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ABSTRACT

This article describes two ways of including biomimetic
mechanisms of self-organization and adaptation in the con-
trol architecture of animats. The first one relies on a human
designer and the second one on artificial selection. It is
shown that such mechanisms contribute to the survival ca-
pacities of animats. In particular, they make it possible to
walk, to avoid obstacles, to reach goals, to build cognitive
maps, and to plan detours. Conditions for future develop-
ments are also discussed.

1 INTRODUCTION

In various application areas there is a growing need for au-
tonomous artifacts that should be able to adapt their behav-
ior to changing circumstances. Given some overall mission
in an unpredictable environment - such as seeking some
specific information within the Internet or performing a
specific task on the surface of Mars - one wishes such
artifacts to be able to cope with unforeseen and possibly
hostile circumstances in the absence of any human inter-
vention, and to take any initiative that makes it possible to
fulfill their objective.
Although animals are living examples of such fully au-
tonomous, self-organizing and adaptive agents, it turns out
that artifacts with equivalent properties yet remain to be
synthesized. However, some progress has been recently
made in this respect by people who attempt to devise so-
called animats, i.e., artificial animals or real robots whose
structure and functionalities are as much inspired from cur-
rent biological knowledge as possible, in the hope that
these animats will exhibit at least some of the survival
capacities of real animals (Cliff et al., 1994; Maes et al.,
1996; Meyer et al., 1993; Meyer and Wilson, 1991).
An animat is usually equipped with sensors, with actua-
tors, and with a behavioral control architecture that relates
its perceptions to its actions and allows it to survive in its
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Figure 1: The interactions betwen an animat and its environment. The
behavior of this animat is said to be adaptive because a corrective action
has been taken at point B so as to avoid crossing at point A the viability

zone associated with the two essential variables V1 and V2.

environment. In this context, survival depends upon some
essential variables that must be monitored and maintained
within a given viability zone, an ability that can be en-
hanced, should the animat be capable of learning which
actions elicit a positive or negative reward from the envi-
ronment (Figure 1).
This paper will describe two ways of including biomimetic
mechanisms in the control architectures of animats with
the perspective of providing these animats with useful self-
organization and adaptation properties. The first one relies
upon a human designer who purposively translates biolog-
ical structures or processes into programming instructions
or hardware implementations. It will be exemplified herein
through the description of a navigation system that calls
upon a model of the hippocampus as a cognitive map in



rats. The second one relies on evolutionary design and on
the likelihood that, under similar constraints, artificial and
natural selection will invent similar mechanisms. It will
be exemplified herein through the automatic design of the
control architecture of a walking insect.

2 HUMAN DESIGN

The ability to navigate - i.e., to reach as directly as possible
any goal place from any start place, while avoiding passing
through unnecessary or dangerous places - is probably the
most basic requisite for an animat’s survival. Indeed, with-
out such an ability, the animat wouldn’t be able to reach
energy sources, to avoid bumping into damaging obstacles,
or to escape from dangerous hazards.
A navigation strategy that seems to be currently used by
animals like rodents is the so-called topological naviga-
tion (Trullier et al., 1997; Trullier and Meyer, 1997a) that
allows trajectory planning, i.e., the running of internal sim-
ulations that, being decoupled from overt behavior, makes
it possible to avoid the hazards of dangerous encounters. In
particular, such a strategy allows an animal to plan a detour
in the presence of a new obstacle (Figure 2).
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Figure 2: Within the framework of topological navigation, an animal
is able to merge its representations of routes into a topological graph.
According to such a representation, it knows that a specific move will
lead from place S1 to place A, for example. Thus, starting from place
S1, it can plan to reach goal-place G1 according to the shortest route.
However, if it encounters an unforeseen obstacle (in grey) along its path,
it can go back to place A, take the sub-route between places A and B, and
take the sub-route from place B to the goal G1. The resulting path will the
concatenation of three sub-sequences, derived from three different routes.

In Trullier and Meyer (1997b), a model based upon the
morphology and physiology of the hippocampus of the rat
- a structure that is known to be involved in navigation
tasks in this animal - is used to implement a topological
navigation strategy. This model calls upon place cells of
the CA3 and CA1 regions of the hippocampus (O’Keefe
and Dostrovsky, 1971) - that selectively fire when the rat is
in specific and restricted regions of its environment (their
place fields) -, upon head-direction cells - that have been
observed in other regions of the brain (Taube et al., 1990)
and whose firing rate depends upon the rat’s orientation
-, and upon goal cells - of which we postulate the exis-
tence downstream of the hippocampus (as in Burgess et
al., 1994) and whose activity would code the direction of

the rat’s current goal.
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Figure 3: Architecture of the model of Trullier and Meyer. Large trian-
gles stand for pyramidal cells, unfilled circles for granule cells, and small
shaded circles for inhibitory interneurons. An activity-dependent afterde-
polarizing current (ADP) is intrinsic to each granule cell. Synapses are
represented as small triangles with weights that are either fixed (black) or
plastic (white). Arrows indicate synapses that are gated by head-direction
cells. mf: mossy fibers; pp: perforant path; rc: recurrent collaterals; 8

goal cells (4 shown) represent North, North-East, East and so on.

The model also takes into account the physiological mech-
anisms detailed in Jensen et al. (1996) and, notably, the
modulation of place cell firing by the overall theta rhythm
- a sinusoidal EEG oscillation, ranging between 4Hz and
10Hz, which occurs during locomotion. Thus, as the rat
travels through a place field, the firing of the correspond-
ing place cell precesses from late to progressively earlier
phases of the theta cycle.
Finally, each neuron in this model is described as a sin-
gle compartment model where the membrane potential V
obeys the following differential equation:

C
dV

dt
�t� �
X

gk�t� � �V �t�� Vk�

where C represents the cell capacitance and k stands for
different currents - i.e., the leak current, the fast afterhyper-
polarization, the theta modulation, the feedback inhibition,
the AMPA and NMDA synaptic inputs, and the afterdepo-
larization. Likewise, gk and Vk stand for the corresponding
conductances and reversal potentials.
According to this model (Figure 3), when the rat moves
around in its environment, it experiences a sequence of
places that is encoded in the hippocampus as a topologi-
cal graph recording that places are neighbors or that their
corresponding place fields overlap. This is made possible
through a biophysically plausible Hebbian learning, which
changes the synaptic weights between place cells during a
first exploratory phase, and builds up the topological graph.
According to such learning, each enhanced synapse repre-
sents the fact that the post-synaptic place cell is situated
next to the pre-synaptic place cell, in the direction coded
by a gating head-direction cell. In other words, thanks to
such a cognitive map (O’Keefe and Nadel, 1978), the rat
knows through which sequence of places it will travel if it
moves in a given direction from a specific place.
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Figure 4: (a) Weight distributions for synapses from place cells to goal
cells. Each labeled large square represents the 10 by 10 environment
shown in (b) and each filled square represents the synaptic weight (pro-
portional to size) from the corresponding place cell to the labeled goal
cell. For instance, the arrow on the top left points to a square that repre-
sents the synaptic weight from place cell (8,8) to the East goal cell. (b)
Trajectories to the memorized goal (G) from different starting positions.
The animat uses the goal representation shown in (a). The fact that tra-
jectories tend to oscillate a little bit near the goal is probably due to the

low level of discretization of the environment.

During a second exploratory phase, the rat occasionally
learns reward sites. Such a learning involves 8 goal cells
that are recruited at each reward site in the environment.
The activity of each goal cell can be tuned to a direction
- arbitrarily labeled North, North-East, East, and so on -
given by a head-direction cell. Consequently, when the rat
encounters a reward, it looks into each of the 8 directions.
The simultaneous activation of the place cell representing
the goal location and of the head-direction cell that speci-
fies a given direction drive all the place cells that represent
locations in the corresponding direction with respect to the
goal. Place cells that fire during such episodes are asso-
ciated through a simple Hebbian learning rule to the goal
cell dedicated to each direction. The result of this learning
process is that the goal cells partition the environment in 8
directional sectors around the goal location. According to
such a partitioning, the rat knows that it is globally “West”
of the goal, for instance (Figure 4a). This, in turn, trig-
gers an internal signal to move to the “East” to reach the
goal. Once the topological representation is acquired and
the goal direction learned, the rat can return to the goal
from any starting position, as shown in Figure 4b.

3 EVOLUTIONARY DESIGN

Because the nervous system of animals has been shaped
by natural selection, not by a human designer, several re-
searchers advocate the use of automatic design procedures
that would bypass human intervention insofar as possible,
and that would adapt the control architecture of an ani-
mat to the specific environment it lives in, and to the spe-
cific survival problem it has to solve. Thus, several re-
search efforts have addressed the simulation of processes
that improve the behavior of individuals in a population
from generation to generation. These efforts involve the
implementation of artificial selection processes that elim-
inate individuals with ill-adapted behaviors and favor the
reproduction of individuals displaying well-adapted be-

haviors. Most often, they involve a classical genetic al-
gorithm or some variant, which operates on chromosomes
that directly encode the control architectures of the various
individuals in the population.
In Kodjabachian and Meyer (1997a,b) an indirect approach
is undertaken, which encodes in a tree-like chromosome
the developmental program of a neural network that con-
trols the locomotion of a six-legged animat. Within such a
framework, each cell in a developing network has a copy of
the chromosome that codes the developmental process, and
each cell reads the chromosome at a different position. Ac-
cording to standard genetic programming practice (Koza,
1992, 1994), the chromosome is represented as a grammar
tree, with ordered branches whose nodes are labeled with
character symbols. These character symbols represent in-
structions for cell development that act on the cell or on
its connections to other cells. During a given step of the
developmental process, a cell executes the instruction ref-
erenced by the symbol it reads and moves its reading head
down in the tree. Depending on what it reads, a cell can
divide and generate a daughter cell in a given direction and
at a given distance, draw connections in a given direction
and at a given distance, or stop developing and become a
mature neuron. Figure 5 illustrates the corresponding pro-
cess.
The developing architectures are afforded the possibility to
draw connections with sensory and motor neurons whose
spatial organization are imposed by the body plan of the
animat. Each neuron is modeled as a leaky-integrator,
characterized by a time constant and a bias that can be set
by specific developmental instructions. According to this
model, the mean membrane potentialmi of a neuron Ni is
governed by the equation:

� �
dmi

dt
�t� � �mi�t� �

X
wi�jxj�t� � Ii�t�

where xj � ��� e��mj�Bj ���� is the neuron’s short-term
average firing frequency, Bj is a uniform random variable
whose mean bj is the neuron’s firing bias, and � is a time
constant associated with the passive properties of the neu-
ron’s membrane. Ii is the input that neuronNi may receive
from a given sensor, and wi�j is the synaptic weight of a
connection from neuron Nj to neuron Ni.
The development starts with six neurons placed as shown
on Figure 6. They all execute the instructions of the same
program that turns them into sub-networks that may be
connected to each other. Figure 7 provides an example of
a developmental program obtained after 700 generations,
when the initial population was made of 200 randomly-
generated programs, and when the fitness of any animat
was given by the distance it covered during a given evalu-
ation time.
Figure 8 illustrates the walking behavior of the correspond-
ing animat.
The same methodology made it possible to evolve the con-
trol architecture of an insect capable, not only of using its
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Figure 5: Developmental encoding scheme used by Kodjabachian and
Meyer. The genotype that specifies an organism’s nervous system is
encoded as a grammar tree whose nodes are specific developmental in-
structions. Within such chromosomes, mutations change an instruction
into another, and crossovers swap branches. Each cell in the developping
network reads the chromosome at a different position. The DIVIDE in-
struction causes a cell to divide and generate a daughter cell in a given
direction and at a given distance - according to the arguments of the in-
struction. Likewise, GROW and DRAW instructions cause a cell to draw
respectively efferent and afferent connections with other cells, in a given
direction, at a given distance, and with a given synaptic weight. END in-
structions cause a cell stop developingand become a mature neuron. Each
neuron is modeled as a leaky-integrator, characterized by a time constant
and a bias that can be set by specific instructions named SETTAU and
SETBIAS. More or less developmental steps are required to generate a

phenotype, depending upon the length of the corresponding genotype.

legs to quickly walk according to a tripod rhythm, but also
of using its antennas to skirt around obstacles and to reach
an odorous goal somewhere in the environment (Figure 9).

Such results demonstrate that quite complex control archi-
tectures can be generated by much simpler developmental
programs, thus tremendously reducing the size of the so-
lution space that the evolutionary process explores. More-
over, it turns out (Kodjabachian and Meyer, 1997a,b) that,
inside the controllers that have been thus evolved, it is pos-
sible to identify numerous mechanisms that are known to
be implemented in real insects, such as reflexes, feedback
circuits, oscillators, central pattern generators, chronome-
ters and rudimentary memories.
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Figure 6: The arrangement of sensors, actuators and initial neurons used
by the developmental program of a six-legged animat. S: angle-sensor
neuron, which detects the angle a given leg makes with the vertical; F:
foot-motor neuron, which lifts a given foot when active; R: return-strike
motor neuron, which propels a given leg forward; P: power-strike motor

neuron, which propels a given leg backwards.
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Figure 7: An evolved developmental program (instruction arguments ex-
cluded) of a six-legged animat. This program is expressed as a parenthe-
sized expression, i.e., in a formalism that is equivalent to the grammar
trees used in Figure 5. I: DIVIDE; G: GROW; D: DRAW; S: SETBIAS;
E: END. SETTAU was not used in this run. Besides the 24 sensory and
motor neurons that have been provided by the experimenter, the neural
network generated by this program contains 168 inter-neurons and 2222

connections after development.

4 DISCUSSION

For a human designer, including biomimetic mechanisms
into the control architecture of an animat is seldom an easy
task. We have argued elsewhere (Meyer, 1997) that this
is due to the shortcomings of current biological knowl-
edge and to the traditional research strategy of biologists,
who usually favor a reductionist, analytical, and top-down
approach, wheras the design of situated animats (Steels
and Brooks, 1995) that characterizes so-called artificial life
preferentially calls upon the synthetic and bottom-up study
of emergent properties (Meyer, 1996). It is to be expected
that such a situation will last until the tenants of traditional
biology and those of artificial life will complement each



Figure 8: The upper part of the figure shows a top view and a side view
of the six legged animat, at a given time and a given distance from start.
The lower part illustrates the walking rhythm of the animat. Dotted lines
indicate periods of protraction (leg off ground and moving forward rela-
tive to the body and ground) for each leg. By convention, these lines refer
to legs in the following vertical order, from top to bottom: Rear Right,
Middle Right, Front Right, Rear Left, Middle Left and Front Left. The
walking rhythm exhibited by this animat is a variety of so-called Wilson’s

rhythms that are known to be exhibited by real insects.

other to the best avail.
As for the evolutionary design of behavioral controllers, if
such an approach is clearly capable of rediscovering some
of the mechanisms that nature has invented to secure adap-
tive behaviors in animals, it remains to be assessed how far
it leads when more cognitive processes than mere stimulus-
response pathways are requested for survival. The inclu-
sion of a developmental process between the genotype and
the phenotype of an animat has obviously improved the
potentialities that are afforded by a direct encoding of the
phenotype into the genotype (Kodjabachian and Meyer,
1996). Likewise, it is to be expected that future devel-
opments that will enhance the biological realism of arti-
ficial evolution - such as taking co-evolutionary processes
into account or calling upon implicit fitnesses - will also
increase the chances of automatically generating some of
the yet unknown mechanisms of natural self-organization
and adaptation in animats.

5 CONCLUSION

It has been demonstrated here that the inclusion of
biomimetic mechanisms within the control architecture of
animats affords non-trivial self-organization and adapta-
tion capacities. In particular, such mechanisms make it
possible to walk, to avoid obstacles, to reach goals, to build
cognitive maps, and to plan detours. Further progress will
be made as new natural mechanisms will be discovered by
biologists, an endeavor that advances in the simulation of
evolutionary processes are likely to facilitate.
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