as [33]Vthe needs for reliability in data
transmission and safety result in short-distance tele-surgery.

Troccaz et al.: Medical Image Computing and Computer-Aided Medical Interventions Applied to Soft Tissues

1668 Proceedings of the IEEE | Vol. 94, No. 9, September 2006



since been operated: the Vattikuti Institute in the Henry
Ford Hospital of Detroit, USA, published in [34] a study

concerning more than 1100 cases. In this center,

laparoscopic prostatectomies started in October 2000

and the DaVinci assistance was introduced in March

2001. A study comparing conventional/laparoscopic/robot-

assisted laparoscopic procedures showed clear advantages

of the robotic series on many points including shorter

hospital stays, reduced pain, reduced blood loss, better
PSA control, reduced positive margins, better continence,

and less impotence. Another advantage of robot assistance

is a reduction of the learning curve for laparoscopic

procedures; [2] reports an improvement factor of about 10.

Laparoscopic radical prostatectomy is probably one of

the domains were the robotic clinical added-value was so

clearly demonstrated. Other applications of such robots to

urology are reported in full details in [51]. Each time
complex dissections, microsurgery or intracorporal sutur-

ing are necessary, the robot may be a precious assistant.

Several research projects in the world aim at develop-

ing competitive smaller and/or cheaper solutions with

articulated intrabody instruments and endoscopes and

master station offering force feedback. Planning tools are

also developed in order to optimize the entry ports

positioning, enabling both target access and collision-free
motion of the robots (see for instance [14]).

B. Image-Guided Robots
Many gestures in urology are carried under interven-

tional radiology: the diagnostic or therapeutic tool is

moved under control of an imaging modality. Ultrasounds

or fluoroscopy enable continuous control: the operator can

see in real-time the tool position and the anatomy; CT or
MRI allow asynchronous control: for instance, a needle is

positioned, a control image is taken and the needle po-

sition is corrected if necessary, and so on. This idea has
been exploited to control from medical images robots

performing simple tasks such as a linear tool insertion.

1) Prostate Biopsies and Brachytherapies: From a techni-

cal viewpoint prostate biopsies and brachytherapies (see

Fig. 4) are rather similar; they both consist in inserting

needles in the prostate, either for tissue sampling or for

radioactive seed placement, through transperineal or
transrectal access, under imaging controlVmost often

transrectal ultrasound imaging (TRUS).

However, each biopsy makes use of a single ultrasonic

(US) image in which the needle is visible while brachy-

therapy is based on a volume of images: often parallel axial

US images acquired every 5 mm. Brachytherapy is based

on a careful patient-specific dose planning while biopsies

are generally performed following a predefined global
scheme (for instance sextant or 11-core protocols). Needle

insertion is slow and manual during brachytherapies while

biopsies are very rapidly performed using a biospy gun. As

demonstrated by [25] in a different medical context,

increasing needle velocity results in minimizing the

displacement and deformation of the tissue. Thus auto-

mation may have a positive impact in terms of gesture

accuracy. Moreover, prostate brachytherapy is based on
the use of a template (a stereotactic grid) rigidly con-

nected to the US probe. This restrains needle trajectories

to lines parallel to the probe axis and results in potential

collisions of the needles with the pelvic bone. Again,

using a robot may enable various trajectory directions.

[55] proposes to use a general purpose 6 DOF robot for

needle positioning and insertion. [18] develops a special-

purpose robot mimicking the conventional procedure
(trajectories parallel to the US probe axis); a rotational

DOF for the needle is added to reduce the needle flexion

Fig. 4. US-guided transrectal biopsy (left) and transperineal brachytherapy (right) operating principles.

From http://www.uropage.com/index.htm.
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during tissue penetration. Those systems are still labo-
ratory test beds. [38] describes a preclinical evaluation of

a specific 9 DOF system (positioning platform plus

biopsy robot) for transperineal prostate biopsies. A three-

dimensional (3-D) prostate geometric model of the pros-

tate is approximated from series of close parallel US

images enabling planning of the biopsies. 2.5-mm accu-

racy is reported; those performances require very careful

patient preparation and US probe handling. None of
these systems really considers prostate motion and de-

formation during the procedure.

Another approach consists in performing transrectal

prostate biopsies or brachytherapies with an intrarectal

robot under MRI control [47]. Although conventional MR

imaging (1.5 T with endorectal antenna and T2 sequence)

enables physicians to see precisely the prostate anatomy,

using such a modality for biopsies is probably restricted to
the few cases where US-guided biopsies are not possible or

not successful. Let us remind that in the United States

(respectively, in France) about 106 (respectively, 105)

series of diagnostic biopsies are performed each year). In

[47], conventional MRI is used. The robot is inserted in the

patient rectum and has three DOF to reach the target

defined on the MRI data: translation in the rectum, ro-

tation around its main axis and progression of the needle.
Thanks to its design, the robot does not disturb the

magnetic field and includes two coils; one used as part of

the imaging sensor and the other one as a position sensor.

After validation on dogs, the robot is being clinically tested

for transrectal biopsies and brachytherapies [21]; 2-mm

accuracy is reported; this remaining error is probably

mainly due to the prostate motion and deformation during

needle insertion. [13] proposes another robot for prostate
biopsy or brachytherapy inside an open interventional MR

system. Interventional MRI (0.5 T) requires an additional

conventional MRI exam which makes the procedure even

more complex (see Section III-B1).

2) Percutaneous Renal Access: The purpose is to assist

percutaneous access to the kidney. Since 1996 a robot

named BPercutaneous Access of the KidneY[ (PAKY) is
developed by the Johns Hopkins groups (Baltimore, MD).

The robot has seven passive DOF used to position a 3 active

DOF structure (2 for orientation and 1 for translation of

the needle). Fluoroscopy is used for needle alignment and

control during insertion. During the procedure, the patient

is in apnoea in order to keep the kidney in a constant

position. [12] reports in vitro and in vivo experiments. In

[46], for 23 patients, no significant difference is reported
between the manual and robotic procedure in terms of

precision, rapidity, number of attempts, complications.

One advantage of the robotic procedure lies in the absence

of irradiation of the human operator. [7] proposes a visual

servoing approach from two fluoroscopic views enabling

the automatic placement of the needle to a given target

and entry point. This system was also applied to CT-

guided transperineal prostate biopsies through a single
entry point.

III . IMAGE-BASED UROLOGY

A. Image Processing
Many papers propose tools to assist the segmentation of

urologic images especially for the prostate where TRUS

images have been paid close attention. Segmentation may

be two-dimensional (2-D), 2.5-D (the segmentation of a

given slice is used to help the segmentation of the

following parallel one), or 3-D. Most successful ap-

proaches make use of active contours and/or statistical

models. However, for 2-D images close to the prostate
extremities, existing tools may not be robust enough due to

the poor quality of those images. Other works concern the

automatic segmentation of CT and MRI images of uro-

logical targets (kidney in particular). Because this problem

is very vast and not typical of interventional systems, no

details are given here. In [43] and [56] good reviews of

work concerning the image processing of prostate TRUS

images are presented.

B. Image Fusion
MR and US imaging are probably the most used

imaging modalities for prostate diagnosis and therapy. The

interventional nature of US is counterbalanced by their

traditional drawbacks: patient dependence, intraoperator

and interoperator variability, medium quality due to

speckle, artefacts, etc. Conventional MRI using external

or transrectal coils clearly show the prostate zonal anatomy

which is useful for biopsy planning, while open MRI (also
called iMRI for interventional MRI) enables near real-time

control. This is why several research groups implemented

fusion algorithm to benefit from complementary advan-

tages of these modalities. Other imaging modalities are

used such as CT imaging or histology sections; here also

image fusion may be very useful. This paragraph describes

different studies on multimodality fusion dedicated to

prostate imaging.

1) MRI/iMRI Fusion: The Surgical Planning Laboratory

(SPL) and Harvard Medical School have developed a

navigation system for transperineal prostate biopsies under

iMRI. Because of a lower intensity magnetic field, iMRI

does not clearly show the prostate anatomy. This is why a

preoperative MRI acquisition is performed (external pubic

antenna, 1.5 T, T2 FSE sequence) on which surgical
planning is possible. Intraoperatively, iMRI data are col-

lected (external pubic antenna, 0.5 T, T2 FSE sequence)

enabling volume reconstruction. A localized stereotactic

grid similar to the one used for brachytherapy is calibrated

with respect to the MRI system and is used as a guiding

device. MRI and iMRI are registered using an intensity-

based elastic registration enabling transfer of the planning
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data to the iMRI conditions. During the biopsy procedure,
real-time FGR iMRI slices (acquisition time: 8 s per slice)

are obtained for biopsy tracking. The B3D Slicer[ de-

veloped by SPL enables computing from the iMRI T2-

volume the slice corresponding to the FGR one with

planning information added. [24] reports two successful

clinical cases. As mentioned previously, such an approach

is especially interesting for patients for which ultrasounds

have been unsuccessful (negative repeated US-guided
biopsies with increasing PSA) or impossible. [10] describes

another solution for MRI/iMRI registration based on

elastic deformation of segmented data; a finite-element

model of the preoperative prostate is deformed using

isotropic linear deformations to match the intraoperative

prostate. Two regions of the prostate are considered with

different elasticity parameters: the central gland and

peripheral zone.

2) MRI/TRUS Fusion: In many cases, bringing the MRI

information to the US-guided procedures can be an in-

teresting alternative. [27] describes experiments con-

cerning the fusion of preoperative MRI data to TRUS

images for transperinal biopsies. Six fiducial points are

matched between the two modalities using a rigid

registration. From this transform, a composite image is
produced combining TRUS data and re-sliced matched

MRI data. No attention is paid to motion or deformation

that could occur between the two acquisitions or during

the procedure.

In one of the two main types of brachytherapy

protocols, the radiation plan is prepared in the OR and is

based on intraoperative TRUS acquisition and segmenta-

tion. One difficulty lies in this initial stage. [39] reports
the evaluation of elastic surface registration between

TRUS and MRI data for prostate brachytherapy. Preop-

eratively, three orthogonal T2 TSE volumes are acquired

using an endorectal coil and the prostate contours are

segmented jointly on the three volumes. Intraoperatively,

TRUS data are collected (axial and pseudosagittal slices

[see Fig. 5 (left)]). TRUS images are manually segmented
by the urologist as in the conventional procedure and this

results in a sparse intraoperative 3-D prostate model

[Fig. 5 (middle)]; the axial contours are needed for

simulating and planning the dose. A preregistration con-

sisting in superimposing the ultrasound and MRI data

centers of gravity initializes the unknown transform be-

fore a second step of minimization using the Levenberg–

Marquardt algorithm. Elastic registration allows for
rotation and translation between data sets as well as local

deformations or distortions. The method is derived from

the octree-spline elastic registration described in [48]. It

makes use of an adaptive, hierarchical and regularized

free-form deformation of one volume to the other coor-

dinate system. The result is a 3-D function transforming

any ultrasound data point to the corresponding MRI point.

After MRI/TRUS surface-based elastic registration, com-
posite MRI/TRUS images are computed; the operator can

then visualize combined TRUS and MRI data of a same

region [for example, Fig. 5 (right)]. This enables refining

the TRUS segmentations of the axial slices especially near

the prostate extremities (base and apex). Elastic registra-

tion accounts for prostate motion and deformation

between the two acquisitions. Processing of large

intraoperative modifications due to needle insertions is
limited to manual re-planning made by the radiophysicist

during the procedure. [39] reports millimeter registration

accuracy and shows that such a modified segmentation

may result in a significantly different radiation plan.

3) CT/MR Fusion: For radiation therapy (external

radiation therapy or brachytherapy), CT imaging plays a

central role in treatment planning or post-operative dose
evaluation due to the need for tissue density information.

Meanwhile, in prostate treatments, MR is still the main

diagnostic modality. [4] presents CT/MR data fusion based

on landmarks for seed implant quality assessment; the

seeds are visible on post-operative CT images while the

prostate is visible on preoperative MR data. Rigid

Fig. 5. IRM/TRUS fusion for brachytherapy (ProCur software, TIMC and Grenoble Hospital): (left) two of the axial and

pseudosagittal TRUS images; (middle) 3-D TRUS reconstruction; (right) composite image generated after MRI/TRUS elastic registration:

for each axial TRUS image the corresponding MRI data are computed.
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registration of CT and MR data is based on the use of a

urinary catheter going through the prostate and placed

before both MR and CT acquisitions making it visible on

both modalities. After registration of the catheter, seeds

visible on the CT data may be visualized with respect to the

MR prostate anatomy. The authors report an average
residual error measured on each slice at the center of the

urethra of 1.2 mm for 11 patients and a maximum residual

error of 2.5 mm for one patient. [30] proposes to use a thin

plate spline (TPS) function to map segmented prostate

contours from MRI or magnetic resonance spectroscopic

imaging to CT data. In this paper, endorectal coils are used

for MR imaging which may deform the prostate as

compared to the CT acquisition situation; rigid registration
may, thus, not be accurate enough. Obtained correspon-

dence index of 93.1 � 5% and centroid position of 0.56 �
0.09 mm of the registered surface slices quantify the

registration accuracy and demonstrate the superiority of

TPS registration over rigid one.

4) Histology/Other Modality Fusion: Histology is the gold

standard of cancer diagnosis. Therefore, registering
histological data to other modalities may be very fruitful.

After preparation and fixation in formalin of cancerous

prostates surgically removed from patients, 3 to 5-mm

blocks are generally cut in a pseudoaxial direction; then a

slice of 30- (to 50-) �m thickness is obtained from each

block and analyzed by a pathologist with a microscope for

detection and characterization of cancerous cells. As

proposed in [20] artificial markers are generally used in
order to build a 3-D reconstruction from those sparse data.

In [44], fused histological data from hundreds of

patients using elastic surface registration in order to build

a statistical atlas of cancer occurrence in the different

prostate zones and to optimize biopsy schemes based on

that atlas. Bart et al. [6] has proposed to fuse MRI to

histological data of patients with an elastic surface

registration as a tool to study and improve the under-
standing of MR imaging of cancerous zones (see Fig. 6).

Taylor et al. [49] correlates histological data to US images

and sonoelastometry. A first scaling factor is applied to

account for prostate retraction during fixation; then, a

rigid surface registration is applied. The purpose is here to

evaluate the predictive value of sonoelastometry for

tumour detection.

C. Surgical Navigation
Surgical navigation was introduced in neurosurgery in

the eighties. It consists in tracking the surgical instruments

relatively to poorly visible organs and/or to a preoperative

planning and to present this information visually to the

surgeon. Those systems generally require trackers (optical,

magnetic, US, mechanical) and involve data fusion and/or

registering to enable transfer of the planning to the

intraoperative conditions. Few urological applications
exist.

1) Renal Punctures: The authors of [31], [32], and [36]

propose a system for navigating percutaneous access to the

kidney (see Fig. 7). Preoperatively two injected CT (early

injection and late injection) are acquired under apnoea.

Early injection allows visualization of the kidney envelope

while late injection makes the internal structures of the
kidney visible. Mono-modal rigid registration based on a

chamfer matching is performed using the Analyze software

(from AnalyzeDirect Inc.). Planning is based on those

registered data.

Intraoperatively a localized ultrasonic probe enables

pseudo-3-D echographic acquisition of the kidney under

apnoea; the patient is anesthetized. After a first version

using surface-based registration and requiring segmenta-
tion of the dataVCT was segmented with the 3-D

watershed of NablaVision software (from GenericVision,

ApS)Van intensity-based rigid registration was imple-

mented and tested. The similarity measurement is the

correlation ratio. After registration, a graphical user inter-

face guides the surgeon towards the planned trajectory and

target position; the patient is again under apnoea. The

system requires to the patient to be in the same apnoea
configuration (full expiration for instance) during US

acquisition and tool guidance. Experiments on volunteers

have demonstrated a good repeatability of the kidney

Fig. 6. Histology/MRI fusion (ProPath software, TIMC and Pitié Salpétrière Hospital, Paris): (a) needles and their guide for landmark

definition inside the prostate; (b) macroscopic 3-mm slices of the resected prostate; (c) slice reconstruction (arrows highlight some

landmarks); (d) volume reconstruction including capsule, peripheral zone, urethra, and cancer segmentations; (e) composite image after

MRI/histology elastic registration.
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positioning under repeated apnoeas; this confirms literature

results. Validation of the developed system on real data and

on cadavers is promising. Real-time tracking of the kidney,

for instance using magnetic localization, by avoiding the

need for apnoea would greatly simplify the protocol;
nevertheless the visual guidance may not be easy with a

mobile target. Robotic alternatives may, thus, have to be

considered for instance by synchronizing the robot to a

given stage of the respiratory cycle. The motion of the

kidney due to the needle insertion has not yet been studied.

Here again, robotic access may minimize induced motion.

The same framework was applied to the guidance of

stimulation electrode placement into the sacrum (S3 root)
for incontinence treatment. CT/US surface-based registra-

tion of the pelvis originally developed for pelvic surgery

(see [16] and [50]) was successfully applied to this

application and validated though cadaver experiments

[32]. In this application, the bone position is tracked

thanks to an implanted rigid body.

2) Prostate Biopsies: The precise realization of prostate
biopsy schemes (for instance twelve biopsies regularly

distributed on the prostate gland) faces the difficulty of

using 2-D images to guide a 3-D action. The process, thus,

strongly depends on the surgeon’s ability to mentally

integrate successive images and trajectories in a 3-D space.

Because US-guided biopsies only detect 75% of the cancers

for the first series, assisting biopsies to guarantee that

samples are correctly and regularly acquired in the

targeted sites is an important objective. An exploratory

study using a navigation system (see Fig. 8) was developed

at TIMC. The US probe is localized using an optical system
(Passive Polaris from Northern Digital Inc.) and the

executed trajectories are recorded in a fixed reference

system. Those recordings clearly demonstrate that the

prostate moves very significantly with the US probe

displacements; those displacements are necessary to orient

the needle, which is rigidly attached to the probe, towards

the targeted sites.

Current work deals with US-based real-time registra-
tion enabling to represent the executed biopsies in a single

prostate reference frame despite prostate intraoperative

displacements.

IV. MODEL-BASED UROLOGY

As seen briefly in this paper, shape and/or appearance

models have been introduced as a priori information for
image processing. Statistical models concerning the oc-

currence of cancers in the different zones of the prostate

have also been constructed in order to optimize the biopsy

strategies by maximizing the ability to detect an existing

tumour. [45] reports a clinical evaluation of such an

optimized scheme.

Fig. 8. Prostate biopsy navigation (ProNavV1, TIMC, Grenoble Hospital)Vbiopsy recording: (left) localized intrarectal US probes

(2-D and 3-D)Vright) visualization interface presenting US images, prostate model and recorded trajectories in a fixed reference system.

Fig. 7. Navigated percutaneous access of the kidney (TIMC, Pitié-Salpétrière Hospital, Grenoble School of Medicine, PRAXIM):

(from left to right) scanner volume et segmented kidney; preoperative planning interface; US probe and puncture needle with their

optical localizers (passive Polaris from NDI, address); CT/US fusion; puncture guidance.
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In the context of medical interventions dealing with soft
tissues, much attention is paid to biomechanical models; the

purpose is in particular to better predict tissue motions and

deformations and tool interaction with the tissues. In a first

stage, these models were mostly developed for training

simulators especially in laparoscopic surgery. More recent-

ly, they are seen as a necessary input to the planning of a

surgery performed on soft tissues.

Some groups work on discrete models of the prostate
complex environment; for instance [29] presents a sim-

ulator for rectal palpation of the prostate. The interactive

nature of such models enabling intraoperative re-planning

may be counterbalanced by difficult parameter identifica-

tion. Because of their theoretical background and the

ability to introduce rheological tissue parameters, finite-

element models are the most commonly used. Based on

DiMaio and Salcudean previous work (e.g., [19]), Goksel
[23] proposes a brachytherapy simulator combining TRUS

image generation to a needle tissue interaction model.

Mohammed et al. [35] combines statistical and biome-

chanical models for evaluation of intraoperative prostate

deformation. Other groups work on steerable needle path

planner taking benefit of needle flexion to generate paths

avoiding anatomical obstacles [3].

Current limitations of planning approaches are due to
the hypothesis of a homogeneous tissue and, for patient-

specific planners, in the difficulty of determining in vivo
tissue physical parameters. Sonoelastometry, a very pro-

mising modality for the detection of cancers inside organs

[28], can also help for physical parameters identification.

V. CONCLUSION

As seen in this paper, many research projects are dedicated

to urological applications. Concerning target motion and

deformation, some partial solutions have been proposed.

Tele-operated robots enable adapting the surgical strategy

to the anatomical state based on the surgeon know-how.

Image-guided robots generally allow data acquisition just
before the action to be executed; however, none of them,

in urology, is completely controlled by real-time data.

Image fusion can consider changes occurring between the

different acquisitions stages to be registered; however, no

system yet enables real-time fusion of intraoperative data

to preoperative data for tracking purpose. Regarding the

kidney, navigational assistance or robot actions are

performed on a stabilized organ (breathing is temporarily
held); no tracking is available yet. Biomechanical models

are developed but none of them is yet used for guiding the

intervention.

A lot has been done but significant research efforts

must still be undertaken to fully consider a mobile and

deformable target such as the kidney or the prostate.

Intraoperative tracking based on intrabody markers (for

instance magnetic markers or other [11], [15]) or on real-
time image processing is necessary. The development of

autonomous robots servo-ed to real-time intraoperative

data (see for instance [53]) raises very challenging ro-

bustness and safety issues since in this case the surgeon

will no longer be able to directly supervise the robot

actions. Finally, patient-specific modelling of organs me-

chanical properties is a key issue for predicting and

recognizing anatomical changes and to allow precise plan-
ning. All those topics open very interesting and difficult

scientific tracks for the coming years with a very strong

clinical interest. h
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