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This paper successwely describes the works of Boers and Kuiper, Vaario, Nolfi and Parist,

Gruau, and Dellaert and Beer, which all evolve the developmental program of an artificial
nervous system. The potentialities of these approaches for automatically devising a control
architecture linking the perceptions and the actions of an animat are then discussed, together
with their possible contributions to the fundamental issue of assessing the adaptive values of
development, learning and evolution.
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1 Introduction

An animat [MEYE9la, MEYE92, CLIF94] is an artificial organism - either a simulated animal
or an animal-like robot - the structure and functionalities of which are based substantially on
mechanisms observed in real animals. It is usually equipped with sensors, with actuators, and
with a behavioral control architecture that relates its perceptions to its actions and allows it to
survive in its environment.

Such a control architecture can be fixed by a human designer or by an automatic process inspired
from biology and involving the three main adaptive processes characteristic of living systems,
i.e. the processes of development, learning and evolution.

Although learning and evolution have already often been used for the automatic design of
control architectures in animats [MEYE91b, MEYE94], such does not happen to be the case
with the process of development, a point stressed and regretted by Meyer and Guillot [MEYE94].
However, a few such applications - which combine development, evolution and, possibly, learning
- have recently been published. They will be described in the remainder of this paper, which
will close with a discussion of the foreseeable potentialities of such approaches.

2 Boers and Kuiper

The work of Boers and Kuiper [BOER92] combines a genetic algorithm and a learning proce-
dure with a Lindenmayer grammar [LINDG68] that models development. Basically, the genetic
information on which the genetic algorithm operates codes for a set of production rules which
are applied to an axiom for a number of iterations. The resulting string is transformed into a
structural specification for a classical feed-forward neural network. The weights of this network
are trained by back-propagation, which provides a fitness estimate that is returned to the ge-
netic algorithm.



The strings used in this work are made up of 16 characters from the alphabet {A-H, 1-5, [, ]}
U {,}.

A letter (A-H) designates a specific neuron in the network and two adjoining letters are auto-
matically connected feedforward. If two letters are separated by a comma (,), no connection is
made. Modules can be created by grouping neurons or other modules between square brackets
([.]): two adjoining modules are connected - so that all output neurons from the first module
are connected to all input neurons from the second module - and two modules separated by a
comma are not connected.

Single digits are used to denote a skip within the string. For instance, the string [A2[B,C]D]E
codes for the network of Figure 1, where neuron A is connected to neurons B and C because
both are input neurons in the [B,C] module. Neuron A is also connected to neuron E because
the connection skips both module [B,C] and neuron D.

1: A — BBB
2: B >B — |[C,D]
3: B — C
4: cC<D —= C
5:

D>Db— (1

Figure 2. A sample of produc-
tion rules. After [BOER92].

Figure 1. The
string [A2[B,CID]E
developed. After
[BOER92].

The L-system used for generating such strings is a 2L-system, in which every production

rule can have both left and right contexts and is therefore divided into four (possibly empty)
parts: L < P > R— S.
Basically, such a rule means that sub-string P (the predecessor) should be replaced by sub-string
S (the successor) if P is connected to every neuron described in L (left- or lower-level context)
and in R (right- or upper-level context). Thus, if the five production rules of Figure 2 are applied
to a single original neuron A - given as an axiom - (Figure 3a), the string BBB is generated
after one rewriting step (Figure 3b). During the second rewriting step, the first (bottom) and
the second (middle) B’s are rewritten using rule 2, because they both are connected to a higher
B. On the contrary, the third (top) B - which has no connection with a higher B - is rewritten
according to rule 3, instead of rule 2 (Figure 3c). Likewise, during the third rewriting step, the
first (bottom) D is rewritten according to rule 5 and the second (middle) according to rule 4.
As no more rules apply, the final network obtained corresponds to string [C, C1] [ C,C] C shown
in Figure 3d.
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axiom BBB [C, D][C, D]C [C,C1][C, C]C

Figure 3. The development of a neural network using rules of Figure 2. After [BOER92].

To separate the constituent parts of each production rule, Boers and Kuiper use a special
character (an asterisk) and, to relate each of the 17 possible characters in a production rule to
the genetic information processed by the genetic algorithm, they use the genetic code described
in Figure 4. Thus, in this application, the genetic code relates 17 characters to 64 6-bit strings,
instead of relating 20 amino-acids to 64 triples with 4 bases.
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Figure 4. The genetic code used in [BOER92]. For example, the character corresponding
to string 100100 is the first A in the Table.

Furthermore, the genetic information on a given chromosome can be read in twelve different
ways - starting at any of the first 6 bits and reading forward, or starting at any of the last 6
bits and reading backwards - thus providing the genetic algorithm with a much higher level of
implicit parallelism than in traditional applications. Figure 5, for instance, describes 4 different



translations of a chromosome with a length of 48.

Finally, the software developped by Boers and Kuiper also contains several functions capable
of repairing faulty strings, i.e. strings with extraneous brackets, useless commas, or succeeding
digits.

To our knowledge, this software has so far been used in only a few very simple applications. For
instance, it has evolved neural networks capable of solving the XOR problem or of recognizing
handwritten digits 0,1 ... 9 presented on a x5 grid.

110000111001001110001101001101111101010100110010

x| JAl /x| /B /B| /B| /*

, = 2 1 1 C 1

Figure 5. Extract from a chromosome together with 4 possible translations. After

[BOER92]

3 Vaario

Vaario’s approach [VAAR93, VAARO94] explicitly takes into account environmental effects on
the development of neural networks and is also inspired by Lindenmayer’s systems [LINDG6S].
However, instead of using linear character strings, it makes use of abstract objects which typi-
cally represent artificial cells - each characterized by a set of attributes and a set of production
rules to execute. In this model, each cell is actively ”checking” the environment and, on the
basis of the corresponding information, executes one or several of its production rules. Cell
attributes mostly refer to the concentrations of various chemical elements and enzymes. Pro-
duction rules are characterized by the set of conditions which must be fulfilled for them to be
executable and by the kind of action they trigger. They are divided in 4 types:

-cytoplasm rules, interpreting the genetic code and modifying the internal state of a cell;
-membrane rules, modifying the internal state of a cell according to the interactions between
the cell and its environment;

-rules creating a cell;

-rules deleting a cell.

In particular, these rules are used to model various morphogenetic processes, such as cell divi-
sion, axon and dendrite growth, axon guidance and target recognition, cell death, elimination
of connections, anatomical plasticity and synaptical plasticity (Figure 6).
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Figure 6. Some morphogenetic processes. After [VAAR93].
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For example, the process of axon and dendrite growth depends on the presence of obstacles
and of target cells in the environment. Connections bounce against obstacles and climb the
gradient fields of the chemical substances emitted by target cells. When a connection finally
reaches a target cell, it creates a synaptic connection and stops growing. Moreover, those
connections unable to find any target neuron gradually withdraw.

Figure 7. Three developmental stages in the development of Vaario’s animat. Three phases
are shown: initial growth (top), initial withdrawal (middle) and after all unconnected links

are withdrawn (bottom). After [VAARY4].

In the current implementation of Vaario’s model, the genotype of an animat is not encoded
in a bit string, but in a symbolic representation which also allows crossover and mutation
operations. Thus, several characteristics - like the time to branch, the branching angle and the



type of target cells involved in connection growth, or the numbers, positions and properties of
the animat’s sensors and actuators - are genetically determined.

Figure 7 shows the development of the nervous system of an animat with two sensors and four
actuators. The cell positions and the targeting labels (i.e. which neuron will be connected to
which sensors and actuators) have been given explicitly. Figure 8 shows what kind of neural
network can be evolved in order to generate a tracking behavior. The signal generated by each
sensor is a genetically coded function of distance and angle of the stimulus. Likewise, each
actuator generates a force which depends on the incoming signal in a genetically determined
manner. Although the model doesn’t incorporate any learning ability in its present stage of
development, it wouldn’t be difficult to allow some production rules to modify thresholds or
connection weights in future implementations.
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Figure 8. The developed nervous system and the tracking behavior of Vaario’s animat.

After [VAARY4].

4 Nolfi and Parisi

The work of Nolfi and Parisi [NOLF91] is concerned with the evolution of animats that can con-
sume food elements, randomly distributed in the environment. Each animat is equipped with
a sensory system that allows it to perceive the direction and the distance of the nearest food
element and with a motor system that provides the possibility of turning any angle between 90
degrees left and 90 degrees right, and to move forward 0 to 5 steps. The nervous system of each
animat is a bidimensional network with up to 40 neurons, whose development is coded in the
animat’s genotype. This genotype is a fixed-length string of 40 blocks, each block being made
up of eight genes that describe the developmental fate of a given neuron. The first five blocks
in the string correspond to sensory neurons, the last five blocks to motor neurons and the 30
intermediate blocks to internal neurons, which can be arranged in a maximum of 7 layers.
Within a given block, the first gene is a temporal expression gene which specifies when during
development the corresponding neuron will be expressed. Neurons scheduled to appear after
the animat’s death are non-expressed neurons.

Two physical-position genes represent respectively the x and y spatial coordinates of the corre-
sponding neuron.

The branching-angle gene and the segment-length gene respectively control the angle of each
branching of the neuron’s axon and the length of each branching segment.



The synaptic-weight gene determines the synaptic weight of each connection established by the
corresponding neuron. In other words, in this model, all connections originating in a given
neuron have the same weight.

The bias gene represents the activation bias of the corresponding neuron.

Lastly, the neuron-type gene specifies, in the case of a sensory neuron, whether this neuron
reacts to the angle or the distance of food and, in the case of a motor neuron, whether this
neuron determines the angle of turn or the length of a forward step.

According to the developmental instructions coded in the genotype, the nervous system of each
animat changes during the animat’s life: some neurons are created at birth, others appear later,
and connections are established between two neurons when the growing axonal branch of a
particular neuron reaches the soma of another one.

Results obtained by Nolfi and Parisi suggest that the coupling of an evolutionary process
and a developmental process allows the discovery of neural architectures enabling an animat
to move in its environment and to capture food. Results also suggest that the architectures
evolved tend to be structured in functional sub-networks.

In a recent extension of this work [NOLF94], both the genes and the environment influ-
ence the neural development because a neuron is allowed to grow its branching axon only if
the neuron’s activation variability - which depends upon the variability of the environmental
stimulations to the network - exceeds a genetically specified threshold.

5 Gruau

The work of Gruau [GRUA92, GRUA93], like that of Boers and Kuiper, encodes a rewriting
grammar in a chromosome. However, this encoding scheme - called cellular encoding - rewrites
neurons instead of characters. In its simplest version, it is used to develop feedforward networks
of Boolean neurons with integer thresholds and 41 or -1 connections, but more elaborated ver-
sions of this encoding scheme [PRAT94] can deal with more complex neurons and connectivities.

In Gruau’s model, each cell in a developing network has a copy of the chromosome that codes
the developmental process, and each cell reads the chromosome at a different position. The chro-
mosome is represented as a grammar tree with ordered branches whose nodes are labeled with
character symbols. These character symbols represent instructions for cell development that act
on the cell or on connections that fan-in to the cell. During a step of the development process, a
cell executes the instruction referenced by the symbol it reads and moves its reading head down
in the tree. Depending on what it reads, a cell can divide, change some interval registers and
finally become a neuron. For instance, when a cell reads and executes the sequential division
(denoted by S), it divides into two linked cells: the first child inherits the input links, the second
child inherits the output links of the parent cell. When a parallel division (denoted by P) is
executed, both child cells inherit the input and output links from the parent cell. Since a given
cell gives two child cells, S and P nodes are of arity two: the first child moves its reading head to
the chromosome’s left subtree and the second child moves its head to the right subtree. Finally,
when a cell divides, the values of the internal attributes of the parent cell are copied in the child
cells.

Other symbols change the values of internal registers in the cell. Some registers are used



during development - like the link register for instance, which points to a specific fan-in link or
connection into a cell - while others determine the weights and thresholds of the final neural
network. Thus, symbols I and D respectively increment and decrement the value of the link
register, causing it to point to a different connection. Likewise, symbols A and O respectively
increment and decrement activation thresholds, and symbols 4+ and - respectively set to +1
and -1 the weight of the input link pointed by the link register. The ending program symbol E
causes a cell to lose its reading head and become a neuron.

Figure 9 represents the development of a XOR network. Circles represent active cells or
neurons, while rectangles represent reading heads. Empty circles correspond to thresholds set
to 0, black circles correspond to thresholds set to 1. Squares represent input/output pointer
cells. Continuous connections have a weight of 1, dashed connections have a weight of -1.
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Figure 9. Cellular encoding and development of a XOR network. After [GRUA92].

Since Gruau’s chromosomes have the same structure as those used by Koza within the Ge-



netic Programming paradigm [KOZA92], they can be subjected to the same kind of genetic
operators, notably to mutations and crossing-overs.

Cellular encoding has been used by Gruau [GRUA94] to evolve a neural network capable
of controlling the locomotion of a six-legged animat. This problem has already been solved
by Beer and Gallagher [BEER93], who, instead of forming a locomotion controller by fully
interconnecting six individual leg-controllers, took advantage of the various symmetries that
such a controller was supposed to exhibit and devised a controller made of six copies of the
same sub-network. Gruau solved a slightly simpler version of the problem, but did not help the
evolutionary algorithm by using any a priori knowledge about symmetries. Instead, symmetries
were discovered and exploited by the developmental process, because such a process can be ca-
pable of generating a sub-network that solves a sub-problem, then, of producing and combining
copies of this sub-network to build a higher-level network that solves the problem. The genome
splicing technique advocated by Koza [KOZA94] seems especially useful for such a purpose.

Gruau and Whitley [GRUA93] have added a variety of Hebbian learning to cellular develop-
ment and evolution. In particular, following Hinton and Nowlan [HINT87] and Belew [BELES9],
they have compared results obtained with fitness evaluations depending on a developed neural
network alone to results obtained with fitness evaluation depending on a developed neural net-
work with some of its weights changed by a learning procedure. It thus appears that such a
modification changes the fitness landscape explored by the genetic algorithm and, eventually,
accelerates the speed of evolution - a result known as the Baldwin effect. Likewise, Gruau and
Whitley have studied how the so-called developmental learning could affect evolution. Such
learning can occur when some recursive encoding is used by the cellular encoding method, thus
allowing a given subtree of the chromosome to be repeatedly read and executed. In such cir-
cumstances, indeed, it is possible to learn and change the weight of a connection between two
iterations of the recursive loop.

However, it should be stressed that neither the Baldwin effect, nor the developmental learn-
ing, pass the values of learned weights from parents to offspring and, thus, that they do not
implement any Lamarckian inheritance of acquired characters.

6 Dellaert and Beer

The developmental model of Dellaert and Beer [DELL94] is inspired from Kauffman’s work
[KAUF69] and relies upon a genetic regulatory network whose binary elements each corre-
spond to the presence (or absence) of a specific gene product or to the expression (or the
non-expression) of some gene.

According to the updating rule and connectivity of each element, the state of the network
- which corresponds to the pattern of gene expression in a given cell - may change over time
but will, ultimately, settle in a fixed point or a limit cycle. Such a dynamic process is used
to model a cell cycle: in particular, a cell division occurs when the cell’s regulatory network
settles in a steady state, with a specific element being set to a predetermined value. When this
occurs, the pattern of gene expression of the parent cell is passed to the next generation, and a
subset of genetic elements is used to determine the final differenciation of the two daughter cells.



Within such a framework, the morphology of an animat is a two-dimensional square consist-
ing of cells of various types, each having a copy of the same Boolean network that constitutes
the animat’s genotype. However, the state of the network, corresponding to the pattern of gene
expression in a particular cell, may be different in each cell, according to the cell’s initial state
and to the various influences experienced up to the present time.

The physical extent of each cell is represented as a two-dimensional square element that can
divide in either of two directions, vertical or horizontal. When division occurs, it takes place in
such a way that the longest dimension of the parent cell is halved and that the two daughter
cells together take up the same space as the original cell.

Development starts out with one simple square that represents the zygote. During devel-
opment, the state of the regulatory network of each cell changes according to both the internal
dynamic process mentioned above and the external influences provided by intercellular commu-
nications or by specific symmetry-breaking processes.

For instance, the influence of neighboring cells is condensed into a so-called neighborhood
vector, which is the logical OR of all the state vectors of these cells, and this neighborhood vec-
tor is combined with the cell’s state vector to determine the next state. Likewise, a symmetry-
breaking process occurs at the time of first cleavage, which switches a bit of the Boolean network
state vector into one of the zygote’s two daughter cells. Other symmetry-breaking processes
cause the update of a cell’s state vector to depend upon information on whether the cell is situ-
ated on the external surface of the animat or whether it borders the animat’s horizontal midline.
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Figure 10. The first six consecutive stages of development of Dellaert and Beer’s animat.

After [DELL94].

Dellaert and Beer have evolved a simple animat that roughly reproduces the relative place-
ment of sensors, actuators and control system that one would expect to find in a simple chemo-
tactic agent (Figure 10). In particular, this animat exhibits bilateral symmetry, with sensors
(cell type 2) placed sideways at the front and actuators (cell type 4) placed sideways at the
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back, and with a control structure made of "neural tissue” (cell type 1) connecting them. Such
an organization has been obtained by making the evolutionary process depend upon a fitness
function that evaluates the discrepancies between the differenciation patterns of any developed
animat and that of an hypothetical ideal chemotactic agent. In the case of the animat on Figure
10, these discrepancies have not been entirely eliminated, because two actuator cells are clearly
out of place, in front of the animat.

a) 0101 . b) Equivalent
t q
node 0011| 'MPUS node Boolean function
1 0010 | 3-6 1 ~3 AND mid
2 1100 -2-1 2 ~(-1)
3 0001| -55 3 ext AND 5
4 1101 44 4 ~40R4
5 0110| 6-6 5 6 XOR mid
6 0111 6-1 6 6OR-1

Figure 11. The genotype of Dellaert and Beer’s animat. After [DELL94].

Figure 11 describes the genome of this animat, in two equivalent forms. It is a Boolean
network with six nodes, each characterized by a specific update rule which sets the state of the
corresponding node according to information contributed by two inputs. These inputs are also
genetically determined and represent connections from other nodes (positive integers), connec-
tions from nodes in neighboring cells (negative integers in the range [-4, -1]) or influences of the
external environment (-5) or of the midline (-6).
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Figure 12. Intracellular and extracellular communications in Dellaert and Beer’s animat.

After [DELL94].

Thus, as shown in Figure 12, the update rule of node 1 in a given cell depends upon the state
of node 3 in the same cell and upon the situation of this cell relative to the animat’s midline:
if the cell borders the midline, the value of bit -6 is 1, otherwise it is 0. Likewise, the update
rule of node 3 depends upon the state of node 5 and upon the situation of this cell relative
to the animat’s external surface: if the cell is situated on this surface, the value of bit -5 is 1,
otherwise it is 0. As Figure 12 also shows, the update rules of nodes 2 and 6 in a given cell
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depend on the state of node 1 in neighboring cells or, more precisely, on the state of bit 1 in
the cell’s neighborhood vector.

In this application, cellular division was dependent upon the state of node 4, whose updating
rule always responded 1 (because "4 OR 4 is always TRUE) and maintained this node in a
permanently active state. Thus, a division occurred at every step, resulting in a maximum
number of cells.

7 Discussion

Although it is somewhat premature to speculate on the relative merits of such preliminary ap-
proaches, it is clear that, however different from each other they may be, they are all capable
of developing the control architecture of an animat. Therefore, they should prove useful in the
future, at least in a purely engineering perspective.

As compared to other evolutionary approaches that bypass the process of development and
directly map the genotype into the phenotype (see reviews in HUSB94, MEYE91b, MEYE94,
SCHA92), the use of a developmental model should not only be capable of generating more com-
plex phenotypes with simpler genotypes, but also of exhibiting some properties whose adaptive
values should be extremely valuable for animats’ control. In particular, developmental processes
are suitable for generating modular architectures, thus providing an animat with the important
functionality of problem decomposition - as examplified by Gruau’s work. Likewise, develop-
mental processes easily provide symmetry-breakink mechanisms - as demonstrated by Dellaert
and Beer’s approach - whose effects on the resulting architecture are extremely difficult and
tedious to code in a direct genotype-to-phenotype mapping.

The use of developmental models in conjunction with an evolutionary process should also
prove to be valuable in the future in a more fundamental perspective. Indeed, such an approach
obviously makes it possible to study how genetic information and environmental influences
interact and complement each other during development. In particular, this approach should
help in specifying for which environment and for solving which kind of survival problem, Nature
has been committed to inventing the process of development. In other words, it should help
in assessing the adaptive value of this process and in specifying how it interacts with those of
learning and evolution.

8 Conclusions

This paper has described five recent approaches combining the three main adaptive processes
exhibited by natural systems, i.e. those of development, learning and evolution. Although it
is not yet possible to assess the relative merits of these approaches - which are quite different
from each other - there are good reasons to think that they will prove helpful for automat-
ically designing efficient control architectures linking perception to action in animats. These
approaches should also provide a valuable contribution to theoretical biology and enable a better
understanding of the interaction between development, learning and evolution to be gained.
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