
Evolution and Development of Control Architectures

in Animats

J�er�ome Kodjabachian and Jean�Arcady Meyer

Ecole Normale Sup�erieure

Groupe de BioInformatique

����	 Paris cedex 	�
 France

E�mail� kodjaba�wotan�ens�fr� meyer�wotan�ens�fr

y 
 


Abstract
This paper successively describes the works of Boers � Kuiper� Gruau� Cangelosi et

al�� Vaario� Dellaert � Beer� and Sims� which all evolve the developmental program of an

arti�cial nervous system� The potentialities of these approaches for automatically devising a

control architecture linking the perceptions and the actions of an animat are then discussed�

together with their possible contributions to the fundamental issue of assessing the adaptive

values of development� learning and evolution�
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� Introduction

An animat ��� �� �� is an arti�cial organism 	 either a simulated animal or an animal
like robot
	 the structure and functionalities of which are based substantially on mechanisms observed in
real animals� It is usually equipped with sensors� with actuators� and with a behavioral control
architecture that relates its perceptions to its actions and allows it to survive in its environment�

Usually� an animat�s control architecture is �xed by a human designer� However� because the
�eld of animat research still lacks any systematic comparisons 	 where a speci�c architecture
would be confronted with various survival problems or where various architectures would have
to cope with the same environment �
� �� �� 	 such a procedure relies more on the designer�s
intuition or technical idiosyncrasies than on basic principles� Actually� several researchers ��� ��
even doubt that such principles will ever prove to be e�cient for designing truly autonomous
systems� i�e�� systems that have to survive in numerous challenging circumstances that are
impossible to predict� Therefore� they advocate the use of automatic designing procedures
that would bypass human intervention insofar as possible� and that would adapt the control
architecture of an animat to the speci�c environment it lives in� and to the speci�c survival
problems it has to solve�

It turns out that Nature has invented three such automatic designing procedures� namely
those of evolution� development and learning� The �rst two determine the overall organization of
a given organism� while the third is used to �ne
tune the organism�s adaptation to environmental
constraints� Although these processes occur on di�erent time scales� they certainly interact in
complex ways� which are still not fully understood�

Be that as it may� because the study of animats is grounded in biology� it is not surprising
that several research e�orts have already let an animat�s control architecture evolve� or learn�
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or simultaneously both evolve and learn �
� �� ��� This paper will focus on the evolutionary
design of neural networks� a particular class of control architectures liable to exhibit a wide
variety of dynamic behaviors and that may prove to be particularly suitable for automatic
design approaches because the low
level� sub
symbolic primitives they are built upon 	 the
elementary neurons 	 are easily recombined into changing or growing con�gurations� However�
this paper will argue that� to be e�ective� such an approach needs to be coupled with a non
trivial
developmental process that allows complex morphologies to be speci�ed by simple programs� A
few such applications 	 which combine development� evolution and� possibly� learning 	 have
recently been published and will be reviewed herein�

In the following section� we introduce the basic principles of evolutionary algorithms� a
set of search algorithms that simulate an evolutionary process� We then discuss the encoding
problems that are encountered when evolving neural networks with such methods� problems to
which developmental processes appear to provide promising solutions� In the three next sections
we review several applications that combine development and evolution� First� we describe two
methods that use a simple developmental scheme based on rewriting rules and that exhibit some
interesting properties� Then� we describe two models incorporating a process of axonal growth�
Finally� we present two research e�orts that allow the morphology of an animat to co
evolve
with its control architecture� The paper ends with a discussion of the foreseeable di�culties
and potentialities of such approaches� notably for autonomous robotics�

� Simulation of evolution

Several optimization algorithms are inspired by the mechanisms of evolution� Fogel ��� classi�es
them according to the description level of the genetic mechanisms they are based upon� Genetic
algorithms ���� and genetic programming ����� which make a distinction between a genotype level
and a phenotype level� implement the most �ne
grained version of these mechanisms� Evolution�
ary programming ����� on the contrary� relies upon high
level mutation operators that directly
modify phenotypical traits� Finally� another family of algorithms 	 evolution strategies ����
	 can be situated between the preceding� as it operates on vectors of scalars� an intermediate
level of representation between the elementary genes
as
bits used in genetic algorithms and the
sophisticated traits of evolutionary programming� Another classi�cation has been suggested
by Angeline ��
�� and relies upon the fact that the structures manipulated are either static or
dynamic� According to such a classi�cation� genetic algorithms and evolution strategies belong
to the �rst class� genetic programming belongs to the second� and evolutionary programming
belongs to either� depending upon the corresponding application�

In this section� we introduce genetic algorithms and genetic programming� two paradigms on
which the works reviewed in this paper are substantially based� Then we discuss the encoding
problems that occur when the topology of a neural network is evolved�

��� Genetic algorithms and genetic programming

Genetic algorithms are randomized search algorithms based on the mechanisms of natural selec

tion and genetics� In their standard version ����� they operate on a set of bit
strings representing
the genotypes of various individuals in a population� Each bit
string 	 that is often called a
chromosome 	 can be translated into a phenotype� which can be a mere parameter or a whole
architecture� and which represents a possible solution to a given problem� Each of these chro

mosomes must be assigned a �tness that assesses the corresponding solution� The application of
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the genetic algorithm accordingly consists in causing the population to evolve from generation
to generation while rendering the probability of reproduction of each chromosome proportional
to its �tness and using genetic operators such as mutation or recombination to give rise to new
solutions in the population� Under these circumstances� this type of evolutionary process causes
chromosomes of ever
increasing �tness to be generated until the optimal value is reached� or
su�ciently nearly so for all practical purposes�

An iteration of the algorithm is divided into three stages�

�� The �tnesses of the di�erent chromosomes are assessed by an evaluation procedure �eval

uation stage��

�� A subset of the population is selected� depending upon the �tness values �selection stage��

�� The genotypes corresponding to the selected phenotypes are modi�ed by genetic operators
and form a new population� the next generation �reproduction stage��

Iteratively� successive generations are produced� The combined in�uences of selection 	
that favors the reproduction of the �ttest individuals 	 and variation 	 that is caused by
the application of the genetic operators 	 allow for a directed search in the set of all possible
genotypes� As the genetic operators are stochastic� the search is said to be randomized�
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Figure �� Recombination and mutation in the standard genetic algorithm�

Several types of genetic operators exist� The operator of recombination 	 also called
crossing�over 	 takes two genotypes and exchanges parts between them� It is generally con

sidered the most important operator� because the long
distance jumps it produces allow for a
global exploration of the genotype space� Another important operator� mutation� randomly
�ips bits in the bit
strings� It is usually considered as a novelty source that is used with a low
frequency in order to prevent alleles ���s or ��s in speci�c positions within a chromosome� from
being ruled out of the population� These two operators are illustrated in Figure ��

Genetic algorithms can be considered as optimization algorithms acting upon the �tness
function because they search for an individual associated with an optimal evaluation� These
algorithms are di�erent from other random search techniques in that they evaluate in parallel
a population of di�erent individuals that can be modi�ed or recombined at reproduction time�
Also� genetic algorithms di�er from standard numerical analysis techniques in that they do not
assume any continuity� nor the existence of derivatives� for the �tness function�
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The theory of genetic algorithms ���� helps to understand the reasons why these methods
are e�cient and� in particular� to assess the speci�c role of the recombination operator� The
so
called schemata�theory is based on the notion of schema �or similarity template� and its
main theorem states that� if the size of the population is N � then an order of N� schemata
are processed by the genetic algorithm� This property is called implicit parallelism� Then� if
short schemata implementing potentially useful functionalities exist in the population� they can
be e�ciently used as building blocks by the recombination operator to form �tter individuals�
which will constitute the next generation�
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Figure �� The discovery of a program able to evaluate the XOR of two logical variables D�
and D� by genetic programming� The application of the recombination operator� which ran�
domly exchanges sub�trees between two incorrect programs� �A� and �B�� produces programs
�C� and �D�� Program �C� is a correct solution for the XOR problem because its upper node
gives the desired value in each of the four possible combinations of D� and D�� The 	tness
values displayed are the numbers of correct answers� out of a maximum of four� given by the
di
erent programs� These programs are expressed either as parenthesized expressions or as
equivalent trees�

Another family of evolutionary techniques� genetic programming� operates on Lisp
like S

expressions instead of bit
strings ���� ��� ���� An S
expression corresponds directly to the
sparse
tree created by a Lisp
compiler at compilation time and can be represented either as a
parenthesized expression or as a tree� Thus� sub
S
expressions �a single symbol 	 i�e�� a terminal
leaf 	 or a parenthesized functional sub
S
expression 	 i�e�� a sub
tree� are meaningful building

blocks that can be easily manipulated� This particular syntax of the Lisp language allows the
main genetic operators to be rede�ned in an e�cient way� Mutation consists in modifying a sub

S
expression� Recombination consists in exchanging sub
S
expressions between two programs�
as illustrated on Figure �� In some applications� an individual is encoded by several S
expressions
instead of only one� in which case recombination can be applied either between corresponding S







expressions of the two parent programs� or in an unconstrained manner� All these manipulations
have the advantage of producing syntactically valid S
expressions� The size of the programs�
however� can vary due to di�erences in the sizes of the sub
expressions manipulated�

��� Encoding schemes for neural networks

Both genetic programming and genetic algorithms have already been applied to the synthesis
of neural networks that can be used as control architectures in animats� These attempts have
helped to single out the corresponding main di�culties�

In ����� for instance� a speci�c application of genetic programming to the design of a network
architecture is presented� However this method evolves highly constrained architectures� because
a separate sub
network 	 coded in a corresponding chromosome
tree 	 has to be designed for
each output unit in a feed
forward network� Thus� the method does not exploit the sharing of
internal units between di�erent parts of the network� which seems to be a desirable characteristic
of neural networks�
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Figure �� Two types of direct encoding schemes� Left� Simple encoding of a neural network
topology� The weights are learned by a speci	c algorithm� such as back propagation �after
��
��� Right� Variable length encoding of both the architecture and the weights of an animat�s
nervous system� Although input �sensors� and output �motors� nodes are imposed by the
programmer� because the genetic encoding allows for variable numbers of internal nodes
�neurons� and links �connections�� the resulting control architecture does not necessarily use
each of the available sensors or motors� Within such an encoding scheme� the addressing
mode can be forward or backward� and relative or absolute� Two types of links can also be
used� normal or veto �after �
���

Likewise� genetic algorithms have often been applied to the design of neural networks �see
���� for a review�� The earlier applications were limited to the optimization of the synaptic
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weights within �xed architectures �e�g�� ������ Later� several researchers have also genetically
coded the topology of a network using direct encoding schemes� in which there is a one
to
one
correspondence between the data in the genotype and speci�c parts 	 neurons and connections
	 in the phenotype� The connection constraint matrix of Miller et al� ���� is a simple example of
such an approach� Figure � compares this kind of approach with a more sophisticated variable

length scheme that speci�es both the architecture and the weights of an animat�s nervous system
���� A less direct encoding scheme� which speci�es the overall architecture of a network only in
terms of areas 	 instead of neurons 	 and projections 	 instead of connections 	 has been
proposed by Harp et al� ����� Thus� the exact connectivity of a network is randomly generated
according to the projection parameters that determine both target regions within areas and
connection densities� However� all such methods were quickly seen to be hampered by several
limits� such as their lack of scalability or the absence of modularity in the resulting architectures�

In order to cope with these limits� several researchers have proposed to get rid of direct
genotype
to
phenotype mappings and to use complex� non
linear developmental processes that
might exhibit desirable properties ���� ��� ��� �� ���� Among these properties� that of scalability
is particularly interesting� In ��
�� Kitano regrets that direct encoding schemes do not generally
scale well when the size of the desired network grows� because the size of the code is linearly
related to the size of the network� To solve this problem� Kitano proposes an evolutionary
algorithm that manipulates dynamic rewriting rules that allow the connectivity matrix of a
neural network to develop�

Modularity is another property also concerned with the reduction of the size of the genotypes�
which appeared to be missing in direct encoding schemes ���� ��� According to Gruau�s de�nition
����� an encoding scheme is modular if the genotype can be decomposed into some parts that
specify the organizations of sub
networks� and other parts that describe how to interconnect
these sub
networks� Thus the same pattern of connectivity can be expressed several times within
the same network�

In the three following sections� six recent applications combining a developmental process
with an evolutionary process are described�

� Rewriting rules

The research e�orts described in this section evolve genotypes made up of sets of rules that
are used to rewrite symbols whose meaning is such that� at the end of the rewriting process�
a functional neural network is obtained� In the approach of Boers and Kuiper� the synaptic
weights of the network still have to be learned� while in Gruau�s approach they are speci�ed
by the genotypes� A variation of this second approach also allows modular networks to be
developed�

��� Boers and Kuiper

The work of Boers and Kuiper ���� combines a genetic algorithm and a learning procedure with
an L
system grammar ���� that models development� Basically� the genetic information on which
the genetic algorithm operates codes for a set of production rules which are applied to an axiom
over a number of iterations� The resulting string is transformed into a structural speci�cation
for a classical feed
forward neural network� The weights of this network are trained by back

propagation� which provides a �tness estimate that is fed back into the genetic algorithm and
used to assess whether the network should be eliminated or passed on to the next generation�
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The strings used in this work are made up of �� symbols from the alphabet fA
H� �
�� � � �g
U f�g� A letter �A
H� designates a speci�c neuron in the network and two adjoining letters are
automatically connected feed
forward� If two letters are separated by a comma ���� no connection
is made� Modules can be created by grouping neurons or other modules between square brackets
������ two adjoining modules are connected in such a way that all output neurons from the �rst
module are connected to all input neurons from the second module� and two modules separated
by a comma are not connected�
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Figure �� The
string
�A��B�C�D�E devel�
oped �after ������
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Figure �� Production rules sam�
ple �after ������

Single digits are used to denote a skip within the string� For instance� the string �A��B�C�D�E
codes for the network of Figure 
� where neuron A is connected to neurons B and C because both
are input neurons in the �B�C� module 	 i�e�� they receive no connection from other neurons in
the same module� Neuron A is also connected to neuron E because the connection skips both
module �B�C� and neuron D�

The L
system used for generating such strings is a �L
system� in which every production
rule can have both left and right contexts and is therefore divided into four �possibly empty�
parts� L � P � R� S�

Basically� such a rule means that sub
string P �the predecessor� should be replaced by sub

string S �the successor� if P is connected to every neuron described in L �left
 or lower
level
context� and in R �right
 or upper
level context�� Thus� if the �ve production rules of Figure �
are applied to a single original neuron A 	 given as an axiom 	 �Figure �a�� the string
BBB is generated after one rewriting step �Figure �b�� During the second rewriting step� the
�rst �bottom� and the second �middle� B�s are rewritten using rule �� because they both are
connected to a higher B� On the contrary� the third �top� B 	 which has no connection with
a higher B 	 is rewritten according to rule �� instead of rule � �Figure �c�� Likewise� during
the third rewriting step� the �rst �bottom� D is rewritten according to rule � and the second
�middle� according to rule 
� As no more rules apply� the �nal network obtained corresponds
to string �C� C�� � C�C� C� shown in Figure �d�

To separate the constituent parts of each production rule� Boers and Kuiper used a special
symbol �an asterisk� and� to relate each of the �� possible symbols in a production rule to the
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genetic information processed by the genetic algorithm� they used the genetic code described
in Figure �� Thus� in this application� the genetic code relates �� symbols to �
 �
bit strings�
instead of relating �� amino
acids to �
 triples with four bases�

* A ] [ [ ] 2 *

D, [ 2 [ H ,

A* * B B B *

2*, ] ] C 1 ,

10000111001 111 11 1 11 11111 1 1 1 11 100 000 0 00 0 0 0 0 00 00 01

Figure 
� Four possible translations of a given chromosome in Boers and Kuiper�s applica�
tion �after ������

Furthermore� the genetic information on a given chromosome can be read in twelve di�erent
ways 	 starting at any of the �rst six bits and reading forward� or starting at any of the last six
bits and reading backwards 	 thus providing the genetic algorithm with a much higher level
of implicit parallelism than in traditional applications� Figure �� for instance� describes four
di�erent translations of a chromosome with a length of 
��

Finally� the software developed by Boers and Kuiper also contains several functions capable
of repairing faulty strings� i�e� strings with extraneous brackets� useless commas� or succeeding
digits�

To our knowledge� this software has so far been used in only a few very simple applica

tions� For instance� it has evolved neural networks capable of solving the XOR problem or of
recognizing handwritten digits ��� ��� � presented on a �x� grid� However� it could prove useful
for designing the architecture of feed
forward networks that are trained by supervised learning
procedures and that could be used to control the behavior of an animat� Such a procedure has
been used� for instance� by Pomerleau ���� to control the NAVLAB� i�e�� the autonomous vehicle
of CMU�

��� Gruau

The work of Gruau ���� ��� also encodes a rewriting grammar in a chromosome� However�
this encoding scheme 	 called cellular encoding 	 rewrites neurons instead of symbols� In its
simplest version� it is used to develop feed
forward networks of Boolean neurons with integer
thresholds and �� or 
� connections� but more elaborate versions of this encoding scheme ���� ���
can deal with more complex neurons and connectivities�

In Gruau�s model� each cell in a developing network has a copy of the chromosome that codes
the developmental process� and each cell reads the chromosome at a di�erent position� The
chromosome is represented as a grammar tree� with ordered branches whose nodes are labeled
with character symbols� These character symbols represent instructions for cell development
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that act on the cell or on connections that fan
in to the cell� During a given step of the
developmental process� a cell executes the instruction referenced by the symbol it reads and
moves its reading head down in the tree� Depending on what it reads� a cell can divide� change
some internal registers and �nally become a neuron� For instance� when a cell reads and executes
the sequential division �denoted by S�� it divides into two linked cells� the �rst daughter inherits
the input links� the second daughter inherits the output links of the parent cell� When a parallel
division �denoted by P� is executed� both daughter cells inherit the input and output links from
the parent cell� Since a given cell yields two daughter cells� S and P nodes are of arity two� the
�rst daughter moves its reading head to the chromosome�s left subtree and the second daughter
moves its head to the right subtree� Finally� when a cell divides� the values of the internal
attributes of the parent cell are copied into the daughter cells�
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Figure �� Cellular encoding and development of a XOR network� Explanations are provided
in the text �after ������

Other symbols change the values of internal registers in the cell� Such registers are used
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during development 	 like the link register� for instance� which points to a speci�c fan
in link
or connection into a cell 	 while others determine the weights and thresholds of the �nal neural
network� Thus� symbols I and D respectively increment and decrement the value of the link
register� causing it to point to a di�erent connection� Likewise� symbols A and O respectively
increment and decrement activation thresholds� and symbols � and 
 respectively set to ��
and 
� the weight of the input link pointed by the link register� The ending program symbol E
causes a cell to lose its reading head and become a neuron�

Figure � represents the development of a XOR network� Circles represent active cells or
neurons� while rectangles represent reading heads� Empty circles correspond to thresholds set
to �� black circles correspond to thresholds set to �� Squares represent input�output pointer
cells� Solid connections have a weight of �� dashed connections have a weight of 
��

Since Gruau�s chromosomes have the same structure as those used within the genetic pro

gramming paradigm� they can be subjected to the same kind of genetic operators� notably to
mutations and recombinations�

Cellular encoding has been used by Gruau ���� to evolve a neural network capable of con

trolling the motion of a six
legged animat� This problem has already been solved by Beer
and Gallagher ���� who� instead of forming a locomotion controller by fully interconnecting six
individual leg
controllers� took advantage of the various symmetries that such a controller is
supposed to exhibit and devised a controller made of six copies of the same sub
network� Gruau
solves a slightly simpler version of the problem� but does not help the evolutionary algorithm
by using any a priori knowledge about symmetries �except for the order of presentation of the
di�erent inputs and outputs�� Instead� symmetries are discovered and exploited by the devel

opmental process� because such a process is capable of generating a sub
network that solves a
sub
problem� then of producing and combining copies of this sub
network� to build a higher

level network that solves the problem� The genome
splicing technique advocated by Koza ����
seems especially useful for such a modular approach� The control architecture of Figure ��
consists in a sub
network repeated three times and allows the animat to exhibit a tripod gait�
Each sub
network contains a neuron with a recurrent connection that acts as a latch register
and makes the three controllers work in phase� while insuring that the two legs controlled by a
speci�c controller work in anti
phase�

AEP1 PEP1 AEP2 PEP2 AEP3 PEP3 AEP4 PEP4 AEP5 PEP5 AEP6 PEP6

RS6PS6RS5PS5RS4PS4PS3RS2PS2RS1PS1 RS3

Figure ��� The neural network evolved in Gruau�s approach that controls tripod gait� AEP
and PEP are sensory input units detecting anterior extreme positions and posterior extreme
positions of the legs� PS and RS are motor output units controlling the power stroke and
the return stroke �after ������

Gruau and Whitley ���� have added a variety of Hebbian learning to cellular development
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and evolution� In particular� following Hinton and Nowlan ��
� and Belew ����� they have
compared results obtained with �tness evaluations depending on a developed neural network
alone to results obtained with �tness evaluation depending on a developed neural network with
some of its weights changed by a learning procedure� It thus appears that such a modi�cation
changes the �tness landscape explored by the genetic algorithm and� eventually� accelerates
the speed of evolution 	 a result known as the Baldwin e�ect� Likewise� Gruau and Whitley
have studied how the so
called developmental learning could a�ect evolution� Such learning can
occur when some recursive encoding is used by the cellular encoding method� thus allowing a
given subtree of the chromosome to be read and executed repeatedly� In such circumstances�
indeed� it is possible to learn and change the weight of a connection between two iterations of
the recursive loop�

It should be stressed that neither the Baldwin e�ect� nor the developmental learning� pass
the values of learned weights from parents to o�spring and� thus� that they do not implement
any Lamarckian inheritance of acquired characters�

� Axonal growth

The approaches to be described in this section simulate a process of axonal growth that deter

mines the connectivity of the networks� While� in Cangelosi et al�� the growth process depends
upon the genotype only� in Vaario�s work it can be regulated by the environment�

��� Cangelosi� Parisi and Nol�

The work of Cangelosi� Parisi and Nol� ���� is concerned with the evolution of animats equipped
with motivational units that can inform them about some internal needs� The control architec

ture of each animat is a bidimensional network that develops from an initial egg cell 	 during
�ve cell division and migration cycles� followed by �ve cycles of axonal growth�

Each cell contains three varieties of information coded in its genome�

�� The type of the cell� There are �� cell types�

�� Several parameters characterizing its neuronal properties�

� the branching angle of the neuron�s axon �there are �ve branching cycles� each branch

ing is binary� all branchings have the same angle��

� the length of a branching segment of the neuron�s axon�

� the point on the neuron�s surface where the axon starts growing�

� the threshold of the neuron�

� the weight of the connections emanating from the neuron �all the connections ema

nating from the same neuron have the same weight��

�� A set of �� rules of cell division� Each rule has the following form�
Rewrite TypeN as TypeN � � TypeN ��

where N ranges from � to �� �a division rule may rewrite a mother cell into a single
daughter cell� or even into no cell at all�� Each division rule also speci�es�

� a number of changes to be made to the neuron parameters �cf ��� above� when they
are inherited by each of the two daughter cells �the changes need not be identical for
the two daughter cells��
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� the location of the two daughter cells relative to the location of the mother cell�

The developmental process occurs within a bidimensional neural space divided into three
horizontal bands� It begins with the egg cell located in the center of the space� At the end of
�ve cell
division and migration cycles� up to �� cells are obtained� which specialize into neurons
with functionalities depending upon their spatial locations and their cell types� Thus� a neuron
that ends up in the lower band of the neural space will work as one of the network�s sensory or
motivational units� depending upon the corresponding cell type� Likewise� a neuron that ends
up in the upper band will work as a motor unit� and a neuron that ends up in the intermediate
band will work as a hidden unit� the details of their functionalities being determined by their
cell types�

At the end of the division and migration cycles� an axonal growth process begins� During �ve
growth cycles� each neuron grows its branching axon according to the corresponding values of
its branching
angle and segment
length parameters� If a growing axon touches another neuron�
the two neurons become connected� However� only connections belonging to a pathway between
a sensory or a motivational unit to a motor unit are considered as functional and participate in
the control of the developed animat�

In order to let such control architectures evolve� an initial population of egg cells is generated�
the genome of each being constituted randomly �after development� every individual in the
population is evaluated during a �xed life
time� according to how successfully its nervous system
allows to cope with a given task� At the end of their lives� individuals reproduce selectively
according to their �tness� and random mutations are eventually applied to each component of
any reproducing genotype�
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Figure ��� Control architecture �connection weights and unit biases� of an animat capable
of reaching the food zone when hungry �motivation unit set to �� and the water zone when
thirsty �motivation unit set to �� in the work of Cangelosi et al� The two output units
binarily encode the four possible motor actions ��� � go forward� �� � turn left� �� � turn
right� �� � do nothing� �after ������

This scheme has been used to evolve animats living in a bidimensional environment con

taining two separate randomly
placed zones� one containing food and the other water� Each
animat�s task is to reach the food zone and to remain there as long as it is hungry� and to reach
the water zone and to remain there as long as it is thirsty� Each animat is equipped with a
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sensory system that allows it to perceive the direction and the distance of the center of the food
zone� and the direction and the distance of the center of the water zone� Motivational units
detect whether or not the animat is in a state of hunger or of thirst� An animat is supposed to
remain hungry or thirsty until it has spent ten time steps in the food or water zones� thereafter�
it shifts to the opposite state� Finally� each animat has a motor system that allows it to go one
step forward in the facing direction� to turn �� degrees left� to turn �� degrees right� or to do
nothing�

A typical run of the evolutionary process is characterized by three periods� The population
of the �rst period is essentially made up of animats that are able to reach the food zone but
not the water zone� Their neural control architecture does not include any motivational unit
and uses only food sensors in its functional sensory motor pathways� During the second period�
a water sensory motor pathway begins to form and motivational units begin to be integrated
into the control architecture� Animats capable of reaching the food zone when hungry and
the water zone when thirsty appear during the third period� after roughly ��� generations�
As exempli�ed on Figure ��� their control architecture tends to include a single motivational
unit and two modules� one for food and one for water� Moreover� these modules tend to use
direction information only� architectures that encode both direction and distance� or distance
only� having been eliminated from the population in previous generations�

Similar approaches� but with no cell division or migration� are described in ���� and ����� In
the latter� the neural development is in�uenced by both the genes and the environment� because
a neuron is allowed to grow its branching axon only if the neuron�s activation variability 	
which depends upon the variability of the environmental stimulation to the network 	 exceeds
a genetically speci�ed threshold�

��� Vaario

Vaario�s approach ���� 
�� 
�� explicitly takes into account environmental e�ects on the devel

opment of neural networks and� like Boers and Kuiper�s approach� is inspired by Lindenmayer�s
systems� However� instead of using linear character strings� it makes use of abstract objects
which typically represent arti�cial cells 	 each characterized by a set of attributes and a set of
production rules to execute� In this model� each cell is actively checking the environment and�
on the basis of the corresponding information� executes one or more of its production rules�
Cell attributes mostly refer to the concentrations of various chemical elements and enzymes�
Production rules are characterized by the set of conditions which must be ful�lled for them to
be executable and by the kind of actions they trigger� They are divided into four types�

� cytoplasm rules� interpreting the genetic code and modifying the internal state of a cell�

� membrane rules� modifying the internal state of a cell according to the interactions between
the cell and its environment�

� rules creating a cell�

� rules deleting a cell�

In particular� these rules are used to model various morphogenetic processes� such as cell di

vision� cell fate� axon and dendrite growth� axon guidance and target recognition� cell death�
elimination of connections� anatomical plasticity and synaptical plasticity �Figure ����

For example� the process of axon and dendrite growth depends on the presence of obstacles
and of target cells in the environment� Connections bounce against obstacles and climb the
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Cell division Axon and dendrite
growth

Axon guidance and
target recognition

Cell death Elimination of connections Anatomical plasticity Synaptical plasticity

Cell fate

Figure ��� Some morphogenetic processes in Vaario�s model �after ������

Figure ��� Three developmental stages displayed by Vaario�s animat� initial growth �top��
initial withdrawal �middle� and 	nal withdrawal �bottom� �after ������
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gradient �elds of the chemical substances emitted by target cells� When a connection �nally
reaches a target cell� it creates a synaptic connection and stops growing� Moreover� those
connections unable to �nd any target neuron gradually withdraw�
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Figure ��� The developed nervous system and the tracking behavior of Vaario�s animat
�after ������

In the current implementation of Vaario�s model� the genotype of an animat is not encoded
as a bit string� but as a symbolic representation that describes various characteristics of the
sensors� of the actuators and of the initial neuron� in a nervous system to be developed ����� This
representation also allows recombination and mutation operations� Thus� several characteristics
	 like the time to branch� the branching angle and the type of target cells involved in connection
growth� or the numbers� positions and properties of the animat�s sensors and actuators 	 are
genetically determined�

Figure �� shows the development of the nervous system of an animat with two sensors
�right�� which allow the animat to perceive a given stimulus� and four actuators �left�� which
allow the animat to move� The cell positions and the targeting labels �i�e� which neuron will
be connected to which sensors and actuators� have been speci�ed explicitly� Figure �
 shows
what kind of neural network can be evolved in order to generate a tracking behavior� The signal
generated by each sensor is a genetically coded function of distance and angle of the stimulus�
Likewise� each actuator generates a force which depends on the incoming signal in a genetically
determined manner�

� Morphological development

The two research e�orts to be described in this section involve the simultaneous development
and evolution of both an animat�s control architecture and its morphology� The work of Dellaert
and Beer implements a genetic regulatory network and various biological processes� The work
of Sims is less biologically
grounded� but it allows for a modular approach� as in the previously
described models of Boers and Kuiper� and of Gruau�

	�� Dellaert and Beer

The developmental model of Dellaert and Beer �
�� is concerned with the development of a
whole organism� not just a neural network� It is inspired from Kaufmann�s work �
�� and relies
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upon a genetic regulatory network whose binary elements each correspond to the presence �or
absence� of a speci�c gene product or to the expression �or the non
expression� of some gene�
According to the updating rule and connectivity of each element� the state of the network 	
which corresponds to the pattern of gene expression in a given cell 	 may change over time
but will� ultimately� settle in a �xed point or a limit cycle� Such a dynamical process is used
to model a cell cycle� in particular� a cell division occurs when the cell�s regulatory network
settles in a steady state� with a speci�c element being set to a predetermined value� When this
occurs� the pattern of gene expression of the parent cell is passed on to the next generation� and
a subset of genetic elements is used to determine the �nal di�erentiation of the two daughter
cells�

Within such a framework� the morphology of an animat is a two
dimensional square consist

ing of cells of various types� each having a copy of the same Boolean network that constitutes
the animat�s genotype� However� the state of the network� corresponding to the pattern of
gene expression in a particular cell� may be di�erent in each cell� according to the cell�s initial
state and to the various in�uences experienced up to the present time� The physical extent of
each cell is represented as a two
dimensional square element that can divide in either of two
directions� vertical or horizontal� When division occurs� it takes place in such a way that the
longest dimension of the parent cell is halved and that the two daughter cells together occupy
the same space as the original cell�

Development starts out with a single square that represents the zygote� During development�
the state of the regulatory network of each cell changes according to both the internal dynamical
process mentioned above and the external in�uences provided by inter
cellular communications
or by speci�c symmetry
breaking processes� For instance� the in�uence of neighboring cells is
condensed into a so
called neighborhood vector� which is the logical OR of all the state vectors of
these cells� and this neighborhood vector is combined with the cell�s state vector to determine
the next state� Likewise� a symmetry
breaking process occurs at the time of �rst cleavage� which
switches a bit of the Boolean network state vector in one of the zygote�s two daughter cells�
Other symmetry
breaking processes cause the update of a cell�s state vector to depend upon
information on whether the cell is situated on the external surface of the animat or whether it
borders the animat�s horizontal mid
line�

In order to evaluate the morphogenetic potentialities of their encoding scheme� Dellaert and
Beer have evolved a simple animat that roughly reproduces the relative positioning of sensors�
actuators and control system that one would expect to �nd in a simple chemotactic agent
�Figure ���� In particular� this animat exhibits bilateral symmetry� with sensors �cell
type ��
placed sideways at the front and actuators �cell
type 
� placed sideways at the back� and with
a control structure made of neural tissue �cell
type �� connecting them� Such an organization
has been obtained by making the evolutionary process depend upon a �tness function that
evaluates the discrepancies between the di�erentiation patterns of any developed animat and
that of a hypothetical ideal chemotactic agent� In the case of the animat in Figure ��� these
discrepancies have not been entirely eliminated� because two actuator cells are clearly out of
place� in front of the animat�

Figure �� describes the genome of this animat in two equivalent forms� It is a Boolean
network with six nodes� each characterized by a speci�c update rule which sets the state of
the corresponding node according to information contributed by two inputs� These inputs
are also determined genetically and represent connections from other nodes �positive integers��
connections from nodes in neighboring cells �negative integers in the range �

� 
��� or in�uences
of the external environment �
�� or of the mid
line �
���
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Figure ��� The 	rst six consecutive stages of development of Dellaert and Beer�s animat
�after ������

0 0 1 0

0 0 1 1
0 1 0 1

1 1 0 0

0 0 0 1

1 1 0 1
0 1 1 0
0 1 1 1

Equivalent
Boolean function

~3 AND mid

~(-1)

ext AND 5

6 XOR mid
6 OR -1

~4 OR 4 

6 -1
6 -6
4  4
-5  5

-2 -1

3 -6

6
5
4

3

2

1

node
b)

6
5
4

3

2

1

node
a)

inputs

Figure ��� The genotype of Dellaert and Beer�s animat �after ������

��



Thus� as shown in Figure ��� the update rule of node � in a given cell depends upon the
state of node � in the same cell and upon the situation of this cell relative to the animat�s
mid
line� if the cell borders the mid
line� the value of bit 
� is �� otherwise it is �� Likewise�
the update rule of node � depends upon the state of node � and upon the situation of this cell
relative to the animat�s external surface� if the cell is situated on this surface� the value of bit

� is �� otherwise it is �� As Figure �� also shows� the update rules of nodes � and � in a given
cell depend on the state of node � in neighboring cells or� more precisely� on the state of bit �
in the cell�s neighborhood vector�
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Figure �	� Intra�cellular and extracellular communications in Dellaert and Beer�s animat
�after ������

In this application� cellular division was dependent upon the state of node 
� whose updating
rule �� 
 OR 
� maintains this node in a permanently active state� Thus� a division occurred
at every step� resulting in a maximum number of cells�
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Figure �
� Dellaert and Beer�s operon compared with a biological gene� It states� for
example� that chemical 
�� is produced i
 chemical �
� is present and both chemicals ���
and ��� are absent in the cytoplasm �after ������

Various extensions of this model that involve a genome with a more complex connectivity�
which can shrink or grow over successive generations� are described in �

� � Indeed� such
a genome represents a set of operons� and every operon speci�es ��� a gene product that is
produced when the operon is active� ��� the other products that can regulate its expression�
and ��� a Boolean function that speci�es how the expression is regulated �Figure ���� In such
a model� a special gene product serves to signal whether a cell should divide or not� other gene
products serve to induce asymmetric cell divisions 	 because they are distributed to only one
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daughter cell at division time� and still other gene products serve to signal that a given cell lies
at the surface of the organism or on its mid
line�

A crucial extension of the previous model is the inclusion of a process of axonal growth�
which depends upon a speci�c gene� Whenever this gene is expressed� the cell is checked to
ascertain whether it expresses a certain cell adhesion molecule �CAM�� If it does� an axon is
sent out that searches for CAM�s of the same type and grows in the direction where it �nds the
most� When the soma of a cell expressing a speci�c trophic factor is encountered� the growth
process stops and a synaptic contact is made whose weight depends upon the amount of trophic
factor available�

In �

� a hand
coded genome is provided that codes for the development of both the body
and the control architecture of an animat exhibiting a simple hate behavior� as described by
Braitenberg �
��� Using this hand
coded organism to seed the initial population for a genetic
algorithm� Dellaert and Beer succeeded in producing a better performing animat after a few
generations� in which the actuator regions were innervated in a di�erent and stronger way than
in the ancestor organism�

	�� Sims

By using nested directed graphs� Sims �
�� 
�� also genetically encodes both the morphology
and the control architecture of various animats� In this approach� a �rst
level directed graph of
nodes and connections encodes the phenotype embodiment of a virtual animat as a hierarchy of
three
dimensional rigid parts that can exhibit a recursive structure or can duplicate instances
of the same appendage �Figure ����

Each node in the graph contains information describing a rigid part� notably its physical
shape and the way its motion relative to its parent part is constrained� Likewise� each connec

tion contains information about the position of a child part relative to its parent� Nodes and
connections also encode how many times a given node should generate a phenotype part when
in a recursive cycle� and when and how tail
 or hand
like components should be incorporated
at the end of a chain of repeating units�

The control architecture of a given animat is encoded as second
level directed graphs of
nodes and connections� included in each �rst
level node and describing the neural circuitry of
the corresponding morphological unit� or belonging to an overall central control system� These
second
level nodes describe either input sensors� internal neurons or output actuators� The
second
level connections de�ne the �ow of signals between these nodes and allow the neurons
and actuators within a morphological unit to receive signals from sensors or neurons in their
parent or in their child units �Figure ����

Each sensor is contained within a speci�c part of the body and measures either aspects of
that part or aspects of the world relative to that part� Some sensors provide information about
joint values� others react to physical contacts� and still others react to a global light
source�
Internal neurons can perform diverse functions on their inputs 	 like sum� product� divide�

interpolate� memory� oscillate�wave� oscillate�saw� etc� 	 to generate their output signals� As
for actuators� each one exerts a muscle force on a speci�c degree of freedom of a speci�c joint�

Sims�s approach allows virtual animats to evolve by optimizing for a speci�c behavior� such
as swimming� walking or following �
��� Every animat is grown from its genetic description and
then placed in a dynamically simulated virtual world� with which it interacts realistically� thus
allowing its �tness to be assessed� For instance� Figure �� shows the evolved genotype of a
swimming animat� Its phenotype morphology includes four �ippers shown in Figure ��� which
are put into proper paddling motion by the phenotype control system of Figure ���
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Figure ��� Designed examples of genotype 	rst�level directed graphs and corresponding
animat morphologies �after ������
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Figure ��� An evolved nested�graph genotype� The 	rst�level graph in bold describes the
animat�s morphology� The second�level graph describes its neural circuitry� J� and J� are
joint angle sensors� E� and E� are actuator outputs� The dashed node contains centralized
neurons that are not associated with any part �after ������
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Figure ��� The phenotype morphology generated from the evolved genotype shown in
Figure �� �after ������
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Figure ��� The phenotype control architecture generated from the evolved genotype shown
in Figure ��� The actuator outputs of this architecture cause paddling motions in the four
�ippers of the morphology shown in Figure �� �after ������
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Likewise� �
�� describes a system of co
evolving animats that compete in one
to
one contests
for gaining control of a common resource� The results obtained prove that interesting and
diverse strategies and counter
strategies are likely to emerge within such a framework�

� Discussion

The introduction of a developmental process between the genotype and the phenotype of a
given animat clearly has numerous consequences� which are yet to be fully understood and
assessed� In particular� the corresponding genetic operators have very di�erent e�ects according
to where they are applied within the genotype� For instance� it is well known that a mutation
occurring in the part of the genotype that is expressed early in the development will have
more extensive consequences on the resulting phenotype than a mutation whose e�ect would
be expressed during the latest stages of development� Intuitively� such a characteristic would
be viewed as advantageous� because it seems likely to provide evolutionary algorithms with
additional exploratory power� However� it turns out that� in traditional versions of evolutionary
algorithms� it is already very di�cult to adapt the corresponding genetic operators so that they
can select and favor those building blocks useful in a given application� Thus� it seems highly
likely that the acquisition of the corresponding empirical or theoretical knowledge will be much
more di�cult and lengthy for applications resorting to a developmental process�

Likewise� it seems likely that the use of developmental processes in conjunction with evolu

tionary algorithms will prove to be valuable in a more fundamental perspective� Indeed� such an
approach obviously makes it possible to study how genetic information and environmental in

�uences interact and complement each other during development 	 although such interactions
have not been implemented in every model described here� In particular� this approach should
help in specifying for which environment and for solving which kind of survival problem� Nature
has been committed to inventing the process of development� In other words� it should help
in assessing the adaptive value of this process and in specifying how it interacts with those of
learning and evolution� A �rst step in such a direction has been made by Elman �
�� who showed
�the importance of starting small� as far as the learning abilities of a given neural network were
concerned� Likewise� it might be interesting to speculate over what consequences are to be
expected from letting a control architecture start developing �and� eventually� learning� within
an environment that raises less challenging survival problems than those that a fully developed
architecture would later face� It is probably not without reason that the most advanced animals
spend a lot of time and energy in rearing their youngs in such protected conditions� It is also
probably not without reason that they try to ensure such conditions are rich enough� through
various means like� for instance� social interactions and play�

Insofar as a learning mechanism can also be submitted to evolution and development� two
important implementation issues can be anticipated� which are related to the classical structural
and temporal problems raised by reinforcement learning procedures �
��� Indeed such applica

tions will resort either to a global learning procedure 	 according to which every connection in
a given neural network will be adjusted during development 	 or to local learning rules that
will involve only speci�c connections� Likewise� learning will be triggered at every developmen

tal step or at speci�c developmental stages� Here again� numerous experiments will probably
be needed before any heuristic will prove to be e�cient in the corresponding implementation
choices�

The research e�orts that have been described in this paper relied basically on four di�erent
paradigms for modeling development�
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� Rewriting rules�

� Axonal growth processes�

� Genetic regulatory networks�

� Nested directed graphs�

Every such paradigm implements an indirect encoding scheme that exhibits some speci�c
advantages� For instance� rewriting rules allow compact encodings endowed with good scalabil

ity properties to be devised� As demonstrated by Gruau�s work� such a solution is also suitable
for generating modular architectures� thus providing an animat with the important functionality
of problem decomposition� Sims�s approach to modularity� although relying on a very di�er

ent solution� also leads to impressive realizations� This suggests that modularity is a powerful
feature for an encoding scheme and that it will probably be interesting to allow the axonal
growth paradigm� for instance� to generate modular architectures� This should be easy because�
at least in the applications that have been described here� genes do not specify the identity of
the target neuron with which a given connection has to be established� Therefore� if a part of
the genotype were replicated several times� each copy of the corresponding module would be
connected to di�erent neurons� depending upon its position within the overall architecture� As
for the paradigm of genetic regulatory networks� it provides another interesting property� that
of symmetry
breaking� whose e�ects on the resulting architectures are extremely di�cult and
tedious to code in a direct genotype
to
phenotype mapping�

Although it is somewhat premature to speculate about the relative merits of these di�erent
paradigms� it is clear that they are all capable of developing the control architecture of an
animat� Therefore� they should prove useful in the future� at least in a purely engineering
perspective� provided they turn out to be applicable to problems more di�cult than those that
have been solved here� Indeed� the solution to such simple problems usually required control
architectures implementing mere stimulus�response mechanisms� Therefore� it would probably
be extremely useful to test whether each of these approaches is capable of discovering more
cognitive control architectures that would implement� for instance� some memory or planning
abilities� In this perspective� it is interesting to note that the two research e�orts to date
that lead the farthest are those of Gruau and Sims 	 i�e�� probably those that are the most
distant from biological reality� This may be due to the fact that the natural mechanisms
involved in the processes of evolution and development are still imperfectly understood or that
these mechanisms are not used in an optimal context� for instance for selecting the behavioral
characteristics most useful in a given environment�

It should also be noted that� although the applications described here have all involved sim

ulated animats� some results have already been obtained that demonstrate that an evolutionary
algorithm can be used to evolve a neural network controlling a real robot� Thus� Lewis et al�
���� succeeded in evolving a walking behavior� while Floreano and Mondada ���� did evolve
motion and obstacle avoidance� Several other research e�orts involving so
called programmable

hardware ���� ��� �
� ��� or cellular robotic systems ���� ��� ��� will probably be extended in the
future� so that they could add development to an evolutionary process involving a real robot�
Such approaches may even foreseeably involve both the overall morphology and the control sys

tem of these robots� In particular� several experiments have already been carried out in which
the morphology of the sensors co
evolves with the control architecture� both in simulation ����
and in hardware applications �����
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� Conclusions

This paper has described six recent approaches that combine an evolutionary algorithm and a
developmental process in order to automatically design a neural network controlling the behavior
of an animat� Some of these approaches also involved a learning process� Although it is not
yet possible to assess the relative merits of these research e�orts 	 which are quite di�erent
from each other 	 there is good reason to think that they will ultimately prove helpful for
automatically designing e�cient control architectures linking perception to action in animats
in general� and in real robots in particular� However� the corresponding progresses will very
probably be slow�

In addition to their operational value� these approaches should provide a valuable contri

bution to theoretical biology in the future and enable a better understanding to be gained of
the interactions between development� learning and evolution� i�e�� the three main adaptive
processes exhibited by natural systems�
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