
Proc. of the IEEE/RSJ Int. Conf. on IntelligentRobots and Systems,Grenoble, France, September 8-12, 1997Evolutionary Algorithms in Kinematic Design of Robotic SystemsO. Chocron and P. BidaudLaboratoire de Robotique de ParisCNRS-UPMC-UVSQ10-12 Avenue de l'Europe, 78140 V�elizy, France.E-mail: chocron,bidaud@robot.uvsq.frAbstractThis paper proposes an Adaptative Multi-ChromosomeEvolutionary Algorithm (AMEA) to perform taskbased design of modular robotic systems. The kine-matic design is optimized by the AMEA which usesboth binary and real encoding (for kinematic and con-�guration parameters). In the problem considered forillustration, the robotic system consists in a mobilebase and a manipulator arm which may be built withserially assembled link and joint modules. The manip-ulator has to reach a prede�ned set of goal frames in a3D cluttered environment. Its design is evaluated withgeometric and kinematic performance measures. Opti-mization results for a 3D task are given and comparedwith a Simple Genetic Algorithm. They clearly showthe superiority of the Multi-Chromosome representa-tion and adaptive operators in term of computing timeand criteria optimization performance.1 IntroductionConsidering the task diversity in modern robotics,new solutions are required to answer the complex is-sue of adaptation. Modular Robotic Systems (MRS)have been proposed for adapting robot morphologiesto given tasks [7][8][18][20]. MRS are minimal sys-tems, able by recombining their modules to adopt atask based quali�ed kinematic structure. Thus, taskdiversity is answered by combination diversity.The use of both deterministic and stochastic meth-ods have been investigated for task based optimizationof modular systems. Possible combinatorial explosionsand the complexity in functions which relate the sys-tem state and task speci�cations (highly non-linear,discontinuous and with discrete variables in modularrobotics) introduce great di�culties in the use of de-terministic methods [1]. It is well known for instancethat methods as hill-climbing can be easily trapped inlocal extrema. One can also exploit heuristics whichconsider each module characteristics to con�gure thesystem structure [5][9]. As a consequence, for a givenproblem the rule-based optimization always yield tothe same solution.

Methodologies based on stochastic optimization al-gorithms search for best solutions with partially ran-dom operators. When considering multi-objective op-timization, progressive or global methods are pro-posed. Progressive methods try to match iterativelythe di�erent successive constraints, to reach sequen-tially optimized solutions [12][17]. Unfortunately,strongly coupled constraints imply numerous back-trackings, which would slow down the search process.Global methods consist in trying to match simulta-neously all constraints while optimizing some criteria[3][4]. This approach is much more complex than theprevious one, but it constitutes the most promisingway because of the parallel search it involves.Our work belongs to this last category and makesuse of Evolutionary Algorithms to generate optimalassemblies from an available set of components withdi�erent basic features.
Figure 1: Modular manipulatorsPrevious works based on this approach yield to in-teresting results but under restrictions on the problemsolved. Some of them suppose a particular geome-try (planar or with three intersecting axes), others a�xed kinematic feature (joint type or general mobili-ties) or no constraints in the optimization (no obstacleavoidance) and generally no redundancies. This paperproposes a new Evolutionary Algorithm to address theproblem of kinematic design for serial modular manip-ulators from task speci�cations in general and underenvironmental and technological constraints.1



The problem consists in �nding the �ttest modularrobotic system constructed from a serial assembly of amobile base, links and joints as well as a set of joint pa-rameters and a base location. Several joint types andmobility for the system (possibly redundant) are con-sidered. The task is speci�ed as a set of goals which are3D end-e�ector con�gurations. The workspace is en-cumbered by obstacles simply represented by spheres(�gure 2). The topology is evolved to perform the taskin the best conditions which are evaluated through amulti-objective function relying on di�erent functionalattributes of the system.
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erFigure 2: Task speci�cationIn the following sections, we �rst introduce anadapted modular kinematics as well as the appliedevaluation criteria. Then, we present a Multi-Chromosome Adaptive Genetic Algorithm and its ge-netic operators. Results are given for a 3D task andcompared to those obtained by other GAs.2 Problem Statement2.1 Modular KinematicsThe modules and their assembly pattern are the designparameters for the optimization problem. The manip-ulator is constituted by two types of modules: jointsand links. Two 1-DOF joint types (revolute (R) andprismatic (P)) and one 0-DOF joint (�xed (F)) areavailable, as well as up to sixteen link lengths (from0 to 1 meter). As we consider only serial manipula-tors, assembly is made with successive segments. Eachsegment will be constituted by a joint followed by alink. Figure 3 shows the di�erent available modulesand their assembly possibilities. The basic transfor-mation from a link (i) to its neighbour (i+ 1) is givenby an homogeneous transformation:

Bi+1i = R90x;y;zR�zT �x T 
x (1)where Rba : Rotation along a axis of angle bT ba : Translation along a axis o�set b� : Rotation angle if revolute joint� : Translation o�set if prismatic joint
 : Link lengthThe structure equation of the mechanism may becomputed as follows:Beg = Bbg i=nYi=1Bi+1i (2)where Bbg is the transformation from a �xed frame attachedto the ground and the mobile base frame, Beg specifying acon�guration to reach by the end-e�ector.Design parameters (DP) for a segment are:1. Joint orientation (Id,Rx,Ry,Rz)2. Joint type (R, P or F)3. Link length (0; 115 ; ..; 1415 ; 1 )
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Figure 3: Module assemblyEvaluation is a key point since it drives the wholeoptimization process through �tness values it gives tocandidate solutions. Hence, it requires a particular at-tention. Evaluation for optimization algorithms needsan Objective Function (F) to maximize. The F value(called �tness in EA) represents the solution worthi-ness and so, must be relevant to the system perfor-mances. Moreover, it has to be computable for each2



solution the encoding is able to generate. The eval-uation computing time is a critical point since it isperformed for each individual over all generations.In this problem, for each generated topology, the in-verse kinematic problem for the whole structure (armand base) need to be solved and this for each sub-goal to satisfy. This basic problem in robotics hasbeen widely studied by many authors. E�cient al-gorithms for the inverse kinematic problem are todayavailable for manipulators without any restriction ontheir geometry but only for non-redundant manipula-tors [13][15]. Consequently, it has been decided to in-clude the joint variables and the base location into thegenetic material of each manipulator and then to solvethe inverse kinematic problem simultaneously along-side the manipulator topology.2.2 Evaluation CriteriaSix criteria have been selected here to qualify theevolving manipulators. All constraints and criteriaare translated into penalty functions to be minimized.Criteria are computed for each subtask and the globalmean value is used for the �nal evaluation. The di�er-ent criteria are de�ned below:� ReachabilityThe reachability is checked for all goals and apenalty R is set if the constraint is violated.R = (md �Pni=1 li)md (3)li : Length of ith link (doubled if prismatic)md : Maximum distance of task positions from basen : Maximum number of DOFnt : Number of goals� Linear and Angular distancesLinear (L) and Angular (A) distances are used toassess the end e�ector con�guration, according to theconsidered frame. The Euclidean distance is usedfor L and A, using the Roll Pitch Yaw convention(RPY)[19].A and L are respectively:L = kXd�XekkXdk (4)Xd : Desired (goal) position vectorXe : End e�ector position vectorA = kRd� RekkRdk (5)

Rd : Desired angle vectorRe : End e�ector angle vectorObstacle ProximityFor obstacle avoidance, we check whether each linkis interacting or not with each obstacle by using a se-curity ellipsoid (SE, de�ned by the link and sd). If theobstacle is inside the security ellipsoid (�gure 4), theyare interacting and we add a penalty amount O whichis proportional to the real distance (from 0 to 1).
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Starting Point Ending PointFigure 4: Obstacle avoidance ellipsoidif Obstacle =2 SEi ) cpij = 0 (6)if Obstacle 2 SEi ) cpij = (sdi � dij)sdi (7)O = nXi=1 noXj=1 cpij (8)SEij : Security ellipsoid for ith linkdij : Distance of ith link from jth obstaclecpij : Collision penalty for ith link and jth obstaclesd : Security distanceno : Number of obstacles� Involved modulesThe involved module criterion I includes total linklengths and number of joints. we use I in order to min-imize total mass and structure complexity with regardto the end e�ector con�guration. I is de�ned as:I = Pni=1 li + rti20ed (9)rti : Set to 1 if ith joint is R, 0 if Pli : Length of ith link (x2 if P)ed : End e�ector distance from base frameDexterityThe dexterity D is evaluated using the Yoshikawamanipulability index w [21]. This index is propor-tional to the manipulability ellipsoid volume and so,3



represents the distance of the pose from a kinematicsingularity. This distance is maximized by minimizingD de�ned for each pose :w =pDet(JJ t) (10)D = 11 +w (11)w : manipulability indexJ : Jacobian MatrixObjective FunctionAll evaluated criteria are minimized since they arepositive penalty functions. A positive (and boundedby 1) objective function F (called �tness) is designedfrom these criteria and used by the EA to evaluatecandidate solutions. F is de�ned as:F = e�(k1�L+k2�A+k3�I+k4�O+k5�D) (12)ki : Weight of ith criterion (let free)The optimization goal is then to �nd a set of de-sign parameters (DP) which maximizes the objectivefunction (F) according to the priorities (ki).3 A Multiple Chromosome -Evolutionary AlgorithmGenetic Algorithms (GA) are stochastic algorithmswhich simulate the evolution of a population. Indi-viduals are candidate solutions for the optimizationproblem and they are encoded into chromosomes tobe manipulated by genetic operators [11]. We startedwith the Simple GA introduced by Goldbeg [10], us-ing the basic operators (Selection, Crossover and Mu-tation). Many improvements have been brought sinceby the Evolutionary Computing community and someof them were used here [2][16]. Instead of solvingthe sub-problem of the inverse kinematics during theevaluation phase as we proposed in a Two-level GA[6] (TGA), we search simultaneously for topology andcon�gurations by using a single genome for both sub-sets of parameters. This avoid interrupting the globalevolution for the determination of the con�gurations,and greatly accelerate the evolution process.The basic problem in gathering all the genotype(structure and con�gurations) on a single binary chro-mosome is the ine�ciency of crossover for long strings(more than 300 bits for our example). In fact, longerthe chromosome is, less e�ective the crossover is be-cause it annihilate most of the genes ordering forchanging just one gene value. When the algorithmtries to reach a task con�guration, others are likely tobe discarded whatever their own quality.

To prevent this problem, we propose to distributeinformations over several chromosomes. Each chromo-some gathers some highly linked informations whichso, are not disturbed by a global crossover. For in-stance, each con�guration has its own chromosome andis not concerned with what happens to others. Eachchromosome undergoes its own crossover and is inde-pendent with regard to this operator. Moreover, asa chromosome is constituted by naturally linked pa-rameters (as a con�guration), each chromosome canbe locally evaluated and a decision can be made bythe genetic operators concerning its manipulations.In fact, all chromosomes are globally linked via thetopology chromosome, but some of them are more par-ticularly dedicated to unrelated parts of the objectivefunction.The Adaptive Multiple Chromosome EvolutionaryAlgorithm (AMEA) takes advantage of this fact andallows non-disruptive crossover for the topology andthe con�gurations. Moreover, the AMEA (�gure 5) ismuch more faster than TGA since it includes only oneevolution loop.
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oats to allow 106 possiblevalues.The search space for the topology includes 256n in-dividuals and there are 256n � 106n�nt+18 solutions fora n-dof manipulator and nt goal frames.This kind of mixed genetic material allows to keepthe advantages brought by the binary representation,according to the fundamental theory of GA [6][11].But also, it improves the precision for joint values andso for end e�ector con�gurations. Moreover, the realencoding is more e�ective than the binary for neces-sary smallmodi�cations in the later stages of optimiza-tion when the perfect con�gurations are very close.3.2 Adaptive Genetic OperatorsGenetic operators are successively applied to the chro-mosomes (representing kinematic structure or con�g-urations) in an iterative way to simulate the evolutionprocess of successive generations. Fundamental oper-ators are Selection, Crossover and Mutation.The selection picks out individuals in the popu-lation according to their �tness, to form the matingpool which will be used to breed the new generation.The remainder stochastic sampling with replacementbased on the roulette wheel selection is used [10]. Se-

lection pressure is relevant to the philosophy of theevolution. If a quick convergence, toward a single so-lution is needed we insist on exploitation, but if anextensive search, with numerous di�erent solutions isnecessary we advantage exploration. Increasing or de-creasing the selection pressure is made by smoothing oremphasizing the �tness discrepancies. We decided foran adaptive selection pressure which will act upon theObjective Function via a hardness coe�cient � whichis controlled by the �tness standard deviation �f . Ifthe solutions are widely scattered on the �tness land-scape (large �f ), we need to select more thoroughlyand so, a hard selection pressure is required (large �).In the other way, if most solutions are tightly clus-tered near a mean value, we let other individuals achance to survive and so, the �tness function is soft-ened by decreasing �. Thus, this adaptive scaling willhelp the selection operator to keep a diversi�ed pop-ulation. Meanwhile, this strategy has to be modi�edto force convergence toward high �tnesses. So, we usealso the mean �tness to harden the �tness function forhigh mean �tness. Thus, � ranges from zero to thereference hardness �o.� = �o( ~f + �f ) and fm = f� (13)�o : Reference selection pressure~f : Population mean �tnessfm : Modi�ed individual �tness
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f̂�i : Relative local �tness, robot � con�g i~f� : Mean local �tness, robot alphap��i : Permutation probability for ith con�gMutation allows new building blocks to appear in pop-ulation and lost ones to reappear. This mutation operatorwill randomly change a bit value in the population chro-mosomes for binary strings. Adaptation is made by tuningthe mutation probability according to each �tness. For realvalued chromosomes, a normally distributed variable z isadded to the 
oat number. The real mutation also adaptitself to the evolution by modifying the standard deviation� according to the �tness of each individual.� Binary Mutation pm = pmoF (16)� Real Mutation �i = �ofi , z = N(0; �2) (17)pmo : Minimum binary mutation probability�o : Minimum mutation standard deviation�i : Local mutation standard deviationfi : Local Fitness valuez : Normal random variable3.3 Evolution ParametersOnce genetic operators are designed, we have to tune thereference evolution parameters before the optimization.Evolution parameters are:� �o : Reference selection pressure� pco : Reference crossover probability� pmo : Reference mutation probability� S : Size of population� T : Maximum number of generationsWithout any theorical certitudes about genetic operatorin
uence, their occurrence probabilities have to be adjustedfor each optimization problem. For an adaptive algorithm,where these in
uences will be modi�ed during the processwe need to set reference values to prevent the adaptationto become instable and meaningless. All adapting param-eters are based upon references values which have beentuned and used for the non-adaptive case.�o=1, pco=0.6,�o=0.001, pmo=0.001, S=20, T=504 Simulation ResultsWe used three di�erent algorithms for the same 3D taskspeci�cations. These algorithms are the Two-level GA(TGA) , the Multi-Chromosome Evolutionary Algorithm(MEA) and the Adaptive Multi-Chromosome Evolution-ary Algorithm (AMEA).Area TGA MEA AMEACoding all binary Binary/Float Binary/FloatEvolution Separate Simultaneous SimultaneousOperators Static Static Adaptive

For the manipulator evolution example, the global taskarea is represented by a tetrahedron (�gure2). Four goalshave been de�ned on its vertices and six obstacles on themiddle of its edges. The manipulator evolves to reach thesegoals, while optimizing all performance criteria and avoid-ing obstacles. All criteria weight are set to 1 and the se-curity distance is set to 0.1 meter. Evolution parametersare those described in the previous section and the evolvedtopologies includes until 8 degrees of freedom, allowing re-dundant manipulators. The total search space includesmore than 1:8 � 10229 solutions (n=8, nt=4) and we ex-plore only 20 � 50 = 1000 solutions during the evolution.
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as we see that the population is much more improved withnew EAs. This shows that rhe adaptive algorithm contin-ues the improvement of the whole population as long as thebest �tness is not reached for all. In fact, the TGA andMEA will always keep a constant gap between best andmean �tness because of the constant mutation which per-turbate the population while the AMEA will decreases themutation noise with increasing �tness. This is similar tothe Simulated Annealing temperature which decreases withtime, allowing less and less variations and �nally drives allindividuals toward a single solution.5 ConclusionThe adaptive EA we presented is an adaptation of a pre-vious algorithm (TGA) which includes a representationbased upon the particularity of the 3D modular kinematicsutilized. The Multi-Objective optimization is performed inquite a short time with regard to the total search space andthe complex links which exist between the design parame-ters and the objective function.We used none database or robotic design experience togive rise to solutions from random seed. Evolved topolo-gies showed rather good performance criteria as we askedto the genetic optimization and allowed to access to sev-eral solutions which represent some making sense optionsfor this kind of design. The method is very 
exible andadaptable as we can chose through the �tness function anycriteria to optimize whatever its form and relations withthe encoded solutions. It is important to notice that thewhole manipulator and its con�gurations have been opti-mized in parallel. This guarantee a global optimization ofboth structure and behavior (con�gurations). For now, thebehavior is reduced to joint static values, but it can quicklyevolve to kinematic or dynamic laws which could be eval-uated through a simulation process for complex tasksDesigning mechanisms for more complex robots (paral-lel manipulators, walking robots) demand some importantadaptation for all the parts of an EA, specially with repre-sentation and might need to make some hybrid algorithms,using some existing technics in AI. Eventually, the lack ofoptimality this method involves might be compensated byhybridization with e�cient classical optimization technicsor even human interaction.References[1] J.S. Arora, O.A. Elwakeil and A.I Chahande, \Globaloptimization methods foe engineering applications : areview" Journal of Structural Optimization, 1995[2] T. Back, Evolutionay Algorithms in Theory and Prac-tice 1996[3] P. Chedmail and E. Ramstein, \Robot MechanismSynthesis and Genetic Algorithms" Proc. IEEE ofICRA,1996[4] I. M. Chen and J. W. Burdick, \Determining Task Op-timal Modular Robot Assembly Con�gurations" to bepublished,1996[5] M. Chew, S. N. T. Shen, G. F. Issa, \Kinematic Struc-tural Synthesis of Mechanism Using Knowledge-Based
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