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Abstract-In the field of Augmented Reality in Surgery, building a hybrid patient’s model, i.e. 
merging all the data and systems available for a given application, is a difficult but crucial 
technical problem. The purpose is to merge all the data that consitute the patient model with the 
reality of the surgery, i.e. the surgical tools and feedback devices. In this paper, we first develop 
this concept, we show that this construction comes to a problem of registration between various 
sensor data, and we detail a general framework of registration The state of the art in this domain 
is presented. Finally, we show results that we have obtained using a method which is based on the 
use of anatomical reference surfaces. We show that in many clinical cases, registration is only 
possible through the use of internal patient structures. 
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1. INTRODUCTION 

Using computers and guiding systems to help the surgeon plan and perform an operation 
has now become a clinical reality at several sites around the world. Computer Integrated 
Surgery, Computer Assisted Surgery, Image Guided Surgery, Image Guided Therapy, 
Image Guided Operating Robot, Augmented Reality in Surgery are acronyms that 
depict the same reality, an exciting emerging scientific domain. However, applications of 
virtual reality technology in surgery need to face the difficult problem of building a 
hybrid patient’s model, which is the issue addressed here. The objective of this paper is 
to show the current possibilities and limitations for this particular problem. The purpose 
of building a hybrid model is to provide a complete representation that merges the real 
patient during the surgery with the useful computerized patient data. 

Building such a global representation of the underlying information in an Augmented 
Reality system enables the surgeon to interact with both the real and virtual patient. 
Building a virtual model is necessary for Virtual Reality systems used to simulate a 
surgery, mainly for teaching purposes, while building a hybrid patient’s model is 
necessary for Augmented Reality systems used in real surgery, to combine what the 
surgeon sees with what he can see on medical images. Moreover, the patient data are 
themselves composed of several pieces of information, each one being different, which 
makes it useful to combine them in a single model. In the most general case represented 
in Fig. 1, an Augmented Reality system for surgery will have to gather different classes of 
information and systems: 

l pre-operative images: CT, MRI, Angio-MRI, SPECT, TEP, MEG, 
Stereo-Angiograms . . . , 

l anatomical models: geometrical atlases, 
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Pre-operative images 
(CT, Mm . ..I I 

Fig. 1. To build a hybrid model means to estimate a chain of geometrical transformations 
Tl, T2, . . . Tn between all the coordinate systems that are involved. 

l intra-operative images: X-rays, ultrasound images, video images (endoscope or 
microscope), 

l position and shape information (e.g. obtained with 3-D optical sensors), 
l coordinate systems associated with visual or auditory feedback Virtual Reality 

devices, and 
l coordinate systems associated with operative guiding systems: systems that give the 

accurate position of a tool freely moved by the surgeon or systems in which a tool is 
actively manipulated by a robot. 

This description enables us to give the definition of the hybrid model construction. 
Definition. A coordinate system is associated with each pre-operative and intra- 

operative imaging modality, each statistical geometrical model, each sensor, each 
surgical tool, each guiding system, and building the hybrid model requires to compute a 
chain of geometrical transformations Tl, T2, . . . Tn between all the coordinate systems 
that are involved. 

To be more specific about this problem of matching between the reality and the model, 
let us consider three examples that correspond to three possible ways of merging the 
model and the reality. 

Example 1. Suppose first that we want to locate the position of a real surgical tool or 
any instrument on the virtual model. Commonly, in commercially available navigation 
systems, the tip of a pointer is displayed in real-time on resliced pre-operative MRI 
images. The 3-D position of the instrument is computed in the coordinate system of a 
localizer which can be a passive manipulator with six degrees of freedom or any optical 
system made of three standard or linear cameras for instance [l]. In that case, to build 
the hybrid model becomes simply estimating a transformation between a coordinate 
system associated with the pre-operative MRI images (these images represent the virtual 
model), and the real-time position of the instrument (the instrument represents the real 
patient during surgery). Therefore, the problem is in estimating a transformation 
between a coordinate system associated with the pre-operative MRI images, and the 
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coordinate system of the 3-D localizer. To establish such a link, something that can be 
seen on medical images and that can be detected by the localizer must exist. In some 
systems, a reference feature is made with at least three little material spheres or pins 
which are implanted or pasted on the patient before the MRI examination and not 
removed before the end of the operation. These landmarks are easily observable on MRI 
images, their positions are quickly computed in the localizer coordinate system by a 
simple manual digitization and finally the rigid transformation between two sets of three 
or four points can be computed very efficiently. Alternative methods exist and are within 
the scope of this paper. Our main emphasis is on the possibility of using only the 
anatomical structures of the patient instead of material landmarks to register all the data. 

Example 2. In a second example, images from the model are merged with images from 
the reality. For instance, a semi-transparent flat screen is placed above the real surgical 
field, and some images from the model are displayed on this transparent screen. Note 
that one can consider that the surgeon has to look through a simple hole attached to this 
screen, so that the location of the surgeon eyes can be assumed to be known. Another 
solution is to consider the use of glasses with LCD screen. Consider now that the virtual 
model is built from a set of intra-operative 2-D ultasound images acquired at the 
beginning of the operation and then merged to constitute a 3-D volume of data. Another 
possibility would be to consider intra-operative Magnetic Resonance images since MRI 
machines for surgery are now commercially available. Here, building the hybrid model 
implies computing the transformation between the flat screen position and the images of 
the model. One solution is to use an optical localizing device that can track 3-D positions 
of infra-red markers in real-time, to attach emitters both to the ultrasound probe and to 
the flat screen, so that the 3-D volume of ultrasound images can be built in the localizer 
coordinate system, and the position of the screen is also known in the same coordinate 
system. In that case, building the hybrid model is achieved by solving delicate calibration 
problems, first in order to estimate the transformation between the ultrasound image and 
a rigid body made of several markers fixed to the ultrasound probe, and second to 
estimate the transformation between the synthetic image displayed on the transparent 
screen and a rigid body made of several markers fixed to this screen. 

Example 3. In a third example, a robot is asked to position indicators (e.g. laser 
beams), or mechanical guides (e.g. a simple tube) or active tools (e.g. a cutting tool) at 
some location previously defined on the patient model given by pre-operative CT 
images. Here, the robot is seen as an intra-operative assistant of the surgeon, therefore 
building the hybrid model simply means estimating a link between CT images and the 
robot coordinate system. Two solutions are possible. 

Exampte 3.1. 
This registration can be done as in example 1 by using tactile sensors on the robot to 
detect the position of reference material pins previously implanted in the patient bones 
PI. 
Example 3.2. 
Another solution is to use an intra-operative X-ray system as an intermediate sensor 
between the CT images and the robot. It is possible to estimate the transformation 
between the robot and a pair of X-ray images by using a calibration cage carried by the 
robot [3,4]. It is possible to register intra-operative X-rays with pre-operative images 
by matching the images of a reference anatomical structure (e.g. a vertebra) [5]. The 
combination of these two techniques enables us to build the hybrid model. Note that in 
this case, the X-ray images have been added to the hybrid model, which can be very 
useful when intra-operative control is necessary. 

At that stage of the description of the construction of a hybrid model, we must 
differentiate between two classes of sub-problems which are often confused- 
registration and calibration-for which we give the following definitions. 
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Registration. To estimate a transformation between two coordinate systems which are 
not in the same spatial or time domain. 

Calibration. To estimate a transformation between two coordinate systems which are 
in the same spatial and time domain. 

For example, merging pre-operative CT images with an intra-operative navigation 
system (example 1) is a registration problem; merging intra-operative ultrasound images 
with a transparent LCD screen positioned above the surgical field (example 2) is a 
calibration problem. Similarly, example 3.1 describes a registration problem. Example 
3.2 is a combination of a calibration and a registration problem. 

It is important to realize that any device involved in an Augmented Reality system 
either must be associated with a position sensor through a calibration procedure, or it 
must have a Sensor function itself. For example, an optical or mechanical passive 
navigator has a sensor function when it is used to digitize 3-D points. In example 3.2, it is 
shown that a robot can be calibrated with X-ray images. Similarly, the position of a 
stereo system with LCD glasses must be accurately encoded with an optical 3-D localizer 
if it has to be matched with the real positions. In our experience the use of an optical 3-D 
sensor such as the Optotrak system (Northern Digital) solves many of the calibration 
problems, since the position of different tools and devices can be computed with an 
accuracy better than 0.3 mm in real-time in a common reference system. This device is 
made of three linear cameras that enable us to compute the 3-D location of infra-red 
markers (each camera locates a plane to which the marker belongs). Rigid bodies made 
of at least three markers constitute reference systems that can be attached to any tool or 
device. When a rigid body can be attached to the operated structures, or near the 
operated structures, an optical sensor also provides a convenient way to track the 
structures motions. In the latter case, this reference rigid body constitutes the common 
reference system. 

Therefore, in the general case, to build the hybrid model means to register all the 
sensors and to calibrate all the other devices with at least one sensor. 

In the rest of this paper, we focus on registration problems because they are the most 
difficult and the most specific to Augmented Reality in Surgery. Calibration methods are 
extensively described in robotics and vision books. We first present a general method of 
registration, and the state of the art in this domain. Then, we briefly present the 
registration techniques that we have developed for several years at the Grenoble 
Hospital, and we describe the results we have obtained for several clinical applications. 

2. REGISTRATION METHODS 
Over the past few years, many solutions have been proposed to deal with image 

registration problems in general, not only in the medical field but also in Computer 
Vision (see [6,7] for surveys in that field). A framework and a survey of image 
registration techniques in general is presented in [8]. However, in this paper, we are 
concerned with registration of 3-D spaces; the registration of 2-D images is not 
addressed. In this section, we present the existing methods by following a three-step- 
based framework. More details about this methodology can be found in [9]. 

2.1. Step 1: definition of a relation between reference systems 
First, a reference coordinate system is defined and associated with each basic data set 

or system, and models of relationships between coordinates are defined. To give an 
example, we associate a coordinate system Ref,, with CT pre-operative images, and a 
coordinate system Refsensor with an intra-operative sensor (for instance X-ray images). 
Now, the objective is to estimate the transformation T between Refsenso, and Ref,,. 

This step often involves difficult sensor calibration problems. See for instance [lo] for a 
method that can calibrate X-ray images coming from intra-operative X-ray intensifiers 
even if local distortions are present in the images. 

This step also raises the problem of the choice of a representation for rigid-body, 
elastic or time-varying transformations, i.e. to what extent can we expect that an 
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anatomical structure is stable between different data acquisitions and during surgery? In 
the most general case, the transformation T is simply a function that transforms 
coordinates MB= (X,, YB, 2,) in Ref, into coordinates M, = (X,, Ya, 2,) in Ref,, 
taking an index t into account, which is usually the time: 

WA) = W&s, t). (1) 
In most registration problems, the transformation T is a transformation between the 
same structures observed by different sensors, therefore it is a rigid-body transformation 
(a transformation can be considered rigid provided that deformations are negligible with 
respect to the required accuracy). Typically, the registration between pre-operative CT, 
MRI, SPECT images, and intra-operative images taken at the beginning of an operation 
is modeled by a rigid-body transformation. In other cases, the transformation T has to 
take deformations into account, which becomes a problem of elastic matching. Such 
deformations can be global or local, micro- or macroscopic, elastic or plastic, varying 
quickly with time or not. Therefore an infinite set of models can be used to define a non- 
rigid transformation T [11-B]. 

2.2. Step 2: extraction of reference features and de$nition of a disparity (or similarity) 
function between corresponding features 

Once the model of a relation between Ref, and Ref, has been defined, the second step 
is to extract corresponding features in Ref, and RefB, and, at the same time, define a 
disparity function (or a similarity function) between these features. Reference systems 
Ref, and Ref, will be assumed to be registered when the defined disparity function (or 
similarity function) will be minimal (or maximal). Such an optimization will constitute 
the last step of the registration process. Obviously, the choice of reference features and 
of the corresponding optimization method is the key to any registration strategy. Most 
methods differ at this level. 

Let us assume a set of reference features %A = {FAi, i = 1 . . . N} have been extracted in 
Ref,, with a corresponding set of features sB= {FBj, j= 1 . . . M} in Ref,. The disparity 
function must involve some function of the distances between features FAI and the 
features FBI transformed by the transformation T we are looking for. A standard 
disparity function is given by a least-squares criterion: 

D = c wi [distance (FAi , T(Fsi , t))]’ where Wi are scalar weights. (2) 

Now, we examine the possible features that can be used. A large group of methods 
considers only the use of external landmarks (e.g. stereotactic frames or pins implanted 
into the patient), or simple anatomical points. With other research groups, we consider 
that surfaces of reference anatomical structures are more accurate, robust and conve- 
nient. The patient’s data contain enough information for registration. Segmentation of 
anatomical reference features is still a difficult problem, but specific solutions exist for 
many specific cases. Since the choice of the reference features becomes the crucial step of 
the construction of the hybrid model, we extensively describe the approaches that are 
encountered in the literature, and we classify these features according to their geometri- 
cal representation. Most methods we describe refer to image registration methods, but 
remind us that the construction of the hybrid model becomes a problem of registration 
between sensor data, and most of the sensors we can use provide images. It is hoped that 
the generalization of the methods described will be simple to implement for a scientist, 
and that physicians will gain an intuitive idea of what is technically feasible. 

Matching 3-D points with 3-D points. The registration of two sets of corresponding 
points is a well-known problem for which authors have proposed many solutions [19,20]. 
Thus mathematics does not raise any problem in general, the real difficulty lies in 
extracting such reference points. 
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Anatomical landmarks segmented interactively. A standard and very simple approach 
consists of selecting interactively some pairs of corresponding points in two 3-D 
examinations. This approach has been applied to the head by many authors, using 
reference points such as the nasion, the top of the head, . . . : in ]12,21,22] authors use 
this method to register CT with MRI, in [23] authors register MRI with SQUID 
neuromagnetomer images (using a digitizing probe to register the neuromagnetometer 
coordinate system with some reference points taken on the skin), and in [24] authors 
register MRI or CT with the coordinate system of a mechanical navigation system used 
for stereotactic neurosurgery. In the general case, these methods are usually inaccur- 
ate and they need time and experience from the operator. 

External landmarks. A second approach is to fix fiducial markers on the patient. Some 
authors have designed systems in which just a few pins or balls are fixed to the patient 
during pre-operative image acquisition. During surgery, a 3-D mechanical or optical 
localizer enables the surgeon to detect the position of such landmarks and the system 
can easily compute the corresponding rigid transformation. For instance, a system 
successfully used in ENT surgery relies on a registration performed through small balls 
pasted on the patient skin and manually detected with a passive mechanical arm [l] or 
with an optical infra-red sensor [25]. Authors obtain a millimetric accuracy. After such 
a registration, the mechanical or optical sensor indicates in real-time the location of a 
surgical tool with respect to the pre-operative images. In [26], balls are taped on the 
skin at locations defined by tattooed ink points: balls are detected on pre-operative 
images but they are withdrawn just after MRI acquisition, during surgery, a mec- 
hanical localizer is used to detect the tattooed ink points. An accuracy of 3 mm is 
reached using four points. In a successful system designed for robotic hip replacement 
surgery [2], the pre/intra-operative registration is performed through metallic pins 
implanted into the femur prior to CT examination and sensed with a semi-automatic 
robotic procedure during surgery, sub-millimetric accuracy is reached. Similarly, in 
[27], authors propose that small permanent fiducial markers be implanted under the 
skin into the skull, these markers could be easily localized on CT or MRI, and they 
could be detected during surgery using a A-mode ultrasonic probe mounted at the end 
of a mechanical localizer. In [28], the registration is performed using at least three 
radiopaque 5 mm beads attached to the patient’s scalp localized on CT images and 
detected during surgery with the focal axis of an operating microscope targeting the 
beads, the location of which is known with an ultrasound 3-D localizer. But several 
millimeters of errors have been observed. A submillimetric registration is reached for 
brain images in [29] with four markers for registration between CT, MRI, TEP and a 
3-D mechanical localizer. For all these methods, the accurate detection of the 
landmarks in 3-D images is not obvious [29], e.g. the global centroid of the centroids of 
the landmarks segmented on each slice may not coincide exactly with the true 3-D 
centroid of the landmarks because of slice thickness and spacing. 

All these approaches still raise the problem of adding some material structures on 
the patient before CT, MRI, SPECT acquisition. They might be inaccurate in some 
applications when these structures are just pasted on the skin, and they imply an 
invasive operation prior to real surgery when the reference structures are fixed to the 
bones. 
Matching 3-D points with 2-D points. Registration of points has been also widely used 

to register 3-D images with 2-D projections. For instance, in stereotactic neurosurgery, 
some frames or headholders are composed of acrylic plates containing radiopaque 
markers: it is then possible to register the stereotactic frame coordinate system with 
standard X-rays and Digital Subtraction Angiography (DSA) images [30,31]. See also 
[32], in which scalp markers are used to register a “patient coordinate system” with 
angiograms. Using a 3-D localizer and a surface matching technique, the patient 
coordinate system is also registered with Magnetic Resonance Angiography (MRA) 
images, so that the MRA/angiograms transformation can be computed. 
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Matching 3-D curves with 3-D curves. There are a few cases where reference features can 
be 3-D curves. As these curves do not coincide exactly from start to finish, most of curve 
matching techniques match in a first step shape signatures that are invariant by 
translation and rotation (usually using curvature and torsion) and then register matched 
pieces of curve. For robustness purposes, these two steps can be merged. See examples 
in [33,34]. 

In practice, 3-D curves used as reference features can be curved wires or opaque 
catheters fixed on the patient, blood vessels or singularities curves (or crest lines) 
extracted on isodensity surfaces [35]. 

Matching surfaces with surfaces or surface points. A very general and practical feature 
to use is the 3-D boundary‘ surface of a reference anatomical structure. Typically, one 
surface can be the result of a 3-D segmentation algorithm on 3-D images (CT, MRI, 
. . . ), or a 3-D surface model obtained from anatomical sections or merged collections of 
segmented structures. How to obtain such segmented surfaces is not described in this 
paper, but in practice, skin and bones can be segmented automatically in most cases on 
CT and MRI while an automated segmentation of soft tissues remains a challenging 
problem in general. This first surface will have to be registered with a second data surface 
which can be another surface segmented on 3-D images, but which can be also a set of 
surface patches or points acquired with a large variety of sensors. For instance, if the 
chosen reference structure is visible (i.e. in the case of skin surfaces or for open surgery) 
standard vision sensors can be used: stereo-vision or range imaging sensors, 3-D 
localizers (optical, ultrasound or mechanical). The great advantage of such sensors is that 
their output is directly a set of surface points ready to be matched without further 
segmentation. Ultrasound images spatially registered together using 3-D localizers 
(which constitute 2.5-D ultrasound images) also yield invaluable information about 
surface points location. However, automated segmentation of ultrasound images is still a 
very difficult problem in the general case. 

Surfaces can provide basic features for 3-D rigid registration as well as 3-D elastic 
matching. However, surface-based elastic matching is still delicate and few results are 
reported in the literature for medical applications. In this section, we review existing 
work on surface-based rigid registration, for which many different approaches have been 
proposed and many results exist. 

Actually, there is a simple and general approach that solves the free-form surface 
registration problem; which involves the minimization of a distance between a model 
surface S, and a data surface S,: 

D = distance (S,, T(S,)). (3) 
Several algorithms follow this approach. Their main differences lie in the different 
definitions of the distance functions between two surfaces [5,36-401. 

Let the data surface S, be represented by 3-D data points P,, j= 1 . . . M. First, we 
assume that, after registration, S, is included in S A. The problem is to estimate the 
rigid-body transformation T that minimizes the following quantity D: 

D=c [4 &,TJ’rd12 (4) 

where the distance ds between a surface S and a point M is defined by the minimum 
Euclidean distance 

MS, W = min~,dd~i, Ml. (5) 
To compute the distance d, between a point and a surface, several authors have 
considered precomputing and storing the distances ds(S, M) on a lattice of a volume V 
containing S: the result is a 3-D distance map [4]. Once the distance map has been built, 
for any point M inside V, the distance d,(S, M) is approximated by a combination of the 
distances computed at the lattice points neighboring M. In order to optimize memory 
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space, speed of computation and accuracy of the distance map near the surface, we have 
introduced octree-spline distance maps in [5]. 

In a typical surgical application where the problem is to register the position of a bone 
surface segmented on CT images with a set of 3-D surface points acquired during the 
surgery, the idea of precomputing a distance map is really practical, since it can be done 
pre-operatively. Therefore, the registration which takes place during the operation 
becomes very fast. 

Different optimization methods have also been reported to minimize the criterion of 
equation (4) [5,36,42]. In [5], we report the use of the powerful Levenberg-Marquardt 
algorithm to minimize the function D. Our resulting method is very general since it can 
be used not only to register medical images but also surface points extracted with 3-D 
sensors. This method makes possible to remove automatically outliers (false data) that 
occur quite often, provided that their percentage is less than 10 per cent of the total 
number of data. See the last section for results obtained with this method. 

Matching a 3-D surface with 2-D projections. In the medical field, edges extracted on 
2-D X-ray projection images represent valuable features for registration with 3-D 
models. However, for smooth surfaces, inferring the contour generators (i.e. the curves 
that belong to the surface and that form the image contours) can be quite difficult [43]. 
Very few papers deal with this problem, and none of these methods have been used in 
the medical field. The method that we developed recently (see [5]) uses octree spline 
distance maps, exactly as for 3-D surface registration. This allows to compute quickly 
and accurately a distance between projection lines and a 3-D surface (the distance is a 
minimum when projection lines are tangent to the surface). See applications of this 
method in the next section. 

Otherfeatures. Many other classes of features have been proposed. As a final example, 
inertia moments of volumes corresponding to reference structures can be used. Once two 
corresponding volumes have been extracted, inertia matrices are computed and eigen- 
vectors are extracted for each one. Then the matching process just aligns the correspond- 
ing eigenvectors or principal axes [44,45]. These approaches are simple to implement 
but not as accurate as the surface matching methods. 
2.3. Step 3: optimization of the disparity function 

The third step is to estimate the transformation parameters by minimizing a disparity 
function between reference features. This problem raises very technical discussions 
about the algorithms that can be used, but this does not really affect the efficiency of a 
registration method in realistic applications. This is much less important than the choice 
of the reference features, and than the definition of the disparity function between the 
features. Therefore, such a discussion is not in the scope of this paper (see [9] for 
details). From a practical point of view, minimization techniques often require a non- 
linear optimization using iterative procedures. In a general case, a standard conjugate 
gradient descent technique can be used. However, each time a least squares criterion is 
used, a very powerful algorithm is the Levenberg-Marquardt algorithm [46]. 

3. RESULTS OF SURFACE REGISTRATION USING 
OCTREE-SPLINES 

In this general framework, we have developed a series of methods that are based on 
Levenberg-Marquardt minimization between pre-segmented boundaries of anatomical 
structures [5, 151. Using octree-splines to represent 3-D distance maps yields fast 
algorithms that allow for near real-time registration and also for elastic registration. Our 
approach has been implemented for three instances of registration: 

l rigid 3-D/3-D (estimate the rigid-body transformation betwen a 3-D surface and 
3-D points) 

l rigid 3-D/2-D (estimate the rigid-body transformation between a 3-D surface and at 
least two X-ray projections) 
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Fig. 2. Virtual masks of the patient are registered. One mask is obtained from MRI images, the 
other one is obtained with a range imaging sensor. For several thousands of data points, the 
convergence of the registration algorithm requires less than 10 s on a DEC Alpha workstation. 

The accuracy of this registration step is submillimetric. 

l elastic 3-D/3-D (estimate a hierarchical volumetric transformation between two 
surfaces that have been slightly deformed). 

In the rest of this section, we present some results that have been obtained with these 
techniques. 

MRZISPECT registration. To register MRI and SPECT images accurately, we have 
proposed in [47] adding a range imaging sensor to a standard SPECT imaging device, and 
then using the skin surface of the patient’s face as a stable reference feature. The basic 
idea is to calibrate the SPECT device with a fixed range imaging sensor, and to register a 
range image of the patient’s face with the scalp surface segmented on MRI images, using 
the surface matching previously presented. Then both transformations are combined to 
give the transformation between the SPECT images and the MRI images. This method 
has been successfully validated on 10 patients and is illustrated in Figs 2 and 3. Other 
applications of this technique in Augmented Surgery are easy to imagine. 

Registration of CT images with intra-operative X-ray images images. 
Pre/intra-operative registration using only anatomical features is usually more difficult, 
because of lower quality intra-operative data (typically X-rays or ultrasounds). However, 
our algorithms have been successfully applied to registering CT with a pair of X-rays (for 
the skull and the vertebra). It is illustrated on Fig. 4 in the case of a vertebra [4,48]. 

Regbtration of CT images with intra-operative ultasound images images. Instead of 
X-ray images, we have demonstrated that it is possible to use intra-operative ultrasound 
images when the position of the ultrasound is localized in a 3-D space (using an optical 
localizer). It is illustrated in Fig. 5 for the case of the pelvic bone of a patient. A 
registration based on pelvic bones can have many applications, and for instance it can be 
used to position a patient during external beam radiotherapy [49]. This method has also 
been tested on in vitro experiments for a vertebra, and the accuracy was surprisingly 
about 1 mm [50]. 

Registration of CT images with a 3-D optical localizer. For open surgery, the simplest 
use of surface-based registration technique requires manually digitization of 3-D surface 
points that lie on the surface of a vertebra, e.g. using an optical localizer. Then these 
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Fig. 3. Once the registration between the patient’s masks has been performed, SPECI images 
that coincide with the original MRI images are resliced and displayed side by side or superim- 
posed. Due to the voxel size of SPECI images (about 4 mm), we could measure that the final 

accuracy is about 2 mm which is better than the image accuracy. 

surface points are registered with a CT model of this vertebra (Fig. 6). This method gives 
a submillimetric accuracy [48,51]. 

Elastic registration. Finally, our methods have been extended to elastic registration 
using octree-spline transformations. The results is a volumetric transformation with local 
warpings but smooth deformations. This method can be used to register models with real 
anatomy, to input a priori knowledge in a 3-D segmentation process, and ultimately, to 
track deformations during surgery. Preliminary results are reported in [15]. 

4. CONCLUSION 

The conclusion of this paper is that registering the data and systems involved into an 
Augmented Reality system for surgery is a difficult task in general. However, we hope 
that the references and the examples presented in this paper have shown that some 
solutions exist in particular situations. A major conclusion is for medical applications in 
which a bone can be used as a stable reference structure, several methods exist which 
work and are accurate and convenient. This relates to applications in which the bone 
itself is the target (e.g. orthopaedics, crania-facial surgery) and also to applications for 
which a bone can be considered to be fixed to the operated structures with an error that is 
below the required accuracy (e.g. the skull for neurosurgery, the pelvic bone for prostate 
radiation therapy or retroperitoneoscopy). Among the existing methods, we prefer 
anatomy-based techniques to external fiducial markers solutions that are much more 
cumbersome for both the surgeon and the patient. 

To make further progress, it will be necessary to face two difficult technical issues: 
automated segmentation of reference structures, and real-time tracking of deformations 
during surgery using intra-operative sensors. For deformable structures that cannot be 
associated with rigid structures within the required accuracy (e.g. heart surgery), 
building the hybrid model is a much more difficult task that will require further long term 
research. 

5. SUMMARY 

Augmented Reality for Surgery is an emerging discipline for which many technical 
problems still exist. Building a hybrid patient’s model, i.e. merging all the data and 
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Fig. 5. A series of intra-operative ultrasound images of the pelvic bone have been segmented. 
The result is a set of 3-D points that belong to the surface of the pelvic bones and that lie on small 
pieces of 3-D planar curves. (a) Before convergence, the points segmented on the ultrasound 
images are not coincident with the surface of the pelvis bone segmented on CT images. (b) After 
convergence, all the points are on the surface. Therefore, pre- and intra-operative reference 

systems are matched by the intermediary of these ultrasound images. 

systems available in a particular application is one of these difficult but crucial problems. 
The purpose is to merge all the data that constitute the patient model with the reality of 
the surgery, i.e. the surgical tools and feedback devices. In this paper, we first develop 
this concept, which enables us to realize that the construction of the hybrid model 
becomes the registration of multiple sensor data. In most cases, these sensor data are 
images or 3-D surfaces. Since this area of registration is large and confusing, a general 
framework of registration is presented and the state of the art in this domain is 
presented. Finally, we show results that we have obtained using a method that is based 
on the registration of anatomical reference surfaces. We show that in many clinical cases, 
the integration of data is possible through the use of internal patient structures only. We 
definitely claim that it is no longer necessary to use material structures fixed to the 
patient to register pre-operative data with the intra-operative position of the patient. The 
presented results show a registration of a range image with MRI images, and then the 
application of this registration to superimpose SPECT and MRI images. Then, we 
present the registration of pre-operative data with a pair of X-rays, with a set of 
ultrasound images, and with a collection of 3-D points manually digitized with an optical 
localizer. We hope that this paper will give an overview of the problem and we hope to 
convince that currently existing methods provide solutions to many specific problems. 
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Fig. 6. 
. . . . 

Registration between surface points manually digitized with an optical localizer 
CT model. (a) Before registration. (b) After registration. 
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and a 3-D 
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However, elastic deformations still raise difficulties, which limit current applications to 
anatomical structures that are stable, by comparison with the required accuracy. 
Acknowledgements-We are very grateful to all the radiologists, surgeons and physicians involved in these 
projects. 
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