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Abstract

The ultradian alternation of rest/activity periods displayed by 10 C3H mice in diurnal condition, and by 
10 others in nocturnal conditions, were compared with simulated sequences that respectively optimized 
three functional criteria, i.e. energy input, energy output,  and net energy gain, accumulated over 11 con-
secutive hours.  The simulated sequences were generated by means of a dynamic programming algorithm 
used in conjunction with a food-intake dynamic behavioural model.  On one hand, the results obtained do 
not confirm the hypothesis whereby the animals optimize energy input or output criteria.  On the other 
hand, they do not invalidate the hypothesis according to which the effect of C3H mouse’s ultradian acti-
vity rhythm would be to maximize net energy gain over a nycthemeral period, possibly under constraints 
that can only be identified through additional experimentation. 
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INTRODUCTION

 A current dominant paradigm bases every functional analysis of behavioural sequences on 
optimal decision theory and assumes that present observed successions of acts have been preserved 
by natural selection because they maximize the fitness of the organisms which perform them (Sibly  
&  McFarland  1976 , Mitchell  &  Vallone  1990).  Such a point of view raises the question of fin-
ding what currency organisms maximize,  this currency being either directly related to fitness  - de-
fined  as the total expected lifetime reproductive output (Clark  1991) -   or  indirectly related to fi-
tness, if the reproductive activity cannot be measured. Energy is often used in behavioural ecology 
or ethology as a classical currency indirectly related to fitness ( Krebs  &  Davies  1984 , Lendrem  
1986).   

We propose here a functional analysis of ultradian rest/activity alternations of laboratory mice 
observed during 11 hr,  without any experimental constraints on the various acts the animals are al-
lowed to  perform.  Besides the lack of functional studies on this specific topic, this analysis is also 
justifed because laboratory mice and other domesticated or wild rodents have a similar ultradian ac-
tivity rhythm, that is, a rhythm with a periodicity of less than 24 hr.  Indeed,  in all these animals, 
numerous authors have mentioned ultradian rest/activity alternations in addition to a circadian 
rhythm of preponderantly nocturnal activity ( Kavanau  1963 , Del Pozo et al. 1978 , Baumgardner 
et al.  1980 , Possidente et al.  1980,  Aschoff  &  Gerkema  1985 , Schulz  &  Lavie 1985 , 
D’Amato  1986 , Sei et al.  1991 ,  Bauman 1992 , Gerkema et al.  1993 , Conte et al.  1994). Mo-
reover, according to  Beau (1988, 1992), ultradian rhythms of laboratory mice have genetic compo-
nents. Such behavioural patterns having been preserved by natural selection, it may be asked  
whether they present a functional value.  

In the present work, a currency directly related to fitness cannot be taken into account. There-
fore, the energy spent and assimilated is taken as a common currency ( McNamara  &  Houston  
1986) for assessing the contributions of the behavioural sequences to three criteria - energy gain, 
energy cost and net energy gain - which actually constitute classical choices within the framework 
of the above-mentioned paradigm ( Lendrem  1986 fo a review).  Such criteria have a strong bea-
ring upon the animal’s reproductive and survival potential.  They are also compatible with the expe-
rimental data available here, as well as with the behavioural model to be described later.   

The test of the hypothesis that a given currency is optimized presupposes that one is able to 
predict how the animal should behave in order to optimize this currency. To do this, one  must have 



available both a model simulating the succession of rests and activities and  an optimization algo-
rithm ( Meyer  1980 , Mangel  &  Clark  1988). This work has involved a dynamic behavioural mo-
del which has been used to assign values to the three functional critera  for a variety of possible be-
havioural sequences made up of ultradian rest/activity alternations. In addition, a dynamic program-
ming algorithm effected a selection of the sequences optimizing the three criteria.  A comparison 
among the optimal sequences and the actual sequences has made it possible to assess the coherency 
of the overall optimization hypothesis of the functional criteria focused upon.     

METHOD

This  section describes the observation conditions of the actual animals,  the functional crite-
ria, and the optimization procedure. 

  Conditions of the observed  behavioural  sequences

Twenty C3H males, 4 to 6  weeks old, were isolated on their arrival in the laboratory in a 23  
x  8  x  8 cm cage containing water and food  ad libitum,  together with a cotton ball for nest buil-
ding. They were lodged in an air-conditioned room set at a temperature of 19 to 21° C and a humi-
dity  between 60 and 70%.  Ten of these (animals a to j) were placed in LD 12:12 condition, and 10 
others (animals A to J) in DL 12:12 condition from 07:00 a.m. to 07:00 p.m.  - where  L corres-
ponds to the   diurnal  condition (lighting with fluorescent white 100-lux tubes) and D to the  noctur 
nal  condition (lighting with fluorescent red 10-lux tubes, to ensure visibility).  Observations began 
19 days after receiving the animals: 15 days during which they were kept in the nursery and 4 d ays 
during which their individual cage were placed in a 52 x 125 x 90 cm observation enclosure. 

  Chronological sequences of 10 acts (rest, locomotion, feeding, drinking, sniffing, nesting and 
four categories of grooming) were recorded continuously over an 11-h.r period, during the diurnal 
period for mice a to j and during the nocturn al period for mice A to J.  However, in this present 
work, only rest (combining rest and a cat egory of grooming that occurs during rest periods), and 
activity  (combining all the remaining acts) alternations  are taken into account, rather than a de-
tailed succession of acts. As was shown in another works ( Guillot  1988, 1991), C3H mice activity 
is preponderant at night and prese nts an ultradian rhythm in both day and night. In fact, the animals 
engage in between four and seven activity periods by day (average duration = 26 min) and from 
three to four activity periods by night (average duration = 84 min). 

Functional optimization criteria

 The present analysis centered upon three criteria indirectly related to fitness that were called 
upon to assess the selective value of the various sequences considered in this work: 

The  INPUT criterion, representing energy intake, i.e. assimilable energy contained in the 
food ingested by the animal during its behavioural sequence.  At first glance, such a criterion might 
be maximized by the mouse. 

The OUTPUT criterion, corresponding to energy expenditures, i.e. to the total metabolic 
outgo exhibited by the animal during its behavioural sequence.  These expenditures are dependent, 
among  other things, upon the animal’s acts, and might be minimized by the mouse. 

 The  NETGAIN criterion, or net energy  gain, which expresses the difference between the 
amounts of energy accrued to (INPUT) and expended by (OUTPUT) the animal during the beha-
vioural sequence considered.  This criterion might be expected to be maximized by the animal. 

 



Optimization  procedure 

Simulated behavioural sequences 

The optimization procedure described here was used to identify, among all possible ones, the 
behavioural sequences that could be compiled from arbitrary alternations of activity and rest pe-
riods, those that maximize each of the three criteria considered.  These simulated sequences have 
the same duration as the observed sequences  - 11 hr. - and  are assembled by successive juxtaposi-
tions of 22 elementary activity or rest bouts of 30 min.  The duration of these elementary bouts cor-
responds roughly to the average length of diurnal activity periods as measured on actual animals.  In 
these simulated sequences, several activity - or rest - bouts were allowed to follow each other, so 
particular simulated activity - or rest - periods were able to last more than 30 min. 
 
Criteria Computation 

 OUTPUT criterion. In an experiment involving CO2 releases by mice of the same age, pla-
ced in the same conditions as the mice in this study, energy costs were estimated for the activities 
that could be discerned within the behavioural sequences of these mice ( Meyer  &  Guillot  1986).  
These estimations, in turn, made it possible to obtain the total energy expenditure resulting from any 
sequence - observed or simulated - made up of alternating periods of activity and rest.  The metabo-
lic cost ascribed to rest was used to calculate the energy expended during simulated rest periods; the 
average cost of a half-hour of observed activity, computed from all the available observed sequen-
ces, was used to calculate the energy expended during simulated activity periods.  These values, ex-
pressed in Joule per gram per second, are multiplied by the duration in seconds of the corresponding 
act and by the animal’s instantaneous computed weight, then summed from act to act. They yielded 
the total energy output associated with each behavioural sequence considered. 

 INPUT criterion. Energy intakes corresponding to simulated sequences were obtained by si-
mulating a variant of the dynamic model of feeding behaviour proposed for the rat by  Booth  
(1978).  Essentially, this model links food intake to the instantaneous value of energy flow entering 
the lean tissues: if this flow falls beneath a given threshold, food intake is triggered; if it exceeds 
this threshold once again, food intake stops.  From  a series of metabolic expenditures given as a 
forcing function, this model correctly predicts the initiation and the termination of the mouse’s food 
intake.  It therefore yields the time distribution of the meals and the total quantities of food ingested  
(Guillot  &  Meyer  1987 , Guillot  1988). 

 In brief, this model operates with a 1-sec  time step and includes three state variables and 
nine parameters.  The three state variables represent amounts of energy contained in the gut, and in 
fat and lean tissues.  Two of the model’s parameters - the gastric clearance and the threshold for the 
onset and termination of a feeding period - are specific to a diurnal or to a nocturnal situation: in or-
der to simulate a nocturnal situation, the rate of the gastric clearance was increased, and the thres-
hold for the onset and termination of a feeding period was decreased. The other parameters  - rate of 
feeding, food energy density, delay of absorption, maximum of stomach content, three specific 
coefficients for lipogenesis and lipolysis - were unchanged from one condition to one another.   

The energy intake for each observed behavioural sequence could have been computed by mul-
tiplying the amount of food actually  ingested during the sequence in question by the assimilable 
energy value of the foodstuff.  However, it seemed  preferable, for the sake of comparability, to 
compute these values in the same way they were computed for the simulated sequences, insomuch 
as the total simulated quantities of food eaten, together with the time distribution of the correspon-
ding feeding bouts, were very similar to the observed results  ( Guillot  &  Meyer  1987,  Guillot  
1988). For this  purpose, the following transformation has been effected on the observed sequences 
in order to render  them comparable to the simulated ones.   



First, each sequence has been decomposed into 22 successive bouts of 30 min. Second, if the 
total activity time during each bout did exceed 15 min., the corresponding mouse has been conside-
red as having been active during this bout and, conversely, it  has been considered as having been 
inactive if its total activity time did not exceed 15 min.  The patterns, thus transformed into sequen-
ces of 0 (= rest) and 1 (= activity), each corresponding to a 30-min. duration, appear in the fifth co-
lumn of Table 1. Such a transformation - which might be questioned on a priori grounds - did pro-
vide two series of 10 observed sequences quite similar from mouse to  mouse during day and night 
conditions (see Fig.1, to be commented later).  Then the feeding model was applied to the observed 
and to the simulated sequences as well, in order to determine the corresponding energy intake. 

 NETGAIN criterion. The total net energy gain associated with each sequence was computed 
by subtracting the total energy gain (INPUT) from the total energy expenditures (OUTPUT) of the 
sequence, computed as stated above.    

Optimization algorithm.

The rest/activity alternations likely to optimize, over an 11-hr period, each of the three criteria 
defined above (INPUT, OUTPUT, and NETGAIN) were derived by means of a dynamic program-
ming algorithm (Guillot  1988, 1991). This algorithm must generate behavioural sequences made up  
of alternations of activity and rest.  It must then provide each one of these sequences as a forcing  
function to the dynamic model of feeding behaviour in order to compute the corresponding intakes 
and outgoes.  Lastly, it must select the sequences that optimize each of the criteria considered.

   The search for the optimal activity and rest alternations by dynamic programming is equiva-
lent to simulating several versions of the feeding model  simultaneously. It is however not necessary 
to simulate as many versions as there are possible combinations of such alternations, because some 
simulations can be dropped along the way.  Indeed, consequently to each of these forcing functions, 
the feeding model generates a trajectory in the space of the three state variables that characterize it.  
At any moment between the beginning and the end of the 11-hr.  of the simulation, the cumulated 
value of each of the criteria along the trajectory pursued can be calculated.  Accordingly, since the 
model is deterministic, two trajectories that intersect in the space of the state variables are no longer 
distinguishable from each other, because they have identi cal future forcing.  Therefore, in virtue of 
the  optimality principle   - that specifies that every subtrajectory of an optimal trajectory must itself 
be optimal ( Bellman  1957) -   when two or more trajectories intersect, only the one having the hi-
ghest cumulated value of the criterion (in the case of a maximization problem), or the lowest value 
(in the case of a minimization problem) - from the beginning of the simulation up to the moment of 
intersection - is the one that may belong to the optimal trajectory.  The other trajectories can accor-
dingly be discarded, which simplifies subsequent comparisons that much more. 

At the end of the simulation, the last computation loop provides several trajectories: one 
which corresponds to the highest (maximization) or to the lowest (minimization) value of the crite-
rion and which accordingly represents the absolute optimal trajectory. The other trajectories, which 
have been kept by the algorithm until this stage, might have been included in the optimal trajectory 
in case the simulation had last longer. Each of these sub-optimal trajectories can be interpreted as a 
trajectory that optimizes the criterion at the end of the simulation, provided that an ad-hoc terminal 
constraint is satisfied - i.e., a constraint that can be specified on  a posteriori  grounds only and that 
makes this specific trajectory more advantageous than any other (including the true optimal trajec-
tory) at that specific stage of the simulation. Because each of these trajectories could, additionally, 
be included in the optimal trajectory correspo nding to a longer simulation, it has been considered 
interesting to take them into consideration - in the same way as the optimal trajectory, determined at 
the end of 11 hr of simulation - in the comparisons made below. 

  The trajectory intersections responsible for simplifying the calculations have been determi-
ned to within a few approximations.  In the work presented here, the state space was divided into 64 



(4 3 ) equivalency classes, defined by dividing into four equal parts the interval of variation of each 
of the three state variables of the feeding model. Two or more trajectories were considered to have 
intersected whenever they felt into the same equivalency class at a given time step.  Under these 
conditions, instead of having to manage simultaneously 2 22   behavioural sequences, composed of 
22 successive bouts of activity or of rest, the dynamic programming algorithm has resulted in mana-
ging only 1 to 64 behavioural sequences, according to their relative distributions in the space of the 
state variables. For the sake of comparability, values associated with the observed sequences have 
been computed in the same manner as the values associated with the simulated sequences, i.e. with 
the same parameters of  energy expenditure and the same classification procedure among the 64 
equivalency classes at each stage of the calculation. 
 

RESULTS

Table 1 shows the diurnal and nocturnal values of the three criteria associated with each of the 
observed sequences and with each of the optimal sequences. The results obtained indicate that the 
simulated sequences that maximize INPUT are those where the animals are active all the time - 
even if they do not eat all the time, as shown in the last column -  and that the simulated sequences 
that minimize OUTPUT are those where the animals are always inactive. As such results could be 
foreseen, we take them as an indication that the algorithm and the simulations model used here were 
correctly implemented. 

Table 1. 

Results associated with approximations of the observed rest (0) and activity (1) alternations, with a 
30 min  time-step. 

A. Day condition
Observed sequences

M
i
c
e

 Input (J) Output (J) Net gain 
(J)

Observed patterns Total  activity 
duration (hr., 

min.)

Total 
feeding 
duration

(hr.,
min.) 

 a 12335.3 14985.6  -2650.3 1110000000010000010011  3.30    0.47 

 b 13353.6   15892.6    -2539.0 1100011000001000011001  4.00  0.51

 c 13702.8 15233.1    -1530.3 1001000100000000100010  2.30  0.52

 d 13557.2   15443.9    -1886.7 1100011000010000100011  4.00  0.51

 e 13760.9   16779.2    -3018.3 1000010000001100011111  4.30  0.52

 f 11831.1    15499.6   -3668.5 1110000110000000000011   3.30  0.45

 g 12897.8   14215.9    -1318.1 0001100001000000001001  2.30  0.49

 h 13033.6    14602.9    -1569.3 1000001000001000100110  3.00  0.49

 i  8286.6    12984.9    -4698.3 1100000000000000011001  2.30  0.31

 j 12568.1    15021.0    -2452.9 1100010000000000100111  3.30  0.48



Table 1 (following)
Optimal sequences

 Criteria Input
(J)

Output (J) Net gain (J) Optimal sequences Total  activity
 duration (hr., 

min.)

Total 
feeding

 duration
(hr.,
min.)

 NET 13581.5  14816.7  - 1235.2           1000100010001000100010    3.00 0.51

OUTPUT        0.0   9192.8  - 9192.8 0000000000000000000000    0.00 0.00

INPUT 18682.4 29723.7 -11041.3 1111111111111111111111  11.00 1.11

B. Night condition
Observed sequences

M
i
c
e

 Input (J) Output (J) Net gain 
(J)

Observed
behavioural sequences

Total  activity 
duration (hr., 

min.)

Total 
feeding 
duration

(hr.,
min.) 

 A 80010.0 26041.0 53969.0 1111111111001111000111    8.30  5.05

 B 78919.0 25091.8 53827.2 1111111111110011000011    8.00  5.01

 C 79884.0 26070.3 53813.7 1111111111111100011101    9.00  5.05

 D 77866.8 26248.5 51618.3 0111111111111110011001    8.30  4.57

 E 81338.6 26718.3 54620.3 1111111110011111111100    9.00  5.10

 F 83098.8 28418.7 54680.1 1111111111111111001111  10.00  5.17

 G 79617.3 26546.5 53070.8 1111111001111110001111    8.30  5.04

 H 81382.2 27530.5 53851.7 1111111111110011011111    9.30  5.10

 I 73837.6 25573.6 48264.0 1111111111111000001111    8.30  4.42

 J 81513.2 28609.2 52904.0 1111111111111100111111  10.00  5.11

Optimal sequences

 Criteria Input
(J)

Output (J) Net gain (J) Optimal sequences Total  activity 
duration (hr., 

min.)

Total 
feeding duration

(hr.,
min.)

 NET 83622.3 27551.1    56071.2           1101011011111111111111     9.30 5.19

OUTPUT 0.0   9341.9 -9341.9 0000000000000000000000    0.00 0.00

INPUT 85435.7 30310.8    55124.9 1111111111111111111111   11.00 5.26

 Table 2 shows the sequences retained by the dynamic programming algorithm at the last step 
of the maximization of NETGAIN criterion.  These sequences represent both the optimal trajectory 



and the sub-optimal trajectories - that  can be interpreted as taking into account unspecified terminal 
constraints, as explained above.  The diurnal optimal sequence maximizing NETGAIN is a cyclic 
pattern of 6 short activity bouts and, at night, the optimal sequence maximizing NETGAIN consists 
in an irregular pattern of 3 short activity bouts, followed by 1 long one. Such differences between 
optimal day and night  patterns can be ascribed to the causal mechanisms implemented in the fee-
ding model used here. Indeed, in daytime, a high feeding threshold and a low gastric clearance elicit 
short or rare meals when the animal is active, even for a long time. Then, the net energy gain is hi-
gher when the animal spends more time resting instead of activating. In nighttime, a low feeding 
threshold and a high gastric clearance elicit long or frequent meals when the animal is active. Then, 
it can spend more energy in being active a long time, because the expenditures are balanced by suf-
ficient energy gain. 

The simulated sequences can be compared to the observed sequences, from the standpoint 
both of rest/activity alternations and of energy intake, energy expenditure, or net energy gain. If 
rest/activity alternations alone are considered, a purely qualitative comparison of the cumulative ac-
tivities reveals that it is quite unlikely that, in day condition  (Fig.2A),  mice maximize their total 
energy intake, as the optimal sequences differ widely from the observed ones.  Likewise, it would 
not seem that the animals minimize, in day and night  conditions,  their total energy expenditure.  
On the contrary, the patterns that maximize the total net energy gain do bear a resemblance to the 
observed patterns in both day and night conditions (Fig.2 A - B).   

 



Table 2. 

Detail of the results associated with the optimal (O) and sub-optimal (S) sequences maximizing 
NET. Theoretical sequences are decrementally sorted by their net gain values.

A. Day condition

  Input  (J) Output (J) Net gain (J) Theoretical
sequences

Total activity duration 
(hr., min.)

13581.5   14816.7  -1235.2  O 1000100010001000100010  3.00

13576.7   14816.6   -1239.9  S 1000100010001000100001  3.00

14362.1   15746.9   -1384.8  S  1000100010001000100011  3.30

13140.2  14819.5   -1679.3  S 1001000100010001000100  3.00

13920.9   15749.3 -1828.4  S 1001000100010001000110  3.30

14711.3   16680.2   -1968.9  S 1001000100010001001101  4.00

14687.0   16678.5   -1991.5  S 1001000100010001000111  4.00

12689.3  14820.2  -2130.9  S 1001000100010001001000  3.00

13470.0   15750.0  -2280.0  S 1001000100010001001100  3.30

13426.3   15744.7   -2318.4  S 1000100010001000011010  3.30

14236.0   16678.5   -2442.5  S 1001000100010001001110  4.00

14192.4   16673.7   -2481.3  S 1000100010001000011011  4.00

14187.6   16672.8 -2485.2  S 1000100010001000111010  4.00

14173.1   16672.0 -2498.9  S 1000100010001000011101  4.00

12956.0   15744.3   -2788.3  S  1000100010001000111000  3.30

12946.3   15743.0   -2796.7  S  1000100010001000011100  3.30

13445.7   17605.6   -4159.9  S 0110001011000110001100  4.30

13440.9  17605.0   -4164.1  S 0110001011000110000110  4.30

12194.7   16674.1   -4479.4  S 0110001100011000110000  4.00



Table 2 (following)

B. Night condition

  Input  (J) Output (J) Net gain      (J) Theoretical  sequences Total activity duration
(hr., min.)

83622.3  27551.1    56071.2  O 1101011011111111111111    9.30

83505.9   27543.0  55962.9  S 1101010111111111111111    9.30

84296.3   28476.9    55819.4  S 1101011111111111111111  10.00

83215.0   27540.2   55674.8  S 1100101111111111111111    9.30

83030.8   27512.8    55518.0  S 1101110011111111111111    9.30

84883.0   29396.0   55487.0  S 1101111111111111111111  10.30

85435.7   30310.8    55124.9  S 1111111111111111111111  11.00

80048.7   26583.1    53465.6  S 1101011011111111111110    9.00

79495.9  26546.7    52949.2  S 1101110011111111111110    9.00

81362.8   28430.8    52932.0  S 1101111111111111111110  10.00

81939.8   29347.0    52592.8  S 1111111111111111111110  10.30

78448.6   28384.8    50063.8  S 1111111111111111111100  10.00

76480.0   25616.2    50863.8  S 1101011011111111111100    8.30

75961.2  25582.4    50378.8  S 1101110011111111111100    8.30

77847.4   27467.3    50380.1  S 1101111111111111111100    9.30

72911.3  24650.3   48261.0  S 1101011011111111111000    8.00

74332.0   26504.8    47827.2  S 1101111111111111111000    9.00

72431.3   24619.1    47812.2  S 1101110011111111111000    8.00

74957.5   27423.7    47533.8  S 1111111111111111111000    9.30

 8727.8   10285.9  -1558.1  S 1000000000000000000000    0.30

 
To extend this comparison to the quantitative criteria ava ilable, a clustering algorithm, opera-

ting by nearest centroid sorting (Anderberg  1973), has been applied to the actual and the theoretical 
sequences associated with each criterion. These classifications are operated  on the basis of either 
INPUT,  OUTPUT,  or NETGAIN values that characterize each sequence and are given in  Table 3 
and Table 4. It will be noted that the observed sequences are sorted in the same cluster as the opti-
mal one maximizing NET, or in the most similar cluster. The actual sequences are not as frequently 
sorted with the simulated sequences optimizing OUTPUT or INPUT, and always display higher net 
gain values.  

Despite such similarities between optimal and actual patterns, it appears that the correspon-
ding matching is not perfect, considering the details of the number and distribution of activity bouts. 
In fact, the characteristics of observed  mice patterns correspond, in day condition  (Table 1A), to 
less activity bouts with irregular patter ns - instead of regular ones - and, in night condition (Table 
1B), to a long activity bout at the beg inning of the period - instead of at the end. This is exemplified 
in Fig.3 , that shows the actual activity patterns of 2 mice together with the simulated patterns opti-
mizing NETGAIN. 



 Table 3.  

Cluster summaries for day condition. The optimal (O) and sub-optimal (S) sequences, together with 
the 10 observed sequences (a-j), have been clustered by nearest centroid sorting. 

A. INPUT OPTIMIZATION

Cluster Nearest
cluster

Average input 
(J)

Average output 
(J)

Average net gain  
(J)

Theoretical sequences Observed  sequences

1 4 17664.2  27869.3  -10205.1 O,S,S,S,S,S,S,S

2 3 14848.6 19797.5 - 4948.9 S,S,S

3 2 12532.7 15065.9  - 2533.2 a,b,c,d,e,f,g,h,i,j

4 1 16904.8 25435.5  - 8530.7 S,S,S,S,S,S,S,S

B. OUTPUT OPTIMIZATION

Cluster Nearest
cluster

Average input 
(J)

Average output 
(J)

Average net gain 
(J)

Theoretical sequences Observed sequences

  1 4 13297.8  14873.9  -1576.1 c,d,g,h

 2 3  4922.4 12500.3  -7577.9 S,S,S,S,S,S,S,S,S,S i

  3 2  2419.6 10540.4  -8120.8 O,S,S,S,S,S,S,S,S f

 4 1 12769.8  15635.6  -2865.8 a,b,e,j

C. NET OPTIMIZATION

Cluster Nearest
cluster

Average input 
(J)

Average output 
(J)

Average net gain 
(J)

Theoretical sequences Observed sequences

1 4 13222.2   14956.6 -1734.4 O,S,S,S,S a,c,d,g,h,j

2 1  8286.6   12984.9   -4698.3 i

3 4 13027.1   17295.0   -4267.9 S,S,S

4 1 13703.8 16211.4   -2507.6 S,S,S,S,S,S,S,S,S,S,S b,e,f

 



Table 4. 

Cluster summaries for night condition. The optimal (O) and sub-optimal (S) sequences, together 
with the 10 observed sequences (A-J), have been clustered by nearest centroid sorting. 

A. INPUT OPTIMIZATION

Cluster Nearest
cluster

Average input
(J)

Average output 
(J)

Average net gain 
(J)

Theoretical
sequences

Observed sequences

1 3  8727.9  10286.0  - 1558.1 S

2 4 80544.7  26475.0    54069.7 S,S A,B,C,D,E,G

3 2 75804.0  26827.3    48976.7 S,S,S,S,S,S,S,S I

4 2 82935.5  28694.9    54240.6 O,S,S,S,S,S,S,S,S F,H,J

B.  OUTPUT OPTIMIZATION

Cluster Nearest
cluster

Average input
(J)

Average output 
(J)

Average net gain 
(J)

Theoretical
sequences

Observed sequences

1 2        0.0    9341.9  - 9341.9 O

2 3 13203.0  10824.3      2378.7 S,S,S,S,S,S,S,S,S,S,S,S,S

3 2 26020.6  12419.8    13600.8 S,S,S,S,S

4 3 80062.1 26762.6    53299.5 S A,B,C,D,E,F,G,H,I

C.  NET OPTIMIZATION

Cluster Nearest
cluster

Average input
(J)

Average output 
(J)

Average net gain 
(J)

Theoretical
sequences

Observed sequences

1 3  8727.9  10286.0 - 1558.1 S

2 4 80918.2  26732.6    54185.6   O,S,S,S,S,S A,B,C,D,E,G,H

3 2 75245.3  26202.5    49042.8 S,S,S,S,S,S,S,S I

4 2 83218.5 28998.5   54220.0 S,S,S,S,S F,J

DISCUSSION

The results presented herein suggest that, over day and night conditions, ultradian rest/activity 
alternations could maximize NETGAIN, instead of optimizing either INPUT or OUTPUT criteria.  
Such conclusions are in line  with  those of earlier works that suggest that the patterns of particular 
acts - like feeding and drinking in rats - might be ascribed to energy optimizing processes ( Collier  
& Rovee-Collier  1980, Kagel et al.  1980, Jensen et al.  1983, Ljungberg  &  Enquist  1986, John-
son  &  Collier  1989, 1994). It has nevertheless been noted that the observed sequences do not 
match exactly the optimal ones. The corresponding differences can be explained by both biological 
and methodological arguments.   

Biological arguments.  

First, mice might maximize another criterion than the one investigated.  In this case, other in-
vestigations must be made to specify such a criterion. However, a close correlation between 



NETGAIN and this other criterion can be anticipated and would explain the similarities highlighted 
in the present work between optimal and observed behavioural sequences.  

 Second, mice might optimize the NETGAIN criterion, but under secondary constraints. For 
example, most of the mice (A B C D E G H, a c d g h j) tend to maximize NETGAIN while de-
creasing both their inputs and outputs, and mice F J H tend to maximize NETGAIN while in-
creasing their inputs (Table 3 and Table 4). These differences from optimal patterns, which reflect a 
modification of excursion patterns outside the nest happening to be differently distributed along the 
day/night cycle, can be linked with  individual differences in rearing conditions, in initial states at 
the beginning of the observation and in effects of learning. They can also be linked with individual 
reactivity to constraints of ecological nature, such as a lower risk of predation or the presence of a 
place the animal can hide in ( Nicolaidis  et al .  1979 , Ludwig  &  Rowe  1990).  It should also be 
borne in mind that mice were kept and observed here in isolation, although they normally live in 
groups. Therefore, social constraints should be involved in the differences described above  ( Del 
Pozo et al.  1978,  Smith et al.  1994).  

Finally, mice might optimize the NETGAIN criterion over a period shorter or longer  than 11 
hr. Indeed, the present research has focused on such a period for purely technical and methodologi-
cal reasons. However, it should be noted that the optimization of NETGAIN over a shorter period 
than 11 hr. would not necessarily have generated an optimal sequence similar to the optimal or sub-
optimal 11-hr. sequences given in Table 2. This is due to the fact that a pattern found to be optimal 
by the dynamic programming algorithm at a given iteration loop can be eliminated later on because 
it competes with another pattern, which gives better results over a longer time span. On the con-
trary, an optimization of NETGAIN over a period longer than 11 hr. would necessarily have genera-
ted an optimal sequence built upon one of  the optimal or sub-optimal 11-hr. sequences and, thus, 
very similar to these sequences. Their resemblance with actual patterns tends to suggest that mice, 
optimizing NETGAIN over 12 hr. in day and 12 hr. in night conditions, actually optimize 
NETGAIN over a nycthemeral period, as already mentioned by  Bauman  (1992)  or  Johnson  &  
Collier (1994) for rats. 

 Methodological arguments 

 Because the dynamic programming algorithm is particularly greedy in memory capacity, it 
has not been possible to use it to determine, second by second, the precise optimal act that would 
have been selected among the ten retained.  Such calculations would have allowed an accurate and 
point-by-point comparison between simulated and observed results.  The simulated sequences  have 
been reduced here to alternations of 22 rest/activity bouts of 30 min., and the observed sequences 
have also been reduced to these approximations.  The comparisons between optimal and observed 
sequences that we have been able to make here are therefore approximate - although they yield to 
coherent results when, for instance, they specify that the way to maximize INPUT is to be always 
active and the way to minimize OUTPUT is to be always inactive. 

 It must also be borne in mind that the different results mentioned here are closely involved 
with  the use of the feeding model and that it should, a priori, be possible that they reflect, not actual  
biological fact, but rather the operational modes of the model.  It can nonetheless be considered that 
the validations of this model, both in rats ( Booth  1978, Clifton et al.  1984) and in mice ( Guillot  
1988, Guillot  &  Meyer  1987) make a convincing case for the conclusions presented here. In addi-
tion, such a model represents a useful tool for attempting to relate proximate causal mechanisms to 
ultimate functional factors (Curio  1994). 



 CONCLUSION

Despite the limitations discussed above, the present functional study can provide hypotheses 
as to the selection of activity or rest bouts by a laboratory strain of mice.  The results  obtained sug-
gest that the activity/rest alternations engaged in by the animals tend to maximize their total net 
energy gain, rather than to maximize their total energy input or to minimize their total energy output 
over 11 hr.  A variety of complementary experiments, notably involving a modification of the 
energy costs entailed by specific acts exhibited by the mouse (Kanarek  &  Collier  1979, Johnson  
&  Collier 1994), could be designed for the purpose of confirming the nature of the criterion that 
tends to be optimized and of identifying the corresponding constraints.  However, if this hypothesis 
is accepted, two prospects can be considered.   

The first implies studying how each of the acts carried out by the animal in the course of the 
activity periods  contributes to optimization of the criterion NETGAIN .  For this purpose, a compa-
rison of the value of the criterion associated with the actual behavioural succession and the values 
of the criterion associated with behavioural reorganizations of the same succession has been under-
taken (Guillot  &  Meyer,  in press).  

The second concerns the way in which the mouse makes its behavioural choices.  It is in fact 
highly improbable that the mouse performs optimization calculations at each time step, as the algo-
rithm used here does, and it seems more reasonable to think that it is guided solely by its sensory 
inputs, in deciding whether or not it is more advantageous to activate  at the next time step ( Rou-
ghgarden  1991).  This is why a neuroethological approach ( Beer 1990,  Meyer  &  Guillot  1991,  
1994) is under consideration in order to study what mechanisms might be involved in this process.  
The objective would be to ascertain what nervous architectures might account for decision-making 
concerning ultradian rest/activity alternations by calling solely on the sensory information known to 
be accessible to the animal.  These architectures might be discovered by means of an evolving pro-
cess, like  genetic programming  (Koza  1992), that is inspired from mechanisms responsible for the 
evolution of species. Such an approach would be complementary to the one used there,  for, as  
Miller  &  Todd  (1991) remark,   "dynamic programming represents an attem pt to understand the 
results of evolution without simulating evolution". 
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FIGURE CAPTIONS

Fig. 1. Cumulative activity of observed behavioural sequences translated into rest/activity alterna-
tions with a 30-min. time step and of optimal sequences generated by dynamic programming. 
A, Day condition  
B, Night condition.

Fig. 2. Optimal and actual patterns. 
A, Theoretical alternations optimizing NET criterion 
B, Observed alternations having the same total activity duration than the optimal ones (mouse h in 
day condition and mouse H in night condition).


