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Abstract

This paper proposes an Adaptative Multi-Chromosome
EBvolutionary Algorithm (AMEA) to perform task
based design of modular robotic systems. The kine-
matic design is optimized by the AMEA which uses
both binary and real encoding (for kinematic and con-
figuration parameters). In the problem considered for
tlustration, the robotic system consists in a mobile
base and a manipulator arm which may be built with
sertally assembled link and joint modules. The manip-
ulator has to reach a predefined set of goal frames in a
3D cluttered environment. Its design is evaluated with
geometric and kinematic performance measures. Opti-
mazation results for a 3D task are given and compared
with a Simple Genetic Algorithm. They clearly show
the superiority of the Multi-Chromosome representa-
tion and adaptive operators in term of computing time
and criteria optimization performance.

1 Introduction

Considering the task diversity in modern robotics,
new solutions are required to answer the complex is-
sue of adaptation. Modular Robotic Systems (MRS)
have been proposed for adapting robot morphologies
to given tasks [7][8][18][20]. MRS are minimal sys-
tems, able by recombining their modules to adopt a
task based qualified kinematic structure. Thus, task
diversity is answered by combination diversity.

The use of both deterministic and stochastic meth-
ods have been investigated for task based optimization
of modular systems. Possible combinatorial explosions
and the complexity in functions which relate the sys-
tem state and task specifications (highly non-linear,
discontinuous and with discrete variables in modular
robotics) introduce great difficulties in the use of de-
terministic methods [1]. Tt is well known for instance
that methods as hill-climbing can be easily trapped in
local extrema. One can also exploit heuristics which
consider each module characteristics to configure the
system structure [5][9]. As a consequence, for a given
problem the rule-based optimization always yield to
the same solution.

Methodologies based on stochastic optimization al-
gorithms search for best solutions with partially ran-
dom operators. When considering multi-objective op-
timization, progressive or global methods are pro-
posed. Progressive methods try to match iteratively
the different successive constraints, to reach sequen-
tially optimized solutions [12][17].  Unfortunately,
strongly coupled constraints imply numerous back-
trackings, which would slow down the search process.
Global methods consist in trying to match simulta-
neously all constraints while optimizing some criteria
[3][4]. This approach is much more complex than the
previous one, but it constitutes the most promising
way because of the parallel search it involves.

Our work belongs to this last category and makes
use of Evolutionary Algorithms to generate optimal
assemblies from an available set of components with
different basic features.

Figure 1: Modular manipulators

Previous works based on this approach yield to in-
teresting results but under restrictions on the problem
solved. Some of them suppose a particular geome-
try (planar or with three intersecting axes), others a
fixed kinematic feature (joint type or general mobili-
ties) or no constraints in the optimization (no obstacle
avoidance) and generally no redundancies. This paper
proposes a new Evolutionary Algorithm to address the
problem of kinematic design for serial modular manip-
ulators from task specifications in general and under
environmental and technological constraints.



The problem consists in finding the fittest modular
robotic system constructed from a serial assembly of a
mobile base, links and joints as well as a set of joint pa-
rameters and a base location. Several joint types and
mobility for the system (possibly redundant) are con-
sidered. The task is specified as a set of goals which are
3D end-effector configurations. The workspace is en-
cumbered by obstacles simply represented by spheres
(figure 2). The topology is evolved to perform the task
in the best conditions which are evaluated through a
multi-objective function relying on different functional
attributes of the system.
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Figure 2: Task specification

In the following sections, we first introduce an
adapted modular kinematics as well as the applied
evaluation criteria. Then, we present a Multi-
Chromosome Adaptive Genetic Algorithm and its ge-
netic operators. Results are given for a 3D task and
compared to those obtained by other GAs.

2 Problem Statement
2.1 Modular Kinematics

The modules and their assembly pattern are the design
parameters for the optimization problem. The manip-
ulator is constituted by two types of modules: joints
and links. Two 1-DOF joint types (revolute (R) and
prismatic (P)) and one 0-DOF joint (fixed (F)) are
available, as well as up to sixteen link lengths (from
0 to 1 meter). As we consider only serial manipula-
tors, assembly is made with successive segments. Each
segment will be constituted by a joint followed by a
link. Figure 3 shows the different available modules
and their assembly possibilities. The basic transfor-
mation from a link (¢) to its neighbour (i 4 1) is given
by an homogeneous transformation:

i+1 _ poo (Xeald
Bi - Rx,y,szTx T; (1)
Rt : Rotation along a axis of angle b
T? : Translation along a axis offset b
where 6 : Rotation angle if revolute joint
T : Translation offset if prismatic joint

~v  : Link length

The structure equation of the mechanism may be
computed as follows:

B =B, [[ B (2)
i=1

where Bg is the transformation from a fixed frame attached
to the ground and the mobile base frame, By specifying a
configuration to reach by the end-effector.

Design parameters (DP) for a segment are:

1. Joint orientation (Id,Rx,Ry,Rz)
2. Joint type (R, P or F)

3. Link length (0; &; .; &2 1)
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Figure 3: Module assembly

Evaluation is a key point since it drives the whole
optimization process through fitness values it gives to
candidate solutions. Hence, it requires a particular at-
tention. Evaluation for optimization algorithms needs
an Objective Function (F) to maximize. The F value
(called fitness in EA) represents the solution worthi-
ness and so, must be relevant to the system perfor-
mances. Moreover, it has to be computable for each



solution the encoding is able to generate. The eval-
uation computing time is a critical point since it is
performed for each individual over all generations.

In this problem, for each generated topology, the in-
verse kinematic problem for the whole structure (arm
and base) need to be solved and this for each sub-
goal to satisfy. This basic problem in robotics has
been widely studied by many authors. Efficient al-
gorithms for the inverse kinematic problem are today
available for manipulators without any restriction on
their geometry but only for non-redundant manipula-
tors [13][15]. Consequently, it has been decided to in-
clude the joint variables and the base location into the
genetic material of each manipulator and then to solve
the inverse kinematic problem simultaneously along-
side the manipulator topology.

2.2 Evaluation Criteria

Six criteria have been selected here to qualify the
evolving manipulators. All constraints and criteria
are translated into penalty functions to be minimized.
Criteria are computed for each subtask and the global
mean value is used for the final evaluation. The differ-
ent criteria are defined below:

e Reachability

The reachability i1s checked for all goals and a
penalty R is set if the constraint is violated.

R— (md — Z?:l li) (3)

md
l; : Length of it" link (doubled if prismatic)
md . Maximum distance of task positions from base
n : Maximum number of DOF

nt : Number of goals

¢ Linear and Angular distances

Linear (L) and Angular (A) distances are used to
assess the end effector configuration, according to the
considered frame. The Euclidean distance is used
for L and A, using the Roll Pitch Yaw convention
(RPY)[19].

A and L are respectively:

[[Xd — Xel|
L=—"—— (4)
1 Xd||
Xd : Desired (goal) position vector
Xe : End effector position vector
[|[Rd — Rel||
A = [ = Rel (5)
| Rd]|

Rd : Desired angle vector
Re : End effector angle vector

Obstacle Proximity

For obstacle avoidance, we check whether each link
is interacting or not with each obstacle by using a se-
curity ellipsoid (SE, defined by the link and sd). If the
obstacle is inside the security ellipsoid (figure 4), they
are interacting and we add a penalty amount O which
is proportional to the real distance (from 0 to 1).
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Figure 4: Obstacle avoidance ellipsoid

if Obstacle ¢ SE; = ¢p;; = 0 (6)
. (sdi — di)
if Obstacle € SE; = ¢p;; = —a (7)
Say
0 = 3> evi; (8
i=1j=1

SE;; : Security ellipsoid for 1** link

diy . Distance of i link from jth obstacle

cpij : Collision penalty for :*" link and ;' obstacle
sd : Security distance

no : Number of obstacles

e Involved modules

The involved module criterion 7 includes total link
lengths and number of joints. we use I in order to min-
imize total mass and structure complexity with regard
to the end effector configuration. I is defined as:

n t;
I— Zz’:l li + Tzo (9)
- ed
rt; : Set to 1if i*" joint is R, 0 if P
I;  : Length of i*® link (x2 if P)

ed : End effector distance from base frame

Dexterity

The dexterity D is evaluated using the Yoshikawa
manipulability index w [21]. This index is propor-
tional to the manipulability ellipsoid volume and so,



represents the distance of the pose from a kinematic
singularity. This distance is maximized by minimizing
D defined for each pose :

w =/ Det(JJ?) (10)

w : manipulability index
J . Jacobian Matrix

Objective Function

All evaluated criteria are minimized since they are
positive penalty functions. A positive (and bounded
by 1) objective function F' (called fitness) is designed
from these criteria and used by the EA to evaluate
candidate solutions. F' is defined as:

F = e—(k1*L+k2*A+k3*I+k4*O+k5*D) (12)

k; : Weight of i*" criterion (let free)

The optimization goal is then to find a set of de-
sign parameters (DP) which maximizes the objective
function (F) according to the priorities (k).

3 A Multiple Chromosome -

Evolutionary Algorithm

Genetic Algorithms (GA) are stochastic algorithms
which simulate the evolution of a population. Indi-
viduals are candidate solutions for the optimization
problem and they are encoded into chromosomes to
be manipulated by genetic operators [11]. We started
with the Simple GA introduced by Goldbeg [10], us-
ing the basic operators (Selection, Crossover and Mu-
tation). Many improvements have been brought since
by the Evolutionary Computing community and some
of them were used here [2][16]. Instead of solving
the sub-problem of the inverse kinematics during the
evaluation phase as we proposed in a Two-level GA
[6] (TGA), we search simultaneously for topology and
configurations by using a single genome for both sub-
sets of parameters. This avoid interrupting the global
evolution for the determination of the configurations,
and greatly accelerate the evolution process.

The basic problem in gathering all the genotype
(structure and configurations) on a single binary chro-
mosome is the inefficiency of crossover for long strings
(more than 300 bits for our example). In fact, longer
the chromosome is, less effective the crossover is be-
cause 1t annihilate most of the genes ordering for
changing just one gene value. When the algorithm
tries to reach a task configuration, others are likely to
be discarded whatever their own quality.

To prevent this problem, we propose to distribute
informations over several chromosomes. Each chromo-
some gathers some highly linked informations which
so, are not disturbed by a global crossover. For in-
stance, each configuration has its own chromosome and
is not concerned with what happens to others. Each
chromosome undergoes its own crossover and is inde-
pendent with regard to this operator. Moreover, as
a chromosome is constituted by naturally linked pa-
rameters (as a configuration), each chromosome can
be locally evaluated and a decision can be made by
the genetic operators concerning its manipulations.

In fact, all chromosomes are globally linked via the
topology chromosome, but some of them are more par-
ticularly dedicated to unrelated parts of the objective
function.

The Adaptive Multiple Chromosome Evolutionary
Algorithm (AMEA) takes advantage of this fact and
allows non-disruptive crossover for the topology and
the configurations. Moreover, the AMEA (figure 5) is
much more faster than TGA since it includes only one
evolution loop.
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Figure 5: Adaptive Multiple-Chromosome EA

3.1 Encoding

Encoding is the representation of candidate solutions
(genotype) and is directly manipulated by the EA and
its operators. Binary coding is used for topologies and
real coding for base position and configurations (figure
6). These choices have been made because a modular
topology is better described by integer values (non-
valued parameters) and real values avoid the loss of
precision in configurations involved by discretization.
Each segment (figure 3) of the manipulator is coded
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Figure 6: Heterogeneous Genome

with 8 bits. The first two bits represent the relative
orientation of joint axis (Id, Rx, Ry, Rz) and the next
two bits define the joint type. The four remaining bits
encode the link length (16 lengths from 0 to 1). The
whole manipulator encoding is obtained by the con-
catenation of the binary representation of segments.
This gives a n-octet long binary string for a n-DOF
manipulator. The base and joint configurations are
encoded with real valued genes and put in separate
chromosomes. Real values are adimensioned (from 0
to 1) and coded with 6 digit floats to allow 10° possible
values.

The search space for the topology includes 256" in-
dividuals and there are 256™ % 107*?¢+18 golutions for
a n-dof manipulator and nt goal frames.

This kind of mixed genetic material allows to keep
the advantages brought by the binary representation,
according to the fundamental theory of GA [6][11].
But also, it improves the precision for joint values and
so for end effector configurations. Moreover, the real
encoding is more effective than the binary for neces-
sary small modifications in the later stages of optimiza-
tion when the perfect configurations are very close.

3.2 Adaptive Genetic Operators

Genetic operators are successively applied to the chro-
mosomes (representing kinematic structure or config-
urations) in an iterative way to simulate the evolution
process of successive generations. Fundamental oper-
ators are Selection, Crossover and Mutation.

The selection picks out individuals in the popu-
lation according to their fitness, to form the mating
pool which will be used to breed the new generation.
The remainder stochastic sampling with replacement
based on the roulette wheel selection is used [10]. Se-

lection pressure is relevant to the philosophy of the
evolution. If a quick convergence, toward a single so-
lution 1s needed we insist on exploitation, but if an
extensive search, with numerous different solutions is
necessary we advantage exploration. Increasing or de-
creasing the selection pressure is made by smoothing or
emphasizing the fitness discrepancies. We decided for
an adaptive selection pressure which will act upon the
Objective Function via a hardness coefficient A which
is controlled by the fitness standard deviation ;. If
the solutions are widely scattered on the fitness land-
scape (large o¢), we need to select more thoroughly
and so, a hard selection pressure is required (large A).
In the other way, if most solutions are tightly clus-
tered near a mean value, we let other individuals a
chance to survive and so, the fitness function is soft-
ened by decreasing A. Thus, this adaptive scaling will
help the selection operator to keep a diversified pop-
ulation. Meanwhile, this strategy has to be modified
to force convergence toward high fitnesses. So, we use
also the mean fitness to harden the fitness function for
high mean fitness. Thus, A ranges from zero to the
reference hardness A, .

A=\ (f+0¢) and fm = f> (13)

Ao : Reference selection pressure

: Population mean fitness

fm . Modified individual fitness

density
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Figure 7: Selection Adaptation to Diversity

The crossover (or crossing-over) allows the building
blocks (highly fit pieces of genetic code), useful but dis-
patched among the population, to be gathered inside the
same individual by the effect of chromosomal brewing (sex-
ual reproduction). A uniform crossover is chosen instead
of the simple one point crossover for binary strings because
of the decreasing crossover efficiency for long chromosomes.
For real encoding, the uniform crossover consist in exchang-
ing genes (floats) between both parents chromosomes. To
prevent the configuration crossover to be too disruptive,
we modify the permutation probability (initially 0.5) ac-
cording to the local fitness of each configurations to disad-
vantage the highly fitted parameter migration.

Fui = L2 (14)
0.5

afi = = ~ 15

pasi = % o (15)



fai : Relative local fitness, robot a config 1
fa : Mean local fitness, robot alpha
Pagi : Permutation probability for i'" config

Mutation allows new building blocks to appear in pop-
ulation and lost ones to reappear. This mutation operator
will randomly change a bit value in the population chro-
mosomes for binary strings. Adaptation is made by tuning
the mutation probability according to each fitness. For real
valued chromosomes, a normally distributed variable z is
added to the float number. The real mutation also adapt
itself to the evolution by modifying the standard deviation
o according to the fitness of each individual.

e Binary Mutation

pmo
m= —— 16
p 7 (16)
o Real Mutation
oi =22 2= N(0,0%) (17)
fi
pm,  : Minimum binary mutation probability
oo : Minimum mutation standard deviation
o : Local mutation standard deviation
fi : Local Fitness value
z : Normal random variable

3.3 Evolution Parameters

Once genetic operators are designed, we have to tune the
reference evolution parameters before the optimization.
Evolution parameters are:

e ), : Reference selection pressure

® pc, : Reference crossover probability
e pm, : Reference mutation probability
e S : Size of population

e 7' : Maximum number of generations

Without any theorical certitudes about genetic operator
influence, their occurrence probabilities have to be adjusted
for each optimization problem. For an adaptive algorithm,
where these influences will be modified during the process
we need to set reference values to prevent the adaptation
to become instable and meaningless. All adapting param-
eters are based upon references values which have been
tuned and used for the non-adaptive case.

Ao=1, pco=0.6,0,=0.001, pmn,=0.001, S=20, T=50

4 Simulation Results

We used three different algorithms for the same 3D task
specifications. These algorithms are the Two-level GA
(TGA) , the Multi-Chromosome Evolutionary Algorithm
(MEA) and the Adaptive Multi-Chromosome Evolution-
ary Algorithm (AMEA).

Area TGA MEA AMEA
Coding all binary | Binary/Float | Binary/Float
Evolution | Separate | Simultaneous | Simultaneous
Operators Static Static Adaptive

For the manipulator evolution example, the global task
area is represented by a tetrahedron (figure2). Four goals
have been defined on its vertices and six obstacles on the
middle of its edges. The manipulator evolves to reach these
goals, while optimizing all performance criteria and avoid-
ing obstacles. All criteria weight are set to 1 and the se-
curity distance is set to 0.1 meter. Evolution parameters
are those described in the previous section and the evolved
topologies includes until 8 degrees of freedom, allowing re-
dundant manipulators. The total search space includes
more than 1.8 ¥ 10°*° solutions (n=8, nt=4) and we ex-
plore only 20 % 50 = 1000 solutions during the evolution.
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Figure 8: Best fitness comparison

Figure 8 shows the best individual evolution with the
TGA, the MEA and the AMEA. The results have to be
scaled because of the difference of time processing between
the TGA (6 hours) and the new algorithms (3 minutes) to
perform the 20*50 evolution (SUN/SPARCS5). We clearly
see that not only the multi-chromosome algorithms are 120
times quicker, but also that the optimized best solution is
far better.
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Figure 9: Mean fitness comparison

Figure 9 shows the mean fitness evolution for TGA,

MEA and AMEA. The differences here are more striking



as we see that the population is much more improved with
new EAs. This shows that rhe adaptive algorithm contin-
ues the improvement of the whole population as long as the
best fitness is not reached for all. In fact, the TGA and
MEA will always keep a constant gap between best and
mean fitness because of the constant mutation which per-
turbate the population while the AMEA will decreases the
mutation noise with increasing fitness. This is similar to
the Simulated Annealing temperature which decreases with
time, allowing less and less variations and finally drives all
individuals toward a single solution.

5 Conclusion

The adaptive EA we presented is an adaptation of a pre-
vious algorithm (TGA) which includes a representation
based upon the particularity of the 3D modular kinematics
utilized. The Multi-Objective optimization is performed in
quite a short time with regard to the total search space and
the complex links which exist between the design parame-
ters and the objective function.

We used none database or robotic design experience to
give rise to solutions from random seed. Evolved topolo-
gies showed rather good performance criteria as we asked
to the genetic optimization and allowed to access to sev-
eral solutions which represent some making sense options
for this kind of design. The method is very flexible and
adaptable as we can chose through the fitness function any
criteria to optimize whatever its form and relations with
the encoded solutions. It is important to notice that the
whole manipulator and its configurations have been opti-
mized in parallel. This guarantee a global optimization of
both structure and behavior (configurations). For now, the
behavior is reduced to joint static values, but it can quickly
evolve to kinematic or dynamic laws which could be eval-
uated through a simulation process for complex tasks

Designing mechanisms for more complex robots (paral-
lel manipulators, walking robots) demand some important
adaptation for all the parts of an EA, specially with repre-
sentation and might need to make some hybrid algorithms,
using some existing technics in Al. Eventually, the lack of
optimality this method involves might be compensated by
hybridization with efficient classical optimization technics
or even human interaction.
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