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Abstract

This work describes a control architecture based
on a hierarchical classifier system. This architec-
ture, which uses both reactive and planning rules,
implements a motivationally autonomous animat
that chooses the actions it will perform accord-
ing to the expected consequences of the alterna-
tives. The adaptive faculties of this animat are
illustrated through various examples.

1 Introduction

The behavior of an animat is adaptive to the extent
that this behavior allows the animat to ”survive,” that
1s to maintain its essential variables within their viabil-
ity zone, even when confronted with a changing envi-
ronment ([Mey9la]). According to present knowledge
on animal behavior ([McF93], [Mel94]), it may be sup-
posed that several complementary components or mech-
anisms can be called upon in the design of an adaptive
animat. Besides the fact that it would appear necessary
to equip the animat with sensors and actuators and to
interconnect these through an equivalent to an appropri-
ate nervous system, further adaptive properties can be
gained from the use of a memory, a motivational system
and a planning system. Likewise, it may prove effec-
tive to hardwire some components or mechanisms, while
leaving others free to change in the course of a learn-
ing process. The work described in this paper puts these
ideas into practice and begins by describing the architec-
ture of an animat with adaptive capabilities that depend,
among other things, on a hierarchical classifier system.
These capacities are illustrated in the specific context of
a navigational task. The architecture’s main function-
alities are then compared with a variety of creations or
propositions arising out of ethology, computer science,
and robotics. It turns out that it implements a motiva-
tionally autonomous system as described by McFarland
and Bosser ([McF93]); it accordingly has the potential to
exhibit, at least to a certain degree, the adaptive prop-
erties of the most advanced animals.

2 The Architecture
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Figure 1: The architecture

In its current configuration, the architecture proposed
here enables an animat to navigate from one point to an-
other in a two-dimensional environment that may con-
tain assorted materials, and obstacles in particular. A
variety of possible generalizations of this implementa-
tion, capable of conferring on the animat many addi-
tional adaptive abilities, are in the process of realiza-
tion and will be dealt with in this text. The animat is
equipped with three proximate sensors that keep it in-
formed of the presence or absence of material elements in
front of it, 90° to its right, or 90° to its left. It is also able
to estimate the spatial coordinates of the position it is lo-
cated in and the direction of a goal to be reached in each
of the eight sectors of the space surrounding it. Lastly,
it 1s capable of moving straight ahead, 90° to its right,



or 90° to its left. This architecture, which relies upon a
hierarchical classifier system ([Hol86]), is organized into
five modules - a reactive module, a planning module, a
context generator, an internal retribution module and an
auto-analysis module (Figure 1).

2.1 The Reactive Module

This module consists of a series of rules - or classifiers -
that allow the animat to react to incoming sensory infor-
mation from the environment as well as to the internal
context generated by the context generator. In the cur-
rent configuration, the internal context is the direction
of the current goal. The reactive rules take the form:

If <sensory wnformation> and <direction of current
goal> then <action>

For example, rule R7 : 100/001 ==> 01 can be acti-
vated when the animat becomes aware of the presence of
a material element in front of it, but not on either side
(information coded by 17, ”0” and ”0”), and when the
direction of the current goal is 45° to its right (direction
”001”). TIf this rule is actived, the animat performs an
elementary displacement 90° to its right (action ”7017).
An internal strength - which will be discussed later - is
associated with each rule of the reactive module, as is
a prediction of the consequences of the corresponding
action. This prediction is learned incrementally and de-
scribes how the animat’s position changes when the rule
is applied. For instance, the prediction X := X + 1,
Y =Y will be associated with rule R1.

To each pair of conditions on the <sensory information>
and the <direction of current goal> correspond, at any
point in time, three rules capable of being triggered, each
of which is associated with one out of the three possible
actions. The choice of which rule is actually actuated is
effected probabilistically, on the basis of the respective
strengths of the three rules involved. In the current ver-
sion of the system, there are 8%« 8+3 = 192 possible rules.
These rules are all created when the system is initialized
and charged into the reactive module, which does not
change in size as long as the system is in operation. The
strengths of each rule are all initialized to a given value
and are subsequently modified by learning. In the future,
a genetic algorithm ([Hol86]) will be used in the interest
of discovering more general rules.

2.2 The Planning Module

This module is made up of another series of rules, that
allow it to decompose a task! into a sub-task accord-

'In AI, this type of decomposition is classically called problem
decomposition. Wilson ([Wil87]) discusses a decomposition of be-
havior modules. The term task appears more general and is derived
from robotics terminology ([Alb81]).

ing to current sensory information. These rules take the
form:

If <sensory wnformation> and <current task> then
<new current task>

Sensory information is provided by the sensors and comes
from the environment. It consists of information sup-
plied by the proximate sensors and of the animat’s coor-
dinates and current orientation. As explained below, the
<current task> 1s the one registered at the top of the pile
of tasks governed by the context generator. The current
task is used as an internal context which contributes to
the triggering of the planning rules. The <current task>
and the <new current task> are each coded at present
as a pair of coordinates. Later, they will be described in
a more general form.

Thus, the rule P1 : 000]5,1]001]3,0;3,5 ==> 5,1;5,2
can be activated at point 5,1 (in (x,y) spatial coordi-
nates) if the animat is headed in a north-easterly direc-
tion (coded by ”0017), if it perceives no material element
ahead or on either side of it (coded by ”0”, 70" and ”0”),
and if its current task 1s to reach the point with coor-
dinates 3,5 when starting at point 3,0. If this rule is
activated, the new task, which involves reaching point
5,2 from point 5,1 will be placed on top of the context
generator pile.

With each rule of the planning module are associated two
strengths - one local, the other global - the evaluation of
which will be explained later. The local strength is used
to determine the probability of triggering a rule whose
condition part matches the current situation. When the
system is initialized, the planning module is empty. Dur-
ing operation, this module can dynamically acquire rules
- generated by the auto-analysis module - or lose rules
- according to how the global strengths of these rules
evolve. The size of the planning module thus varies over
time, though it cannot exceed a preestablished upper
limit.

2.8 The Context Generator

The context generator consists essentially of a pile of
tasks the top of which represents the current task of the
system. New tasks are added to the pile either by the
planning module, as just seen, or by the auto-analysis
module, when an obstacle is detected. This latter case
occurs when the presence of an obstacle prevents the ac-
tion judged to be the most conducive to reaching the
goal associated with the current task from being fully
applied. An obstacle can be detected in two ways:

1) When a rule is triggered by the reactive module and
the results obtained are not those expected (a situation
designated as failure).

2) When the system can predict that a rule will lead to
failure if 1t 18 applied.



For example, rule R2 : 100|110 ==> 00 - that stipu-
lates that, in the presence of a material element situ-
ated in front of the animat (coded by 71”7, ”0” and ”0”)
and of a goal situated 45° to its left (direction coded by
”110”), it should proceed straight ahead (action coded
by 700”) - may have been triggered because it presented
the strongest strength at a given moment. This rule pre-
dicts that X := X and Y := Y + 1. However, because
the material element i1s actually an obstacle, Y cannot
change. The obstacle is therefore recognized as such by
the auto-analysis module, which generates a general sub-
task. This "skirting around the obstacle” task is to go
beyond the line which lies perpendicular to the direction
of the animat and passes through the point where the ob-
stacle has been detected (Figure 2a). This task is coded
by the pair <coordinates of the point> <direction vector
of the straight line to be crossed> and is registered at the
top of the pile of the context generator.

The context generator also includes an algorithm that
transforms the current task, situated at the top of its
pile, into a goal, then supplies the direction of this goal
to the reactive module. In the case of a task posted by
the planning module, the corresponding goal is simply
described by the coordinates of the point to be reached.
In the case of a task posted by the auto-analysis module,
the goal is described by the coordinates of the projection
of the animat’s current location on the straight line to
be crossed. This projection, and accordingly the corre-
sponding direction information, varies whenever the an-
imat moves.

An emergent functionality ([Ste91]) of the internal dy-
namics of the system, and more particularly of the con-
text generator, is to enable the animat to skirt around
the obstacles it encounters. In fact, if we reexamine the
Figure 2a example, when the obstacle is detected at point
1, the task of having to go beyond the straight line § 1 is
placed on top of the current task - which corresponded to
the goal direction d0 - and the current goal becomes the
point marked with a 77" on the figure, in direction d1.
Since rule R2 cannot be applied, the animat chooses to
apply another, causing it, for example, to move towards
the left. After this displacement, the animat arrives at
point 2. The current goal, with which direction d2 is as-
sociated, becomes that in Figure 2b but the pile of tasks
doesn’t change.
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Figure 2: a / b

At point 2, if the learning has progressed sufficiently,

the best action the animat can perform consists in pro-
gressing to the right in order to move in direction d2. As
this action is not possible, it chooses to move forward.
After arriving at point 3, the current goal becomes that
of Figure 3a, in direction d3. This time, the best rule
can be applied: the animat turns right and reaches the
current goal. The task associated with 41 is erased, and
the animat can resume pursuing the goal of direction d4

(Figure 3b).
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Figure 3: a / b

Following this reasoning, had the animat encountered
an obstacle perpendicular to the preceding, preventing it
for example from reaching point 3, this obstacle would
have been detected as the preceding one had been. This
is because the forward action, judged to be the best since
turning right was already forbidden, has become impos-
sible. In that case, the task of having to go beyond the
line § 2 would have been placed on top of the task associ-
ated with é 7. The animat would thus have been directed
successively through points 3 and 4 (Figure 4). At 4, it
would have been able to turn right and reach point 5,
where the task linked with 62 would have been erased.
Likewise, the task linked with ¢ 1 would in turn have been

erased at point 9.
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Figure 4:

In more complex situations, it can happen that the an-
imat, seeking to attain the current goal, will erase a task
placed farther down than the current task in the pile. In
this case, all the tasks situated above the erased task are
also erased, as they were generated for the sole purpose
of executing this task and no longer have any justifica-
tion. It will be shown later on that such mechanisms
enable the animat to skirt around obstacles and to extri-
cate itself from dead-ends with arbitrarily complicated
shapes.



2.4 The Internal Retribution Module

The retribution module works through a process of rein-
forcement which causes the strengths of the rules of the
reactive and planning modules to change.

Within the reactive module, this reinforcement takes
place each time a rule is used. It depends on the sat-
isfaction of the animat, that is, on an estimation of the
success with which this rule brought the animat closer
to, or took it farther from, the current goal:

S(Ryu+1)=(1—a)*xS(R,u) + o satisf

dist_goal(u) — dist_goal(u — 1) + max _dist
max_dist * 2

satisf =

where

S (R, u) : strength of rule R after u triggers

S (R,0), o, max_dist : parameters of simulation
dist_goal(u) : estimated distance to the current goal.

In the present version of the system, distances are cal-
culated exactly. However, distance information does not
need to be very accurate because it is used merely as a
heuristic for triggering good reactive rules, which are not
necessarily optimal. It is the role of the planning module
to orientate the reactive module towards a near optimal
path, by means of the internal context.

A failure can occur when the action of a rule is executed.
For instance, going forward when there is an obstacle
in front of the animat is impossible. In that case, the
strength of the rule will be reset to zero.

The rules of the planning module are characterized by
two strengths: a local strength and a global strength.
The local strength evaluates the usefulness of decompos-
ing a task into a sub-task proposed by the rule. The
global strength, on the other hand, detects and sup-
presses the rules which are unlikely to be used by the
system.

To calculate the local strength of a rule P7 that decom-
poses, for example, a task T - such as that of going from
1 to f - into a sub-task 7' - such as that of going from
to k - the retribution module evaluates the average cost
of all the paths tested by the animat which enable it to
reach f from 1 without resorting to decomposition. In the
present version of the system, this cost, denoted by AC
(T), is a average of the lengths of the paths expressed in
terms of the number of elementary displacements they
contain. AC (T) is evaluated incrementally:

AC(Tyu+1)=(1—a)x AC(T,u) + ax C

where

u : number of times that task T was accomplished
C' : cost of the u+1th path

o @ parameter.

The retribution module also evaluates the average cost
of all the paths joining i1 to f and using rule P17, that is,
that reach k from j:

AC(PLiu+1)=(1—a)« AC(PLu)+ ax(C1

C'1 is computed when task 7'is erased, with the cost C
of the path covered being divided among all the rules P1,
P2 ... which decomposed T. This succession of rules is
thus memorized, and a profit sharing algorithm ([Gre88])
is called on to manage the corresponding retributions. In
these conditions, the local strength of P1 is given by:

AC(T, u)
LS(Pliu+1) = AC(PT,u)

The shorter the paths joining i to f and passing through
j and k have turned out to be on average than the paths
joining 1 to f by way of other paths the stronger this
strength is.

Each time a task generated by the planning module is at
the top of the context generator pile, the planning mod-
ule can decide whether or not to decompose this task
and to trigger one of various decomposition rules PI,
P2 ... 1t contains. These rules have been created by the
auto-analysis module from salient states detected in the
environment, as will be explained later. The decision to
decompose is then made on the basis of a probabilistic
choice depending on the local strength of each rule (a lo-
cal strength of 1 being assigned to the non-decomposition
option), weighted by an exploration-exploitation coeffi-
cient. The role of this coefficient 1s to modify, in the
course of operation, the probability that the system will
apply rules with a high local strength. Its value 1s con-
stant for the time being; it could subsequently be modi-
fied according to the progress of the simulation.

It is clear that, whatever the local strength of rules P1,
P2 ... that decompose task T these rules are unlikely to
be triggered if task T itself 1s unlikely to be posted on
the context generator pile. The global strength of each
rule allows this type of situation to be detected and the
less useful rules to be eliminated whenever the size of
the planning module exceeds the maximum permissible
threshold. The global strength of PI that decomposes T
into 71 1s given by:

GS(P1) = LS(P1) x GS(T)

GS (T) is the average of the global strengths of all the
rules P liable to post T on the context generator pile,
this average being calculated incrementally:

GS(T,u+1)=(1—a)«xGS(T,u) + a* GS(P,u)

When the system is initialized, a principal task PT - for
example, going from point 3,0 to point 3,5 - is assigned
to the animat, and the corresponding global strength G.S
(PT) is set arbitrarily at 1000. Under these conditions,



if task 7 happens to be generated only rarely, its global
strength will be weak, as will be those of all the rules
that decompose T.

2.5 The Auto-Analysis Module

Besides its role in the characterization of obstacles, the
analysis module is used to detect recursively the salient
states? of the environment. To accomplish this, the mod-
ule calculates, from the satisfaction of the animat after
each completed action, the variation of this satisfaction
between two successives actions. In positions where the
corresponding gradient is positive, the analysis module
detects satisfaction states, which are added to the de-
parture and arrival states of the path in question. These
satisfaction states are only detected when the pile con-
tains a ”skirting around the obstacle” task.

The recursive process effected by the analysis module
applies first of all to the path actually travelled by the
animat, then to the successive fictitious paths that can
be abstracted from the satisfaction states detected on
these paths. Such a process is thus a consequence of
the metaphor which conceives planning as a series of
”thought experiments”. When the path obtained by di-
rect connection of the satisfaction states detected on the
preceding path generates the same sequence of satisfac-
tion states, the recursion is stopped, and the last satis-
faction states discovered are recognized as salient states.

Ef Ef
+10 (=)

Ei

Figure 5: Satisfaction states: Numerical values indicate
the satisfaction brought by each action. >, < and =
symbols indicate the sign of the satisfaction gradient.

Thus, in the case of Figure 5, the animat has ac-
complished ten actions in order to reach state Ef from
state Fi, while simultaneously skirting around an obsta-
cle. The gradient of satisfaction is positive at Fa and Eb
during a ”skirting around” task, and the analysis module
accordingly generates four satisfaction states: Ei, Ef, Ea
and Eb. At the next stage, the satisfaction gradient as-

2In a purely navigational task, one could have used the word
"landmarks” instead. We prefer to refer to "salient states” as our
approach aims at solving more general tasks.

sociated with each fictitious action, which makes it pos-
sible to progress from one satisfaction state to the next,
is computed. Fa can then be eliminated, as the gradient
is negative between Fa and Eb. Because no other satis-
faction point can be eliminated along the path directly
connecting the three remaining states with one another,
the recursive process stops at this stage, and the analy-
sis module recognizes and memorizes three salient states:
B, BEf and Eb, each characterized by its coordinates, by
the sensory information obtained by the animat at this
point, and by the corresponding orientation of the ani-
mat.

The salient states are then used to generate planning
rules. Thus, at the conclusion of the path described on
Figure 5, the two rules P7 and P2 that decompose path
Ei-Efinto Ei-Eb and Eb-Ef.

P1: 000|3,0[000[3,0,3,6 ==> 3,0,6,3
P2: 010]6, 3]000[3,0,3,6 ==> 6,3,3,6

are created and input to the planning module. The ad-
vantage of the redundancy in the description of these
rules is to make it possible to recognize the salient states,
even when there are imprecisions in the coordinates, or in
the sensory information, or in the animat’s orientation,
or when the animat reaches one of these points with a
new orientation.

A current weakness of the model is that absolute (x, y)
coordinates are used to code the tasks. In the future,
the position and the direction of each salient state will
be calculated relatively to the position of the previous
salient state of the plan. A "relative-position estimator”,
analogous to the one used by Kuipers [Kui93], will allow
the animat to navigate from one salient state to another.
Also, a more general description of salient states will be
sought by means of a genetic algorithm.

3 Operation of the System

The following examples describe the results obtained in
the instance of an animat moving in a square environ-
ment.

Figures 6, 7 and 8 illustrate the capacities of the ani-
mat, when learning only reactive rules, to skirt around
obstacles of various shapes and to adapt to changing cir-
cumstances. The path on Figure 6 is the one obtained
after 50 iterations - that is, after b0 experiments dur-
ing which the animat has reached the goal when starting
from the initial state - in an environment containing a
dead-end. Path 7 is the one obtained when the dead-
end 1s replaced by a double spiral, after five additional
iterations in this new environment. Path 8 is the one
obtained when the double spiral is replaced by an arc
after a single additional iteration.



Figure 6: The dead-end environment

]

Figure 7: The double spiral environment

Figure 8: The arc environment

Figures 9 and 10 show what salient states and what
corresponding action plan are found in the environments
with a dead-end and with a double spiral, using the re-
active paths from Figures 6 and 7. In both cases, it is
apparent that the original task is decomposed into three
sub-tasks and that the plan which is thus abstracted
from the actual paths is simple because it depends on
the convex envelope of the obstacles, rather than on the
complexity of these obstacles.

Figure 9: Plan abstracted in the dead-end environment,
and a path obtained when using this plan

o

Figure 10: Plan abstracted in the double spiral environ-
ment

A path following the new plan is also shown in Fig-

ure 9. The three planning rules which define this plan are
successively triggered, activating the three corresponding
sub-tasks. At its starting point, the animat has used the
first salient point as a subgoal, and when it arrived at
this point, it used the second salient point as another
subgoal. The planning module influenced the activation
of the reactive rules in order to generate a shorter path
to the goal.
Figures 11, 12 and 13 illustrate the decomposition of a
plan into three hierarchical levels. The plan in Figure 11
is obtained from a path generated when using reactive
rules only. When this plan is carried out, it is seen that
the necessity of avoiding an obstacle yields a path that
defines new salient states and that new sub-tasks are
superimposed on the preceding (Figure 12). Likewise,
when this new plan is put into effect, a third level of
sub-tasks appears (Figure 13). Beyond this third level,
the paths travelled no longer involve the avoidance of
obstacles, and the corresponding plan does not result in
additional decompositions.



new plans, as a function of the new obstacles appearing
in the environment.

Figure 11: Plan level 1

Figure 14: The best plan : iteration 15
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Figure 12: Plan level 2

Figure 15: The best plan : iteration 22
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Figure 13: Plan level 3

Figures 14 to 16 illustrate the fact that the system Figure 16: The best plan : iteration 38
retains several plans in its memory and that it is contin-
ually updating the local and global strengths of the rules
of the planning module. It consequently follows that it Thus, after 15 iterations in the environment depicted
can rapidly switch from one plan to another, or create on Figure 14, the animat has memorized two plans for



avoiding the dead-end. The best plan is shown on Fig-
ure 14, while the less effective one is shown on Figure 15.
If, at iteration 16, a new obstacle is added to the environ-
ment along the animat’s optimum path, this obstacle is
avoided, and the corresponding plan is modified accord-
ingly. However, as the cost of this modified plan exceeds
the cost of the second plan stored in the memory, this
second plan is the one most likely to govern the animat’s
path from the 22th iteration on. Likewise, introducing a
new obstacle into the environment at the 30th iteration
gives the advantage once again to the modified version
of the first plan (Figure 16). It is thereby seen that the
animat is capable of altering its plans as a reaction to
modifications in its enviroment.

4 Related Research

As compared with related computer or robotics ap-
proaches, the architecture proposed here displays certain
distinguishing characteristics.

Where learning is concerned, this architecture makes it
possible to avoid the problem of the ”two-platform sta-
tion” described by Westerdale ([Wes89]) as applied to
traditional classifier systems. In these systems, a single
rule can be rewarded at times and punished at others,
according to the corresponding context. Here, the con-
text of use 1s expressly taken into account and is used
to distinguish the rules. Likewise, the problem of the
“temporal credit assignment” ([Sut91]), inherent to tra-
ditional classifier systems when a large number of rules
have been involved in the acquisition of a reward, is elim-
inated here because the strength of each reactive rule is
updated after its utilization, thanks to the management
of an internal reward. This, however, is not at all the
case with the local strength of the planning rules. Nev-
ertheless, the corresponding profit sharing plan concerns
only a given level of planning and therefore calls on only
a small number of rules, in agreement with the logic en-
visaged by Wilson ([Wil87]) for the bucket brigade algo-
rithm ([Hol86]).

The architectures described by [Wil87], by [Shu91] and
by [Col93a] also rely on hierarchical classifier systems,
but only the first - which is a theoretical construction and
has not yielded any concrete application - might imple-
ment a planning process. Nevertheless, Wilson does not
specifiy how the corresponding tasks and sub-tasks could
be identified by the system. Likewise, though the archi-
tecture proposed by Colombetti and Dorigo provides for
a clagsifier system to coordinate the actions proposed by
two other classifier systems, the hierarchical relationships
are predetermined by the programmer. On the contrary,
in the present work, the hierarchical relationships among
tasks are dynamic because they are generated internally
on the basis of the experience gained by the animat.

As to planning, the architecture used here does not call
on any predefined operators for decomposing problems

into sub-problems, for the purpose of generating a plan
which would then be executed ([Nil80]). Such a practice,
which implies that planning precedes acting, has shown
itself to be singularly ineffective ([Bro91]). Conversely,
here; acting precedes planning, and the latter does not
depend on predefined operators, but rather 1s abstracted
from the paths actually travelled. The plans thus elabo-
rated are initially quite general and are based on a small
number of rules - thereby reducing the cost of learning, as
was just mentioned. These plans are refined as needed.
They are not executed mechanically by the animat, but
instead are used as one ressource among others to decide
which action to perform ([Agr88], [Suc87]). The organi-
zation of these plans thus appears as an emergent prop-
erty, arising from the interactions between the animat
and its environment and elicited by the animat’s needs.
Lastly, the value of these plans is continually reevaluated,
which confers considerable adaptive faculties on the sys-
tem.

Albus ([Alb81]), too, described a hierarchical architec-
ture able to decompose a complex task into a series of
sub-tasks, then into a series of elemental moves, then into
a series of motor drive signals which actuate observable
behavior in a robot. However, although Albus describes
how such architecture relates to a general theory of intel-
ligence ([Alb91]), he doesn’t state how the correspond-
ing hierarchy might be dynamically generated, nor how
it could be modified according to the robot’s needs and
to the environmental conditions encountered.

In comparison with the literature on animal behavior,
the architecture proposed here implements a motivation-
ally autonomous agent ([McF93]). In everyday language,
the term motivation is used to describe the experience
of desiring to act in particular ways in order to achieve
certain ends. As Toates ([Toa86]) argues, a motivational
system is one that selects a goal to be pursued and or-
ganizes the animal’s commerce with it. Current research
on the relationships between motivations and behavior
focus on the notions of motivational space and motiva-
tional state ([McF85]). The motivational state of an an-
imal at any particular time depends on its physiological
or internal state, on the cue state arising from its per-
ception of the external world, on the consequences of its
current behavior and on the expected consequences of
its future behavior. Such a motivational state can be
portrayed as a point in a motivational space, the axes
of which are the animal’s important motivational stim-
uli, such as an energy level or the odor of food. As a
consequence of the animal’s behavior, the motivational
state changes, and the corresponding point describes a
trajectory in the motivational space. Such displacements
are monitored by sensors that relay nervous messages to
the brain. They are also calibrated in terms of their
estimated contribution to the animal’s fitness ([Hou76],
[McF81]). Then a decision is made about which behavior



to perform. If this decision doesn’t take into account the
expected consequences of the alternatives, the animal be-
haves like a motivated automaton, otherwise 1t behaves
like a motivationally autonomous agent ([McF93]). To do
so, the animal requires knowledge of the probable conse-
quences - or expected utility - of its acts. In other words,
1t must have some memory of the past consequences of
similar activities, and it must be capable of planning -
i.e. 1t must use some form of cognition. Furthermore, as
Dennett ([Den83]) pointed out, it must want something,
it must have goals3.

The animat described here displays all these character-
istics. Indeed, the behavior, or the action, it performs
at any instant depends both on sensors and on what
was called here the internal context. This context actu-
ally includes the goals that the animat has selected and
that it seeks to achieve. There is nothing to prevent this
context from subsequently taking into account other in-
formation about the internal state of the animat. The
animat’s goals are generated by an explicit planning pro-
cess, and the strength of the rules memorizes the conse-
quences of the various choices that the animat has made
in the past. These consequences are actually evaluated
in terms of their aptitude in bringing the animat nearer
its goal; they may later depend on an appropriate utility
function. It will be noted in passing that McFarland and
Bosser do not specifiy how the weighting coefficients as-
sociated with the different actions can induce the animal
to choose one action when pursuing one goal and another
action when pursuing another goal. Here, this problem
is solved by the fact that the actions performed depend
on the internal context and accordingly on the current
goal.

This latter point is likewise to be compared with the
hypothesis proposed by Wilson ([Wil91]) according to
which the most efficient systems would be those that
”convert every frequently encountered important situa-
tion to one of ‘virtual stimulus-response’ in which inter-
nal state (intention, memory) and sensory stimulus to-
gether form a compound stimulus that immediately im-
plies the correct next intention or external action”. As
Wilson remarks, such an hypothesis 1s compatible with
the observation that, ”in animals and people, even com-
plex behavior, if frequent and important enough, tends
to become reflexive”. It should also be related with the
distinction between ”interpreted” and ”compiled” knowl-
edge of the standard AT ([Lai86]).

In comparison with other approaches aimed at includ-
ing a motivational system in the architecture of an an-
imat ([Bee90], [Cec93], [Gab93], [Hal91]), this approach
is the only one that incorporates a planning process
which, as seen previously, substantially enhances the

3In other words, the animal must be goal-achieving and goal-
seeking. Whether his behavior is goal-directed or intentional is
another issue ([Den83], [McF89]).

adaptive faculties of the animat. It would accordingly
seem that, in the continuum described by McFarland
and Bosser ([McF93]) which distinguishes motivated au-
tomata from motivationally autonomous agents, these
other approaches tend to be situated in the former cat-
egory, while the present approach would belong to the
latter.

It is moreover clear that the animat’s behavioral se-
quences described here are not random, which could be
demonstrated using the same methods that ethologists
do ([Gui86]). These sequences are organized according
to the animat’s goals, so that a given action tends prefer-
ably to be followed by one action in the context of a par-
ticular goal and by another action in the context of a
different goal. Such an organization is by no means arbi-
trary but rather tends to maximise the utility function,
contrary, for instance, to what is learned in Colombetti
and Dorigo ([Col93b]). Nor is it determined once and for
all, and 1t does not preclude reacting opportunistically
to the surprises of the environment.

5 Conclusion and Ongoing Research

The architecture described in this text is that of a moti-
vationally autonomous agent. It accordingly could prove
useful in reproducing at least certain adaptive abilities
of the most advanced animals, that have amply proven
their aptitude to survive in more or less predictible and
more or less threatening environments.

This work continues in three directions. The first aims
at adapting this architecture to an actual robot and to
the corresponding constraints. The second aims at im-
proving the present implementation by managing other
motivations and other actions - such as eating, drinking,
or exploring the environment. Another improvement will
allow the animat to generalize the knowledge 1t acquires
- in order notably to permit the animat to avail itself, in
new contexts, of isolated actions or behavioral sequences
which proved useful in the context in which they were
learned. Finally, the third direction seeks to demonstrate
the generality of the approach described here by apply-
ing the corresponding architecture to various planning

problems like those of the block-world ([Nil80]).
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