
Towards semi-autonomy in laparoscopic surgerythrough vision and force feedback controlAlexandre Krupa�, Christophe Doignon�, Jacques Ganglo��Michel de Mathelin�, Luc Solery and Guillaume Morelz�University of Strasbourg I, yIRCAD, zEDF R&D, FranceAbstract: This paper shows ongoing research results on the developmentof automatic control modes for robotized laparoscopic surgery. We showhow both force feedback and visual feedback can be used in an hybrid con-trol scheme to autonomously perform basic surgical subtasks. Preliminaryexperimental results on an example clamping tasks are given.IntroductionIn laparoscopic surgery, small incision points are made in the human abdomencontrary to open surgery where a large incision is made. The surgeon putsa trocar at these incision points. Then, surgical instruments and an endo-scopic camera are inserted through the trocars. Looking at the video signal,the surgeon can move the tools in order to perform the desired surgical task.The advantages of laparoscopic surgery are obvious: reduced pain and hospitalstay, as well as a quicker recovery. The main inconvenience of this surgicaltechnique is due to the stand of the surgeon which is very tiring and limits theduration of the surgical procedure as well as the surgeon's performance.
Figure 1. Example task : cleaning-suction process in laparoscopic surgeryLaparoscopic surgical robots have appeared recently. Several commercial sys-tems for laparoscopic surgery exist today, e.g., ZEUS (Computer Motion, Inc.)or EndoWrist (Intuitive Surgical, Inc.). With these systems, robot arms areused to manipulate the instruments and the camera. The surgeon teleoperatesthe robots through master arms using the visual feedback from the laparoscope.This reduces the surgeon tiredness, and potentially increases his/her precisionby the use of a high master/slave motion ratio.Our research in this �eld is aimed at expanding the potentialities of such sys-tems by providing "automatic modes" in which the system autonomously per-forms simple subtasks. In this case, the robot controller uses the visual feedbackfrom the laparoscope to automatically drive the instruments, through a visual



servo loop, towards their desired location. Pioneer research in this �eld can befound in [1] or [2] where the laparoscope is programmed to automatically tracka surgical instrument in its �eld of view, or in [3] were a 3 dof surgical robot isautomatically placed from vision feedback.In cooperation with IRCAD (Institut de Recherche sur le Cancer de l'AppareilDigestif, Strasbourg, France), we particularly focus on liver surgery. Thissurgery involves a number of repetitive gesture, such as the cleaning-suctionprocess (Fig. 1) : �rst, the surgeon has to sweep a liquid projecting instrumentover the surface to be cleaned up ; then, the same instrument (with the pumpreversed) is used to suck up the remaining liquid. It shall be noticed that al-though this cleaning process is rather simple as compared to critical surgicalgestures, it involves repetitive movements for the surgeon who drives the mas-ter devices. Providing semi-autonomy to the robot by the use of vision basedcontrol will then relieve the surgeon of tiredness induced by this kind of sim-ple and repetitive tasks and allow a maximized concentration for the delicatephases of the operation. In this case, the surgeon delimits the surface to becleaned up on the screen and the robot autonomously performs the cleaning-suction process.The paper �rst shows how force feedback control can be used in order to limitthe forces exerted on the patient through the trocar. Then, an application ofcombined vision and force control to automatic clamping is given, with prelim-inary experimental results.1. The use of force control in laparoscopic manipulationA particularity of laparoscopic manipulation lies in the presence of a trocar,which limits to 4 dof the surgical instruments motion.This problem has been addressed over the past by the mean of mechanicaldesign [4], [5], [6]. The proposed solutions use either a remote rotation centerdevice, which requires a precise positioning of the robot in the trocar priorto the operation, or a 6 DOF robot having two passive joints in the wrist.This last solution su�ers from a lack of precision due to backlash that mayoccur between the instrument and the trocar. Our proposition is to use a fullyactuated 6 DOF robot, that provides both functional exibility and precision.In order to avoid large forces to be exerted on the patient through the trocar,the robot tip is equipped with a force sensor.1.1. KinematicsThe kinematics of the laparoscopic manipulation is depicted in �gure 2, whereFc is a frame attached to the tip of the tool handler, such that the zc axisis colinear to the tool penetration axis ; Fs is the F/T sensor frame, with zscolinear to zc ; P is the point of the tool handler that instantaneously coincideswith the trocar ; l is the distance between the origins of Fs and Fc and d is thedistance from P to the origin of Fc.As only 4 dof are available, we choose to use the following parametrization forthe operational space velocity vector:_W = � _d !x !y !z �T (1)



Robot end e�ectorF/T sensorFsP dl FcFigure 2. Manipulation through a trocarwhere _d is the translational velocity of the tool handler along zc, and !x, !yand !z are projections of the absolute rotational velocity over xc, yc and zcrespectively.Let _rp be a vector grouping the components, expressed in Fc, of the twistdescribing the absolute velocity of the tool handler at point P . Since thetrocar does not allow any tangential motion of the tool handler at point P , wehave: _rp = � v(P )c=0!c=0 � = � 02�4I4�4 � _W = A _W (2)Then, we can express the same twist at the origin Oc of Fc:_rc = � v(Oc)c=0!c=0 � = M(d) _rp with: M(d) = 0BBBBBB@ 1 0 0 0 d 00 1 0 �d 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1
1CCCCCCA (3)where both _rp and _rc are expressed in Fc. Furthermore, as Fc is rigidly attachedto the robot end-e�ector, standard kinematics can be used to provide the robotnatural jacobian matrix JN , such that _rc = JN _q, where _q is the robot jointvelocity. Finally, the inverse kinematic model is :_q = J�1N (q)M(d)A _W (4)where the robot kinematics is supposed to be nonsingular.1.2. Force feedbackIf the penetration depth d was perfectly known, equation (4) could be used todrive the robot joint velocities while respecting the trocar constraint. However,in practice, due to the experimental conditions of a surgical operation, this as-sumption is not realistic,M(d) is not perfectly known. As a consequence, using



equation (4) to control the robot motion will induce a lateral motion of P andforces could be applied on the patient through the trocar. To cope with thisproblem, a force feedback controller is added to the system in order to limitthe lateral forces applied at the incision point.Let fx and fy be the measured forces along xs and ys, respectively. Hybrid po-sition/force control can be used to servo these two measures to zero. Assumingthat the robot joints are velocity controlled, we get a conventional motion ratecontrol : _q� = J�1N (q)M(d̂) _r�p = J�1N (q)M(d̂)0@ k fxk fy_W � 1A (5)where _q� is the joint velocity control input, d̂ is the estimation of the penetrationdepth d, k is a gain corresponding to the programmed apparent damping, and_W � is the operational space velocity control input, that can be provided eitherby the surgeon through master devices (teleoperation mode) or by a visionbased controller (automatic mode). This control strategy is known to be veryrobust providing that the force loop bandwidth is low enough as compared tothe joint velocity loop bandwidth.Actually, the �rst experiments with small depth estimation errors exhibitedgood results in lateral force limitations. However, for larger estimation errors,the force loop was not fast enough to e�ciently compensate for lateral motionsat the trocar, and large forces occurred (see experimental results).In order to increase the overall controller performance, it was then necessary toprovide online estimation of the penetration depth d. Two drastically di�erentstrategies were experimented:� In the �rst one, we use the measured forces and torques in the xy planeto estimate the distance (that is the force/torque ratio). The algorithm,briey depicted in appendix 1, uses a robust least square identi�cationinvolving a forgetting factor, a sliding window and a threshold.� In the second one (see appendix 2), an adaptive approach is proposed toestimate d̂. It uses as inputs both the rotational velocities (!�x, !�y) sentto the robot, and the measured resulting tangential forces (fx, fy).1.3. Experimental resultsIn order to evaluate the e�ciency of the force feedback controller and the depthestimation strategies, an experimental testbed was built, consisting of an in-dustrial 6 dof robot equipped with a force sensor, manipulating a rigid 40 cmbar, trough a trocar. During these experiments, we apply square referencesignals !�x and !�y with a magnitude of �1:5 deg/s. In the �rst set of experi-ments, the penetration depth d = 0:1m and its initial estimate is d0 = 0:3m.The corresponding results are shown in the �rst plot column of Fig. 3. Inthe second set of experiments, the penetration depth d = 0:2m and its initialestimate is d0 = 0:02m. The corresponding results are shown in the secondplot column of Fig. 3. Three strategies are compared. The �rst one consider aconstant estimation of d, that is d̂ = d0. The results (�rst line of Fig. 3) show
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<d ; adaptive controlFigure 3. Force feedback experimental results (x axis : time in seconds)signi�cant forces (about �5 N) in both xy directions. For faster motions, theseforces would clearly become unacceptable for the patient. The second strategyuses the direct estimation of d with forces and torques measurement. One cansee (second line of Fig. 3) that the forces are limited to less than �2N andthat the estimation of d converges rapidly towards the actual value. A smalluctuation of d̂ remains, that does not signi�cantly a�ect the force controllerperformance. Finally, the third strategy (last line, Fig. 3) uses the adaptivealgorithm. This method exhibits a rather slower convergence of the depth es-timation as compared to direct estimation of d. However, the estimated signalbd is smoother. This is due to the dynamics of the gradient law that acts on_bd, whereas the least-squares algorithm gives instantaneously the estimation ofbd. Of course, once the estimation convergence is obtained, the force controlperformance is similar for the two on line estimation approaches.2. Vision based control of the instrument movementsIn "conventional" laparoscopic telemanipulation, the four degrees of freedom ofthe instrument are directly controlled by the surgeon through master devices,using the video feedback of the laparoscope. Rather, we want to provide au-tonomy to the system, that is to use the video feedback in a control algorithmin order to achieve surgical tasks.



trocar p3p2 �camerayc pcxc 'p1 ximagezc Figure 4. Vessel clamping task2.1. The use of optical markersOf course, a major di�ulty lies in the poor structuration of the observed scene.To cope with this problem, structured lightening can be added by the meanof laser pointers attached to the tool and/or the camera. A �rst attempt wasshown in [3] where a laser spot was used for depth estimation in a surgicalrobot. In this work, only one degree of freedom of the surgical instrument wasdriven with this optical marker.We propose here to generalize this approach. We consider a clamping task,depicted in �gure 4. In this experiment, we use two laser pointers mountedon a surgical tool. The laser beams are parallel, colinear to zc, in the (zc; yc)plane. We also add an optical marker on the tip of the tool. This marker liesin the xc axis. Note that the camera is �xed in this experiment, although inthe future, we intend to mount it on a second robot, in the ZEUS system. Aninteresting property of this setup is that robust extraction of the optical markerimages can be obtained by comparing an image with and without the markerson.From the image coordinates of the three spots (p1; p2; p3), we built the followingimage feature vector (see �gure 4):s = (uc; vc; �; ')T (6)where (uc; vc) are the coordinates of pc = 12 (p1+p2), ' is angle from the x imageaxis to the vector joining p1 to p2, and � is the distance from p3 to the linep1p2. The desired value s� for s is supposed to be known. In the �nal scenario,the surgeon will indicate on a tactile screen the location of both the vesselto be clamped and the point where the clamping should be done. This willautomatically set u�c , v�c and '�. Also, the clamping position is characterizedby a known value of ��.2.2. Visual servoingDue to the complexity of the scene, there is no way to precisely model the exactimage jacobian matrix, that maps the instrument velocity into _s. Rather, webuilt a simpli�ed jacobian matrix Ji for a nominal con�guration, for which thelightened scene is planar and zc is perpendicular to this plane. The followingproperties can be demonstrated: i) the velocity _d only a�ects _�; ii) the velocity!z does not a�ect _uc and _vc; iii) the velocities !x and !y do not a�ect _'; Thus



the image jacobian matrix Ji is given by:_s = Ji _W with, Ji = 0BB@ 0 Ji12 Ji13 00 Ji22 Ji23 0Ji31 Ji32 Ji33 Ji340 0 0 Ji44 1CCA (7)It is intersting to notice that we have a quasi triangular system, apart from thebloc mapping (!x; !y) into ( _uc; _vc).As a number of unknown geometrical and optical parameters is involved in thecomputation of Ji, a �rst identi�cation stage can be run at the beginning of anyexperiment. Constant velocities !x, !y, !z and _d are applied independentlyduring a short time T . The variations of s are computed and the jacobianmatrix components are estimated by:( bJi12 = �uc!xT bJi13= �uc!yT bJi22= �vc!xT bJi23= �vc!yTbJi31= ��_dT bJi32 = ��!xT bJi33 = ��!yT bJi34 = ��!zT bJi44= �'!zT (8)The visual servoing then consists of the quasi decoupling control law:_W � = � bJ�1i (s� � s) (9)Of course, the remaining degrees of freedom of the robot are still controlled us-ing force feedback, and the overall controller consists of an hybrid vision/forcecontroller that combines equation (5) and (9), together with an on-line estima-tion of d̂.The well known stability condition is that Ji bJ�1i remains positive de�nite. Dueto the complexity of the scene, the stability properties cannot be formally de-rived. Notice that a number of techniques have been proposed in the pastusing constant image jacobian matrices, exhibiting good experimental stabilityrobustness properties (see e.g. [10]).2.3. PlanningVessel clamping, is decomposed in three stages (Fig. 5):1. the angle ' is servoed to its desired value '�. The other componentsare not servoed. Then, the resulting motion is a pure rotation of theinstrument around zc.2. the image coordinates uc, vc are servoed towards u�c , v�c , while ' is main-tained at '�. This phase involves mainly !x and !y motions.3. the distance � is servoed to ��, while the other components of s are keptto their desired value. This phase mainly consist of a �nal zc translation.With such a decomposition, the image jacobian matrix components are notall identi�ed at the beginning of the experiment. Rather, they are estimatedprogressively during the clamping, when they are required. bJi44 is identi�edbefore the phase 1, bJi12 , bJi13 , bJi22 and bJi23 , before the phase 2 and bJi3k ; k = 1::4,before phase 3. Note that in practice, only Ji31 is actually identi�ed, since, inthe �nal approach con�guration, Ji32 � 0, Ji33 � 0 and Ji34 � 0.



Figure 5. Planning a clamping task2.4. Experimental resultsThis strategy was experimented on a lab testbed. A surgical instrument wasequipped with to laser beams and an LED. In these preliminary experiments,the desired values of s are set manually to a value determined during a learningphase. u� = 350 pixels, v� = 300 pixels, '� = �20 deg. and �� = 30 pixels. Anumber of experiments with di�erent initial con�gurations has been conducted.The experimental results are depicted in Figure (7), where the di�erent phasescan be observed.During the �rst 3 seconds, an open loop motion aimed at identifying _'!z isperformed. Then the �rst phase is run, providing the convergence of '. Notethat since large initial errors are involved, the controller output !�z is saturated,which explains the linear convergence. Also, during this �rst phase, the threeother components of s are not controlled, and may exhibit divergence.At t � 15s, after the convergence of ', a second identi�cation phase is run toestimate the mapping between (!x; !y) and ( _uc; _vc). This produces a variationof the di�erent components of s. The exponential convergence of uc, vc is thenobserved (from t � 20s to t � 40s, while ' is maintained to its desired �nalvalue.The �nal phase consists then of the exponential decrease of �, that is the �nalclamping zc translational motion.ConclusionTwo main results are provided in this paper. The �rst one concerns the useof force feedback control to limit the forces exerted on a trocar in laparoscopicmanipulation. This increases the manipulation performance over existing so-lutions, that use 4 dof mechanical devices, exhibiting either backlash (under-
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Badajoz, A. Garcia-Cerezo, R. Toscano and A. Jimenez-Garrido. A MedicalRobotic Assistant for Minimally Invasive Surgery. Proc. of the 25th IEEE Interna-tional Conference on Robotics and Automation. San Francisco, CA, pp. 2901-2906,April 2000.[7] M. de Mathelin and R. Lozano. Robust adaptive identi�cation of slowly time-varying parameters with bounded disturbances. Automatica, vol. 35, pp. 1291-1305,July 1999.[8] F. Chaumette, P. Rives, B. Espiau. Classi�cation and realization of the di�er-ent vision-based tasks. Visual servoing, Koichi Hashimoto, pp. 199-228. WorldScienti�c Press, 1993.[9] F. Chaumette, La relation vision-commande: th�eorie et application �a des tâchesrobotiques. Th�ese, Universit�e de Rennes, France, juillet 1990.[10] B. Espiau, F. Chaumette, P. Rives, A New Approach to Visual Servoing inRobotics. IEEE Trans. on Robotics and Automation, vol 8 no 3, june 1992[11] A. Krupa, M. de Mathelin, G. Morel. The use of force control in laparoscopicsurgery Technical Report, Accessible on http://www.gravir.u-strasbg.fr/, 2000Appendix 1The distance, d, can be identi�ed from the measurements of the forces fx, fy andthe torques Tx, Ty. If we de�ne m as the distance between the force/torque sensor'scenter and the incision point, i.e., m = l� d, then:m = pT 2x + T 2ypf2x + f2y = Trfr (10)In order to provide a robust identi�cation the following cost function was used withsliding window and forgetting factor:J(t; t0) = Z tmax(t�T;t0) e��(t��)(Tr(� )� fr(� )bm(t))2d� (11)where � > 0 is a forgetting factor and T > 0 is the size of the sliding window. Theleast-squares estimate bm(t) that minimizes J(t; t0) is equal to:bm(t) = R(t; t0)�1Q(t; t0) (12)with : ( R(t; t0) = R tmax(t�T;t0) e��(t��)f2r (�)d�Q(t; t0) = R tmax(t�T;t0) e��(t��)fr(�)Tr(� )d� (13)However, equation (12) cannot be used directly to estimate m, particularily whenthe force signals are close to zero, bringing a high noise to signal ratio. Therefore,dead-zone is added (cf. [7]). If fr(t) or Tr(t) decrease below some threshold value fthor Tth, the computation of the least-squares estimate is frozen, i.e., only the referencetool velocity _d� along zc is taken into account. Consequently, the robust estimationalgorithm is de�ned as follows:bd(t) =8>><>>: l �R(t; tk)�1Q(t; tk) if fr(t) > fthand Tr(t) > Tthand t � tk + T0bd(Tk) + R tTk _d�(�)d� otherwise (14)where tk is the last time instant when fr and Tr left the dead-zone area, and Tk is thelast time instant when fr or Tr entered the dead-zone area. Details on this algorithmcan be found in [11].



Appendix 2The alternative adaptive approach used to estimate d̂ is based on a model ofthe interaction between the robot and the patient at the incision point, that is:fx = �g:xp fy = �g:yp (15)where xp and yp are the lateral displacement of point P with respect to itsequilibrium position and g is the sti�ness of the abdominal wall of the patient.Neglecting the robot joint dynamics (which, again, is supposed to be very fastas compared to the force loop dynamics), the closed loop behavior is :8><>: �kfx = (d̂� d)!�y + _fxg�kfy = �(d̂� d)!�x + _fyg_d = _d� (16)These equations are linear with respect to the parametrization error (d� bd).If a good estimate of g is known, the following normalized gradient algorithmto estimate d can be used:_̂d = _d� + k1( _fx + g kfx) !�y�+ !�2x + !�2y � k1( _fy + g kfy) !�x�+ !�2x + !�2y (17)where k1 > 0 is the gain of this gradient algorithm and � > 0 is a normal-ization coe�cient. The stability and convergence properties of this estimationalgorithm are given in [11]: the algorithm is stable and the convergence of theparameter error to zero is obtained if there is enough excitation (i.e., enoughrotational velocities around axis xc and yc).Furthermore, If g is not known, we can rewrite equation (16) as :� _fx = �g kfx � g(d̂� d)!�y_fy = �g kfy + g(d̂� d)!�x (18)which is linear with respect to the sti�ness coe�cient g. Thus, the followinggradient algorithm can be used to estimate both parameters g and d:( _̂d = _d� + k1( _fx + bg kfx)!�y � k1( _fy + bg kfy)!�x_̂g = �k1( _fx + bg kfx)kfx � k1( _fy + bg kfy)kfy (19)where k1 > 0 is the gain of this gradient algorithm. The stability and conver-gence properties of this estimation algorithm are given in [11]: the parameterconvergence to zero is obtained, assuming enough excitation.


