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Abstract

This paper describes a hierarchy of four navigation strategies � guidance�

place recognition�triggered response� topological navigation and metric navi�

gation� Such a hierarchy can be used to categorize models that are inspired

by current knowledge about the way animals navigate in their environments�

The main mechanisms implemented in each model are described� together

with the basic adaptive capacities that the corresponding strategy a�ords�

Because biomimetic models have seldom been implemented in real robots� it

is premature to compare their merits with those of traditional engineering so�

lutions to the navigation problem� Nevertheless� the methodological options

that such implementations would entail are discussed in the text�

� Introduction

Animals are living proofs that any system� equipped with proper sensors� proper
actuators� and a proper control architecture� can exhibit an adaptive behavior that
allows it to survive in environments that can be quite unpredictable and challeng�
ing	 Such a capacity appears highly desirable in many application areas� notably in
robotics� where there is an urgent need for autonomous artifacts that should be able
to adapt their behavior to changing circumstances	 This need has prompted numer�
ous researchers to devise so�called animats� i	e	� simulated animals or real robots�
whose structure and functionalities are as much inspired from those of animals as
possible� and which exhibit some variety of adaptive behavior ���� �
� �� ���	 Thus�
animats can evolve� develop� learn� memorize� plan and communicate ���� ��� ���	
Like animals� instead of being passive re�exive devices� animats often are active data
processors that seek useful information in their environment� encode it into internal
representations of objects and causal relations� and use these representations for
their own bene�t in �exible and intelligent ways ����	

The ability to navigate � i	e	� to reach as directly as possible any goal location
from any starting point� while avoiding passing through speci�c places � is a basic
requisite for an animat�s survival	 Indeed� without this ability� the animat wouldn�t
be able to reach energy sources� to avoid encouters with damaging obstacles� or to
escape from dangerous hazards	 Numerous engineering solutions to the navigation
problem have been proposed in the literature� which usually resort to internal geo�
metrical representations of the environment ��
� ���	 However� these lead to various
implementation di�culties� due to memory or time requirements� as well as sensory
and motor errors ����	 Since many animals are pro�cient at navigating in more
e�cient and robust ways� it is not surprising that research e�orts have recently
been aimed at incorporating the relevant neuro�biological data into animat naviga�
tion models	 This paper provides a summary of such models and categorizes them
according to four di�erent navigation strategies � which we call guidance� place
recognition�triggered response� topological navigation� and metric navigation � that
will be successively described and discussed	 In this review� we will focus on some
of the more successful approaches that are representative of each navigation strat�
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egy	 A more comprehensive review of these models and strategies� together with a
description of the underlying biological data� is to be found in �
��	

� Guidance

The simplest navigation strategy exhibited by animals is guidance� where animals
either move toward a goal� or toward a beacon indicating the presence of a goal that
can be directly sensed	 A variant of this strategy consists in moving along a trajec�
tory that minimizes the discrepancy between the con�guration of landmarks sensed
in the current place and the �remembered� con�guration of the same landmarks
sensed at the goal place	 Although the guidance strategy eventually entails using
some memorized information � i	e	� that some sensory information is associated
with the goal � it doesn�t require that this information explicitly denotes space	
In other words� the e�cient navigation skills exhibited by some animals� notably
insects� do not necessarily require spatial representations	

This point is clearly demonstrated by the model of Cartwright and Collett ����
which is inspired from the way bees use nearby landmarks to return to an already
known food source	 This ability relies upon the use of a remembered snapshot� that
is� the pattern of activation of their retinas when they were at the food source

bees seem to adjust their �ight path by continuously comparing their retinal image
of the landmark con�guration with their remembered snapshot	 This lessens the
discrepancy between the two �Figure ��	

��������������������������
PUT FIGURE � AROUND HERE
��������������������������

The navigation model of Benhamou et al	 ��� calls upon the same principle but�
instead of relying on sensory discrepancies at the current location� it involves esti�
mates of the �memorized� discrepancies that would be found at nearby locations	
The animat then moves toward the location of least discrepancy	

Likewise� Wilkie and Palfrey �
�� propose a �simple perceptual memory�matching
model�� according to which an animat moves toward or away from each of a set
of landmarks� depending upon the di�erence between the memorized distance from
the goal location to the landmark and the current distance from the animat to the
landmark	

� Place recognition�triggered response

Navigation strategies of animals with sophisticated adaptive skills� notably ro�
dents� entail the use of spatial representations that seem to be encoded in the hip�

pocampus and para�hippocampal formations in the brain ���� and to involve so�called
place cells and head direction cells	 The activity of the former depends on the an�
imal�s current location in relation to the spatial layout of surrounding landmarks�
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irrespective of the direction faced �for a review� see ������ whereas the activity of the
latter depends upon the absolute orientation of the head� regardless of the animal�s
location ���� � �	

Several systems have employed elements bearing� to varying degrees� resemblance
to place cells and head direction cells	 These implement what we call a place
recognition�triggered response navigation strategy
 according to this strategy� an
animat is able to explore its environment and to memorize in various speci�c places�
each characterized by a speci�c landmark con�guration� the direction in which a
given goal is situated	 Later� the animat can use the information provided by sur�
rounding landmarks to recognize the place it is currently situated in and to move in
the memorized direction to the goal	

The model of Burgess� Recce and O�Keefe �
� implements a ��layer feedforward
neural network �Figure �� that largely reproduces the rat hippocampal architecture	
The �rst layer represents the highly processed information the hippocampus receives
as input and consists of sensory neurons that discharge selectively when respective
associated landmarks are visible at a certain distance from the animat	 The next
three layers respectively correspond to entorhinal cortical cells �EC�� to pyramidal
place cells �PC� of hippocampal regions CA� and CA�� and to subicular cells �SC�	
The connectivity of the network is adjusted by competitive learning during a pre�
liminary exploratory phase	 At the end of this process� neurons in the three hidden
layers act as place cells each characterized by a place �eld � i	e	� the region of space
in which the animat is situated when the cell is active	 Note that EC and SC cells
are not considered as place cells in the classical sense	 We will thus talk of their
activity �elds instead of their place �elds	

The neural network also models experimental data from this same group showing
a relation between the timing of CA� neuronal discharges relative to the phase of the
theta rhythm � a sinusoidal electro�encephalographic oscillation� ranging between

Hz and ��Hz� that occurs essentially when locomotor behaviors are performed �
and the position of the rat within the place �eld	 Thus each model place cell tends
to �re at a late phase with respect to the theta cycle as the rat is entering the
corresponding place �eld� at an intermediate phase as the rat is running through
the �eld� and at an early phase as the rat is leaving the �eld	

After the spatial representation has been built up by the network during a �rst
phase of exploration� it turns out that� when the animat moves in its environment�
each place cell is selectively activated� depending upon the position and orientation
of the animat relative to the landmarks	 The ensemble pattern of activity uniquely
characterizes the place the animat is currently situated and has been proposed to
constitute a cognitive map after Tolman ����	 See Poucet ���� for a discussion of this
concept	

During a second phase of exploration� the animat learns the locations of reward
sites	 This learning involves  goal cells that are recruited in the last layer of Burgess
et al	�s network at each reward site in the environment �one cluster of  cells for
each goal� as shown in Figure ��	 The activity of each goal cell is tuned to one of  
directions � arbitrarily labeled North� North�East� East� and so on � given by a
corresponding head�direction cell	 When the animat encounters a reward� it rotates
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around slowly	 As it looks into each of the  directions� the SC neurons that �re at
a late phase with respect to the theta rhythm are those with activity �elds that lie
ahead of the animat in the corresponding direction	 For example� when the animat
looks North� the activity �elds of all the SC neurons that �re during the late phase
of the theta cycle lie to the North of the reward site	 Each goal cell in the cluster
makes associative connections to all the active SC neurons in the corresponding
direction	 Subsequently� the activity �eld of each goal cell amounts to the sum of
the activity �elds of the associated SC neurons� and thus lies ahead of the animat
in the associated direction from the goal	 The result of this learning process is that
the goal cells partition the environment in  directional sectors �North� North�East�
East� and so on� around the goal location	 Figure � illustrates the activity �elds
of two goal cells	 Subsequently� when the animat is for example in location A in
Figure �� cells representing �South�� �South�East� and �East� of the goal location
are more active than any of the � other goal cells	 Taken as a whole� the population
of goal cells indicates that the animat is globally �South�East� of the goal	 This�
in turn� triggers a signal to move to the �North�West� to reach the goal	 Figure 

shows that this model can represent multiple goals	 Obstacles can also be taken into
account by considering them as negative goals	

��������������������������
PUT FIGURE � AROUND HERE
��������������������������
��������������������������
PUT FIGURE � AROUND HERE
��������������������������
��������������������������
PUT FIGURE 
 AROUND HERE
��������������������������

The animat of Zipser �
�� also calls upon place cells and goal cells	 Place cells�
activities are tuned to the distance and bearings of given landmarks seen from the
corresponding places	 Goal cells are associated with place cells and code the direction
of the goal from the corresponding places in the form of vectors	 The direction in
which the animat should move in order to reach the goal is given by the weighted
average of the vectors provided by the goal cells� each vector weighted by the activity
level of the associated place cell	

The navigation model of Gaussier and Zrehen ��� doesn�t assume that landmarks
are known and recognized a priori	 Instead� this model is built upon a collection
of neural networks that each perform some active perception�recognition process
through feedback loops	 During a preliminary learning phase� this process associates
the characterization and recognition of a given landmark to the sequence of ocular
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saccades that links the most salient points on the object	 Likewise� when the animat
explores its environment and encounters a reward site� it wanders around this site
and characterizes a number of surrounding places from which the goal is visible
by the sequence of movements �eye� head� or body rotation� required to orient its
perceptual systems toward the landmarks that are observable in each place	 Each
place thus characterized is associated with the corresponding direction to the goal	

Place cells that are used in the model of Blum and Abbott ��� are connected
through modi�able synapses	 During exploration� when the animat reaches a goal�
a reinforcement learning process is triggered	 This enhances the synaptic weights
between cells with overlapping place �elds that the animat has recently traveled
through	 At the end of the exploratory phase� the shortest path taken to the goal
is associated with the highest synaptic weights between corresponding place cells	
Subsequent navigation to the goal entails moving successively through place �elds
that correspond to strongly connected place cells	

In the model of Brown and Sharp ���� place cells and head direction cells converge
onto two clusters of motor output cells whose activity make the animat move a
small step forward and then turn right or left� respectively	 During exploration�
connections between sensory cells and place cells� as well as connections between
head direction cells and motor output cells� are submitted to competitive learning
processes� according to which only one place cell is active when the animat is in a
given place	 This information� together with that provided by the currently active
head direction cell� permits only one cell to become active in each motor output
cluster	 After learning� the most active of the two output cells correctly indicates
the direction to turn in order to approach the goal	

Finally� although the model of Krakauer ���� doesn�t aim at simulating hippocam�
pal place cells� it illustrates how bees might use distances and bearings of given
landmarks to navigate according to a place recognition�triggered response strat�
egy	 In this hierarchical version of the snapshot model of Cartwright and Collett
��� mentioned above� a �rst�level neural network receives �ltered input from distal
landmarks and learns to have only one output channel active at a given time	 This
channel represents the �catchment area� ��� of one speci�c snapshot	 This output
activates a second�level neural network that receives a �ltered input from proxi�
mal landmarks� and is trained through back�propagation to produce a vector signal
directed towards the goal	

Such implementations of place recognition�triggered response strategies endow an
animat with minor adaptive capacities	 In particular� its ability to self�estimate its
position in the environment relies upon information that is often distributed across
numerous place cells in its �cognitive map�� and the accidental destruction of a few
critical place cells would cause a graceful degradation of the animat�s navigation
capacities	 Additionally� implementations like that of Burgess et al	 exhibit the
highly advantageous capacity of latent learning� that is� in the current context� the
capacity to learn a spatial representation even in the absence of any reward ����	
However� the usefulness of place recognition�triggered response strategies is severely
challenged when� along its path to the goal� an animat encounters an obstacle that
was not present at exploration time	 In such circumstances� its only chance to avoid
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getting lost and to eventually reach its goal consists in wandering randomly around
the current place� until it arrives at another already known place� from which it
could resume its trajectory toward the goal �Figure ��	

��������������������������
PUT FIGURE � AROUND HERE
��������������������������

� Topological navigation

A major improvement over the previous navigation strategy calls upon learning
and exploitation of the topological links that characterize the animat�s environment	
During exploration� when the animat moves from one place to another� a link is
drawn between the place cells that are associated with these places and this link is
labeled by the associated move	 Thus� later on� because the animat has encoded
which moves are likely to lead from one place to another� it can plan a trajectory
to the goal� according to a topological navigation or route following strategy	

Such a strategy has been implemented by Schmajuk and Thieme ����	 Their model
of animat navigation relies on a neural network with speci�c dynamical properties
of activity propagation that can represent the topological layout of places and thus
enable path planning	 It is based on two modules� one that encodes the topological
representation and one that selects movements on the basis of predictions generated
by the �rst module �Figure ��	

��������������������������
PUT FIGURE � AROUND HERE
��������������������������

As in many models belonging to this category� place cells are given a priori	
The navigation system�s inputs consist of the identity of the current place and the
identities of the adjacent places �called �views�� that can be seen from the current
place	 As shown in Figure �� the neural network has dedicated neurons for each
place and each view	 As the animat moves from place to place� the synaptic weights
between the place nodes and the view nodes are modi�ed through a generalized
Hebbian learning rule	 The weights are initially set at random values	 During
learning� the activation of the current place node is propagated through the network
and place�prediction nodes are activated according to the synaptic weights	 The
predicted places should correspond to current views	 Thus� the activities of the
place�prediction nodes are compared to the activities of the view nodes	 The synaptic
weights are updated whenever there is a mismatch	 More precisely� the weight
between place node P and view node V is increased whenever the animat is at P
and perceives view V� that is� the corresponding nodes are simultaneously activated	
This weight is decreased if the animat is at P but doesn�t perceive view V �that is� the
corresponding nodes are not simultaneously activated�	 When learning is completed�
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these synaptic weights represent the transformation from places to views and� since
views correspond to adjacent places� synaptic weights are equivalent to topological
links between places	 The activities of the place�prediction nodes then propagate
back through the recurrent connections and drive the place�prediction nodes again	
Their activities now represent the predictions of places that are adjacent to the
current views� that is� places that are two steps away from the current place	 For
instance� if one assumes the animat is in place � of Figure �� nodes p� and p� will
�rst be activated since places � and � are �viewed� from place �	 The activity of
p� will feed back to drive nodes p�� p�� and pG� while p� drives nodes p� and p�
�through strongly weighted synapses�	 Thus� the existence of a path leading to the
goal from p� can be inferred	 However� because these recurrent signals shouldn�t
create interferences with local signals perceived at the current place � so that a
distinction can be kept between multi�step goal �nding and single�step prediction
of adjacent places � Schmajuk and Thieme make the assumption that there are
two rates of change of the transmitted signals� fast and slow� �the dynamics of the
activities of cells are governed by di�erential equations�	 Fast signals are involved
in goal predictions� slow signals in prediction of the following step	 The recurrent
connections involve an intermediate layer of neurons �labeled d in Figure �� that
output the temporal derivatives of their inputs	 Consequently� only fast�changing
signals are e�ciently propagated through the recurrent connections	 Moreover� these
derivatives are small� ensuring that the recurrent activity is always weaker than the
direct activity	 Repeating this looping process continues to reduce the signal� so that
the activity of a place�prediction node is inversely proportional to the topological
distance �number of intermediateplaces� between the current place and the predicted
place	 Only the slow�changing signals are su�ciently large enough to modify the
synaptic weights	 Consequently� prediction of distant places with the weak� fast�
changing signals cannot contradict the stronger next�place prediction signals	 This
ensures that no false detection of mismatch between predictions and views will
occur	 For instance� node pG is activated by the prediction of p� from place �� but
there is no contradiction between pG then being weakly activated and place G not
being seen from place �	 Thus� the network operates as a non�recurrent network
for slow�changing signals � thereby preserving the correct internal representation
of the local environment � and as a recurrent network for fast�changing signals �
thereby allowing the inference of paths to remote places	 Moreover� navigational
computations proceed at a faster pace than real movement	

��������������������������
PUT FIGURE � AROUND HERE
��������������������������

Before initiating a movement� the animat �peeks� into each adjacent place� in
sequence� generating a fast�changing signal from the current place to each adjacent
place	 This signal is sent simultaneously into the �cognitive map� and into the �path

�According to Schmajuk and Thieme� such an assumption is biologically plausible� However�
there is presently no evidence for the co�existence of these two types of signals from neurophysio�
logical data�
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selection module� of Figure �	 It spreads through the network and the recurrent
connections� until it eventually activates the node predicting the goal	 The fast�
changing signal is also transformed into a pulse by the d� node corresponding to
the place peeked into	 This pulse initiates a trace in the corresponding node i� a
leaky integrator	 The connection weights rj are modi�able and store the signals
coming from the goal�prediction node	 In practice� a connection weight rj increases
whenever there is simultaneous activity on the corresponding i node and on the d

node coming from the goal�prediction pG node	 Thus� the connection weights r

correspond to the topological distance between the respective places and the goal	
The Action Selection module of Figure � compares these weights	 The shortest path
between the current place and the goal �in the number of intermediate places� starts
at the place which generated the strongest signal at node pG	 In other words� in
order to reach the goal by the topologically shortest route� the animat should move
into the place corresponding to the strongest connection weight r	 If the prediction
signals are too weak� it means either that the goal is far away� or that the spatial
representation is incomplete� and in this case� the Action Selection module generates
a random movement	

The model of Muller et al	 �� � also encodes topological links in synapses that
connect place cells	 Place cells are given a priori and synaptic weights are learned
during random exploration	 When it moves from one place to another at constant
velocity� the corresponding place cells �re with a temporal delay that is proportional
to the distance between their place �elds	 The closer the place �elds� the shorter the
delay� and the greater the enhancement of the weight of the synapse�s� connecting
these cells	 According to this mechanism� the synaptic weights eventually become
proportional to the inverse of the distance between place �elds� a metric quantity	
Once learning is completed� routes from the current location to a given goal can be
planned by a classical graph search algorithm	 The shortest path corresponds to the
set of connected place cells for which the sum of the synaptic weights is the greatest	

Sch!olkopf and Mallot�s ���� navigation system relies upon a neural network with a
visual input layer� a movement input layer� and a map layer made of interconnected
place cells	 These connections code the topological links between places and the
information �owing through them is gated by modulatory connections drawn from
units in the movement layer� according to presynaptic facilitation mechanisms that
are known to exist in the brain �e	g	 �

��	 The �cognitive map� is built according
to two learning processes occurring during exploration	 The �rst makes a given
place cell �re when a speci�c pattern is provided as visual input	 The second makes
the same place cell �re when the animat �expects� this place to be reachable from
another one by a certain movement decision	 When the map is built� path planning
is performed according to a straightforward procedure
 �i� the visual input pattern
corresponding to the starting place is activated� thus activating the appropriate place
cell" �ii� di�erent possible movements out of this place are simulated by activating
the corresponding movement nodes� letting the activation spread through facilitated
topological links for one time step� and recording where the movement leads to" �iii�
the search is restarted from the new place until the goal is reached	

In Kuipers and Byun�s ���� approach� the functional role of place cells and synapses
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is played by nodes and edges within a graph	 These nodes and edges encode many
di�erent types of information� including metric� which are used by the navigation
system	 In particular� each node is characterized by the local maximum of a so�
called distinctiveness measure� that is by a function of the di�erent sensor readings
of the animat	 These correspond to landmarks	 For instance� a given node on the
animat�s cognitive map can refer to the center of a T�junction in a maze and be
characterized by a function that evaluates the di�erences between readings from �
range sensors spaced at ���� from each other	 When the di�erences are minimized�
the � readings are equal and the animat is at the junction	 Likewise� a given edge
can refer to the fact that the animat moved� under the control of a �move�along�
the�wall�on�right� strategy� from one particular location to another	 An important
feature of this system is that it can generate predictions and plans for exploration
to disambiguate places with similar sensory attributes	 It is however limited by its
locomotion strategy� according to which it can only follow walls� follow corridors or
move toward a speci�c remote landmark	 The latter functionality entails moving
towards the maximumof the corresponding distinctiveness measure � a typical low�
level guidance strategy	 When the �cognitive map� is built� optimal path planning
toward a goal is performed by graph search using the available metric information	

Mataric�s navigation system ���� is similar to the preceding in many respects	
It allows a robot to explore its environment by following its walls and to use the
information provided by its sensors and its e�ectors to characterize di�erent places
it encounters in its environment	 This information is used to build a topological
representation that records the possible moves from place to place	 Thus� while the
robot moves in its environment� it records that a given place A is passed through
while it moves in an eastward direction and while its sonars detect similar nearby
obstacles on its right and on its left � thus suggesting that place A is a corridor
facing east	 Likewise� it records that a right turn leads from this place to another
place B� which is passed through while the robot moves in a south�eastward direction
and only while its right sonars detect a nearby obstacle � thus indicating that the
corridor is adjacent to a wall to the right which is oriented south�easterly	 In other
words� representations of places like A and B in the form of nodes in the robot�s
cognitive map resemble place cells	 Because these nodes also provide information
about the physical length of each place �i	e	 corridor or wall�� the shortest path
leading to any given goal from the current place can be generated by initiating a
spreading activation process throughout the graph of interconnected nodes� in all
directions from the goal	 Insofar as the speed of this process depends upon the
length of the places coded by the nodes through which it travels� the direction from
which goal�initiated activation �rst arrives in the current place node indicates in
which direction to move in order to reach the goal	

Besides the previously mentioned possibilities of graceful degradation a�orded
by eventually decentralized implementations� trajectory planning endows topologi�
cal navigation with additional highly adaptive capacities	 In the same spirit as the
experience�in�the�head metaphor � �� trajectory planning makes it possible to run in�
ternal simulations that� being decoupled from overt behavior� are e�cient and avoid
the hazards of dangerous encounters	 In particular� topological navigation allows
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an animat to plan a detour in the presence of a new obstacle �Figure  �	 However�
it should be noted that such a detour necessarily entails passing through already
known places� and there is no insight ���� 
�� of a trajectory through unexplored
areas	

��������������������������
PUT FIGURE  AROUND HERE
��������������������������

� Metric navigation

Finally� a fourth navigation strategy� called metric navigation or survey mapping�
seems to be used by animals such as dogs� monkeys and men	 This strategy� which
calls upon the representation of metric spatial relations between two or more places
on a plane seems to imply the reading of a ��D map� or a �view from above� of the
whole environment	 Naturally� the actual mechanisms that are involved may have
nothing in common with this interpretation	 Nonetheless� all the computational
models resort to vector manipulations and systems of coordinates	

Metric navigation is implemented in the model of Wan et al	 �
�� that inte�
grates multi�modal information involving signals brought by e�erent copies�� signals
brought by the integration of the angular velocity of the head �sensed by vestibular
organs�� and exteroceptive signals brought by the visual sensory system �Figure ��	
In this model� the correspondence between the animat�s spatial representation and
its position in the environment is coded by the activity of place code units	 This ac�
tivity is determined by the product of seven Gaussian functions� respectively tuned
during exploration to the distances and allocentric bearings of two selected land�
marks� to the egocentric bearing di�erence between two other selected landmarks�
and to the estimated Cartesian coordinates of the animat�s position relative to an
identi�ed reference point	 Should one or more of the terms in this calculation be
missing� they are simply excluded from the product	 Thus� this model accounts
for the experimental evidence for persistence of place cell activity in darkness �����
because information brought by the path integrator mechanism is likely to substi�
tute for the missing visual information	 The local view module ���� used in this
model transforms the �egocentrically sensed� visual information into an allocentric
representation that is stored in the place code module� by simply summing the head
direction and the egocentric bearing	 Conversely� by subtracting the egocentric bear�
ing provided by the visual input from the allocentric bearing registered in the place
code module� the local view module makes it possible to update the estimate of the
head direction	 Thus� the model also accounts for the experimental evidence of re�
setting of head direction representations by �new� visual information �� �	 Likewise�

�Motor subsystems that drive muscles can map an �e�erence copy� or �corollary discharge�
back onto the perceptual system� which can thus distinguish self�induced movements from world�
induced movements �	
��
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the place code module used in this model makes it possible to correct the Cartesian
coordinates of the animat� thus compensating for drift errors that arise from dead�
reckoning	 Finally� these updated Cartesian coordinates can be used by a vector
manipulation module to plan a trajectory to any given goal	

��������������������������
PUT FIGURE � AROUND HERE
��������������������������

Navigation tasks performed by Worden�s formal model �
�� rely on the hypothesis
that the hippocampus stores memories of environmental landmark relations as a
large number of independent fragments	 A typical fragment encodes metric rela�
tionships between a triplet of prominent landmarks in some region� together with
non�geometric properties of these landmarks� such as smells and colors	 According
to this hypothesis� navigation entails forming a local geometric map by translat�
ing and rotating appropriate fragments in an absolute reference frame in order to
�t together the landmarks that are common to di�erent fragments	 This �jigsaw
puzzle� assembly process ends when the map includes both the animat�s current
place and goal place	 Then� the direction to the goal is given by the di�erence in
positions between the current place and the goal within this network of fragments
in the absolute reference frame	

In the model of Prescott ����� space is also represented by fragments� which consti�
tute local coordinate frameworks characterized by groups of three salient landmarks	
In this model� speci�c locations are redundantly coded by their relations to a number
of fragments� as object�units and beta�units within a neural network	 The activa�
tions of the former represent the locations in egocentric references of speci�c goals
and salient landmarks	 The latter each receive inputs from three object�units and
adapt their connection strengths to match their output to the activation of a fourth
object�unit	 In other words� beta�units predict the coordinates of a fourth landmark
with respect to the fragment de�ned by three landmarks	 Thus� the animat can de�
termine the location of any target landmark when it is within sight of any group of
three others	 Again� this entails triggering a spreading activation process	 However�
because landmark positions are encoded redundantly� the system may generate mul�
tiple solutions for a given navigation task� in which case a simple heuristic is used
to select among alternatives	 A computational advantage of this model is that the
spatial representation is robust with regard to noisy sensory inputs� because the
coordinates of the landmarks are not �xed but are dynamically estimated as the
animat moves about and recognizes di�erent landmarks	

Besides the particular adaptive capacities of the run�time error correcting pro�
cesses that are implemented in the models of Wan et al	 and of Prescott� metric
navigation a�ords an animat considerable advantages enhancing the chances for sur�
vival� since it allows metric detours and metric shortcuts through unexplored areas
�Figure ���	 It also makes possible to compute the shortest path leading to any goal
from the current place	

��������������������������
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PUT FIGURE �� AROUND HERE
��������������������������

� Summary and Conclusion

The very diversity of these biomimetic models raises new questions for further
psychobiological research in order to �ll the gaps in our understanding of the strate�
gies and mechanisms that animals actually use to navigate	 In this perspective� it
is worth noting that several models �
�� 
�� ��� ��� which implement di�erent nav�
igation strategies� all aim to explain the same experimental results obtained with
rats in the Morris water maze ����	 It is also clear that� if the physiology of the hip�
pocampus is partially known� its functional role � whether it is specialized in the
storage of spatial representations or whether it acts as a general associative memory
�e	g	 ��
�� � is still under debate� without mentioning the uncertainties about what
information is carried by signals it receives as input and delivers as output	 Likewise�
the question of how the same neural circuitry could store and retrieve spatial infor�
mation concerning multiple environments is troublesome	 In addition� the criteria
for selection of the landmarks a given animal uses to localize or orient itself in a
given environment is seldom perfectly known	 Finally� there are uncertainties on the
criteria for the landmarks to be recognized independently in succession� combined
into a single percept or considered simultaneously as an ordered con�guration of
individuals	

To cope with these shortcomings� each model incorporates a number of ad hoc

mechanisms that ensure its overall navigation functionalities	 Regardless of the
biological plausibility of these mechanisms� it appears that their implementations
in the control architecture of a mobile robot have not yet been attempted� with
the exception of Mataric�s well documented results ���� and of a preliminary report
concerning Wan et al	�s model �
��	 Accordingly� it is premature to speculate about
the relative merits of biomimetic approaches to the robot navigation problem as
compared to traditional engineering solutions	

Be it as it may� it is clear from the above review that the decision to implement
a speci�c model will depend upon various methodological options at each of four
levels


� inputs
 what information is fed into the navigation system	

Basically� three types of inputs are used in the above�mentioned models
 ���
as the values of some environmental variables �e	g	 ����� ��� as the activation
levels of some �neurons� that are responsive to a certain range of values of
some environmental feature �e	g	 �
��� or ��� as activations of some �neurons�
depending on the presence of some environmental feature �e	g	 �����	 For
models that build up a place representation� distances and egocentric bearings
of landmarks are provided either way� often together with landmarks� identities



Trullier and Meyer AICom ��

�e	g	 �
���	 For models that rely on an a priori place representation� each place
is represented by a �neuron� that is assumed to recognize it �e	g	 �����	

� internal representations
 how the control architecture is implemented� what
spatial features are learned� and how the goal location is managed	

In numerous models� the control architecture is implemented as a neural net�
work �e	g	 ����	 Other models implement mathematical relations �e	g	 �
���
or functional modules �e	g	 �
��� that relate their inputs and outputs	 Still
other models call upon symbolic computations �e	g	 �
���	 Concerning learn�
ing� three basic mechanisms are usually used
 �i� storing speci�c parameters
such as distances� bearings or snapshots �e	g	 �����" �ii� recruiting place cells
and �xing their input�output response �e	g	 ����" �iii� updating the synaptic
weights of a neural network� usually through a form of Hebbian learning �e	g	
����	 As for the goal representation� it can be a stored set of values �e	g	 �����
or a �goal cell� �e	g	 �
��� or a set of coordinates �e	g	 �
���� or a speci�c
landmark representation �e	g	 �����	

� outputs
 how planning is performed� what information is sent to the motor
system	

When planning is performed� it entails either a classical graph search �e	g	
�� ��� or a spreading activation process �e	g	 �����	 The output of most models
is a direction of movement� given as a vector �e	g	 ������ as a compass direction
�e	g	 ����� or as a turning angle �e	g	 ����	 Models that use an a priori place
representation usually de�ne the animat�s action as that of reaching a given
place �e	g	 �����	 In some cases� the model�s output is a command to a lower�
level navigation strategy� typically a guidance instruction �e	g	 �����	

� environment
 to which environment are the model�s navigation capacities re�
stricted	

The navigation capacities of some models are restricted to maze�like environ�
ments� in which the con�gurations of places� as well as movements� are highly
constrained �e	g	 �����	 Likewise� some navigation systems only work in small
open��eld environments� where all the landmarks are visible from every lo�
cation �e	g	 �
��	 Other models make navigation in large�scale environments
possible� even when some landmarks are out of the animat�s range of percep�
tion �e	g	 �����	
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Figure captions

Figure �
The snapshot model of Cartwright and Collett	 The model bee is represented

by two concentric circles� the outer circle represents its current retinal image and
the inner one represents its memorized snapshot	 �a� At the food location� the
images of the landmarks ��lled circles� project onto the retina and the snapshot� as
shown	 To return to the feeding site �b�� the model bee tries to match its retinal
image �dark areas on the outer circle� and the remembered snapshot �dark areas
on the inner circle�	 Each dark area on the snapshot is paired to the closest dark
area on the retinal image �dashed lines�	 Each comparison yields a pair of vectors
�un�lled arrows� indicating the required adjustments
 a radial vector �indicating
required forward�backward motion� for the size adjustment and a tangential vector
�indicating required left�right rotation� for the orientation adjustment	 �c� The
resulting movement� which globally reduces the discrepancy between the snapshots�
is computed from the summed vector ��lled arrow�	 After �Cartwright and Collett�
�� ��

Figure �
Burgess et al	�s feedforward network inspired by the hippocampus architecture	

Cells �circles� in some layers are organized into clusters �ellipses�	 There are �
clusters of �� place cells� �� groups of �� subicular cells and  goal cells for each
goal� corresponding to  head�direction cells	 After �Burgess et al	� ���
�

Figure �
Examples of goal cells in Burgess et al	�s model	 The cell with the �eld in dark

gray discharges when the animat is north of the goal while the cell with the �eld
in light gray discharges when the animat is generally south�east of the goal	 Thus�
the activity pro�le of  goal cells indicate the position of the animat relative to the
goal	

Figure 

Vector representation of the network�s output in each part of two square environ�

ments �viewed from above�	 The large circle is the goal location in each case	 From
points all over the environment �small circles� the navigation system indicates the
direction to the goal �lines�	 The lengths of the lines correspond to the degree of
activation of the goal cells� and roughly correspond to the distance to the goal	 The
same spatial representation �the �rst 
 layers of the network� is used for both goals	
Two distinct populations of goal cells correspond to two distinct goals	 Filled circles
surrounding the environment are landmarks	 �simulations by Trullier�

Figure �
The place recognition�triggered response strategy enables the animat to move

from place to place if it knows the direction to follow from each place	 When it gets
lost because of an obstacle� for instance� it has to wander around until it gets to a
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known place again	

Figure �
Functional schema of Schmajuk and Thieme�s navigation model	 The �rst module

�above� encodes the topological relationships between places by constantly compar�
ing the internal predictions of what the animat expects to see and what it actually
sees	 The second module �below� uses the predictions generated by the �rst module
to select appropriate movements to reach the goal	 After �Schmajuk and Thieme�
�����

Figure �
�Left� The maze in which the animat was tested consists of four distinct places	

The animat is able to recognize each place and all of its neighboring places	 �Right�
The neural network implementing the spatial representation module described in
Figure �	 The synaptic weights ��lled and empty triangles� in the cognitive map
are modi�ed so that the recognition of the current place triggers high activity in
the place�prediction nodes that correspond to the neighboring places	 The recur�
rent connections enable further predictions that can then be compared by the path
selection module	 See text for details	 After �Schmajuk and Thieme� �����

Figure  
�a� With the place recognition�triggered response strategy there can be an ensem�

ble of intersecting routes	 The animat is able to go only from S� to G�� from S� to
G�� and from S� to G�	 However� if there is a new obstacle on the way from S� to
G�� as on this �gure� the animat is lost because the route from S� to G� is unique
�see also Fig	 ��	 �b� In contrast� if the animat merges its representations of routes
into a topological representation� the animat can then go back to place A� take the
sub�route between places A and B� and take the sub�route from place B to the goal
G�	 The resulting path is the concatenation of three sub�sequences� derived from
three di�erent routes	

Figure �
Functional block diagram of Wan et al	�s model	 It shows how multimodal in�

formation might be combined and how di�erent representations can update one
another	 Place is represented as the conjunction of multimodal inputs� coupling
path integration� visual information� and head�direction	 The path integrator out�
puts the position of the animat in Cartesian coordinates �� xp� yp �� with respect
to an a priori global reference frame	 Visual information consists of the distances
ri and the relative bearings �i of the landmarks i	 The relative bearings are also
transformed into absolute bearings #ki on the basis of information about the cur�
rent place k	 The head�direction �#h� representation is updated by integrating the
angular velocity $#h� and is reset by place recognition when there is drift �PCk�	
After �Touretzky et al	� ���
�

Figure ��
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�a� Metric detour and �b� metric shortcut behaviors	 In both cases� the animat
takes a path never experienced before� without being able to use familiar landmarks
�the new wall is assumed to be tall and the forest is assumed to be dense�	 Note
that in �a�� the animat could� in principle� go directly from C to E	 This would be
an illustration of a metric shortcut	
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