
Evolution and Development of Modular Control
Architectures for 1-D Locomotion in Six-Legged

Animats
Jérôme Kodjabachian and Jean-Arcady Meyer

AnimatLab. Ecole Normale Supérieure. France.

Abstract—An evolutionary approach is used to design neural control ar-
chitectures for six-legged animats. Using a geometry-oriented variation of
the cellular encoding scheme and syntactic constraints that reduce the size
of the genetic search space, the developmental programs of straight loco-
motion controllers are first evolved. One such controller is then included as
the first module in a larger architecture, in which a second neural module is
evolved and develops connections to the first one, so as to set locomotion on
or off according to tonic or phasic external control signals. Such an incre-
mental approach should prove useful to the automatic design of relatively
complex control architectures that might, in particular, implement some
cognitive abilities over and above mere stimulus-response mechanisms.

Keywords— Evolution, Development, Dynamical Neural Networks,
SGOCE, Hexapod Locomotion.

I. INTRODUCTION

For a human, the design of the control architecture of an an-
imat able to survive in a possibly changing environment is a
highly challenging task because it is almost impossible to fore-
see each problem that the animat will have to solve and because
there are — as of today at least — no basic principles upon
which such design might rely [1]. To overcome these difficul-
ties, many research efforts are directed towards the automatic
design of control architectures, by means of a variety of evolu-
tionary approaches that mimic the process of natural selection
and that improve over successive generations the adaptive ca-
pacities of a population of animats. However, such an endeavor
does not go without raising specific problems (see [2] for a re-
view), notably that of choosing how an animat’s genotype re-
lates to its phenotype.

We have argued elsewhere [3] that it might be wise to tackle
these problems the same way nature does, i.e., by evolving
the developmental process according to which a neural net-
work grows and ultimately controls an animat’s behavior. We
have also shown that four different paradigms have been used
in the past for such a purpose: rewriting rules [4], [5], axonal
growth modeling [6], [7], genetic regulatory networks [8], and
nested directed graphs [9]. Finally, although we concluded that
it was premature to speculate about the relative merits of these
paradigms — which all proved able to solve simple problems by
generating control architectures implementing mere stimulus-
response mechanisms — we suggested that it would be ex-
tremely helpful to test whether they would be capable of solving
more complex problems by generating more cognitive architec-
tures — which would implement, for instance, some memory or
planning abilities.

This paper describes some progress we have made in this di-
rection starting from a de facto benchmark, i.e., the evolution of
the locomotion controller of a simulated insect. We propose an

incremental methodology, according to which the developmen-
tal rules of a neural 1-D locomotion controller are first evolved
using a combination of the rewriting rules and axonal growth
modeling paradigms. Then, this controller is included as a mod-
ule in a larger architecture, where its behavior is modulated by a
second neural module that is evolved and developed to perform
a higher level task, i.e., that of setting the locomotion behavior
on or off in response to external tonic or phasic stimuli. In a
companion paper [10], this methodology is extended to 2-D lo-
comotion and is used to allow a simulated insect to follow up an
odor gradient while avoiding obstacles.

In the following, we first review previous research efforts that
have aimed at evolving walking behaviors in animats. Then,
we describe our methodology and we report on experiments in
which modular controllers have been evolved. The paper con-
cludes with a discussion of the results and proposes directions
for future work.

II. PREVIOUS EVOLUTIONARY APPROACHES TO WALKING

Walking is a basic aptitude that is involved in many higher-
level behaviors — like food-seeking or predator-avoidance —
and that contributes to the survival of numerous animals. As
it is certainly likely to contribute to the survival of numerous
animats as well, it is not a surprise that several research efforts
have recently aimed at evolving locomotion controllers. Most of
these efforts have been based on artificial neural networks, but a
few of them relied upon other paradigms like Augmented Finite
State Machines, Lisp-like programs or Classifier Systems.

Although Brooks [11] did not use an evolutionary algorithm,
his approach was inspired by the process of biological evolution
because it consisted of incrementally adding new behavioral ca-
pabilities to an already functional architecture. In this work,
a real six-legged robot was equipped with a control architec-
ture made up of a number of Augmented Finite State Machines
(AFMS). Two AFSMs per leg allowed the robot to stand while
a second level of AFSMs permitted walking. Still additional
levels allowed for force balancing, leg lifting, etc.

Following this work, several researchers used simulated evo-
lution to fine tune the parameters of hand-designed controllers.
De Garis [12] used a genetic algorithm [13] to evolve the
weights of a fully connected neural network controlling the lo-
comotion of a simulated biped. Using a sequence of evolution-
ary stages, each characterized by a different fitness function —
a process he called Sequential Evolution —, he was able to gen-
erate realistic walking behaviors. The same methodology was
then used to evolve different motion controllers for a simulated



quadruped robot — among which were controllers for straight
locomotion, clockwise and anticlockwise rotation — but did not
lead to clearly successful results. Nevertheless, this work was
one of the first attempts to evolve a neural architecture likely to
produce a number of different behaviors.

Likewise, Beer and Gallagher [14] used a genetic algorithm
to evolve the parameters of a dynamic neural network that con-
trolled the locomotion of a simulated insect. Making hypothe-
ses on the symmetries of the controller, they carefully chose the
architecture of the network so as to reduce the number of pa-
rameters to 50. All legs were driven by identical sub-networks
defined by a unique set of 40 parameters. The ten remaining
parameters described ipsilateral and contralateral connections
between adjacent legs. Non-adjacent legs were not connected.
Thus, Beer and Gallagher succeeded in evolving controllers ex-
hibiting a fast-walking tripod gait, according to which the front
and back legs on each side of the body swung in phase with the
middle leg on the opposite side and out of phase with the other
tripod.

Lewis et al. [15] combined the two previous approaches to
evolve a neural controller for a real six-legged robot. In this
work, fitness was assessed by the user watching to the robot’s
behavior, and the number of parameters was reduced to eight. In
a first stage, four parameters were evolved to allow a couple of
neurons to oscillate, producing a succession of power and return
strikes. Then these parameters were further evolved under a dif-
ferent fitness function, together with four additional parameters
that described the connections between adjacent legs. The au-
thors reported that tripod gaits consistently evolved after seven
to 17 generations for the first stage, plus ten to 35 generations
for the second stage.

More recently some research efforts have aimed at evolving
both the architecture and the parameters of locomotion con-
trollers. Spencer [16] used genetic programming [17] to evolve
Lisp-like programs (S-expressions). The task was to control a
simulated six-legged animat inspired from that of Beer and Gal-
lagher. Although Spencer claimed not to use domain knowl-
edge, in all his experiments either an oscillator function was
given, or a leg-reversal mechanism was used. However, the
overall architecture of the controller — implicitly defined by
the program’s structure — was not given in advance but was
discovered by the evolutionary algorithm.

Gruau [18] applied cellular encoding — i.e., an efficient in-
stance of the rewriting rule paradigm [5] — to evolve the de-
velopmental program of an artificial neural network that con-
trolled the locomotion of a simulated animat also inspired from
that of Beer and Gallagher. Using Automatically Defined Sub-
Networks, a variant of Automatically Defined Functions used in
genetic programming [19], he generated a modular architecture
able to control the animat. However, it took a 32-processor par-
allel machine and over 1,000,000 evaluations to obtain this re-
sult. In a recent report, he explored how to help the evolutionary
algorithm by assessing a controller’s fitness by visual inspection
and by providing syntactic constraints that restricted the variety
of the developmental programs generated. He thus succeeded
in reducing the number of evaluations to a few hundred and in
generating a locomotion controller for a real 8-legged robot in a
couple of days [20].

Bull et al. [21] used Pittsburg-style classifier systems (CS)
to control each leg in a four-legged simulated robot. A flexible
communication protocol allowed the different controllers to ex-
change messages, and a complete controller was thus made of
four communicating CS’s. Several strategies for evolving well-
performing groups of CS’s were compared. A coevolutionary
strategy, in which a population was evolved for each of the four
types of leg controllers, appeared to be superior to a strategy
where all leg controllers were mixed in a single population, or
to a single-agent approach where a chromosome encoded four
CS’s. In this work also, the architecture was largely unspecified
by the programmers, as the connections between the different
controllers could be modified by the evolutionary algorithm.

From this survey of the relevant literature, it is clear that,
while much research has been targeted at evolving 1-D locomo-
tion controllers, problems like speed control, direction control,
or rough terrain locomotion remain largely unsolved by evolu-
tionary methods, not to mention higher-level tasks like obstacle-
avoidance, goal-seeking or pursuit-evasion. In this paper, we
try to take current results one step further in these directions by
first evolving a neural network that controls walking, and then
by evolving another neural network that gets connected to the
first one and modulates its inner workings, in such a way as to
let the animat exhibit a higher-level behavior still involving lo-
comotion. The next section describes our SGOCE evolutionary
paradigm, a simple geometry-oriented variation of Gruau’s cel-
lular encoding scheme [5], [20], and the incremental approach
that we use for such a purpose.

III. THE SGOCE EVOLUTIONARY PARADIGM

In the present section we successively describe the method
used to encode the developmental process of a neural network,
the syntactic constraints that define the particular subset of geno-
types we are considering, the evolutionary algorithm and the in-
cremental methodology we are using.

A. Encoding scheme

Our encoding scheme is a combination of the cellular encod-
ing and axonal growth paradigms. Here, each cell occupies a
given position in a two-dimensional substrate and can make a
connection with another cell either by sending an axon into, or
by attracting an axon from, a given region of space. The sensors
and actuators provided by the experimenter are also placed in
the substrate, and are capable of connecting with any cell from
the beginning of the developmental process1.

Each animat possesses an artificial genotype, i.e., a program
that describes the developmental process of an artificial neural
network. Each developing cell in that animat is endowed with a
copy of this program or chromosome, which is a set of subpro-
grams each made of instructions that are executed by the cells
during development. Such subprograms have the structure of
trees with ordered branches, allowing the use of the same kind
of mutation and recombination operator — by exchange of sub-

�Such a feature allows the generation of networks that are functional at every
stage of their development. While this feature is not exploited in the current ex-
periments, where ANNs are first developed and then evaluated, we could easily
use it in future work to study how the animat’s interactions with its environment
can influence development.



trees — as in genetic programming. Each node in a tree is la-
beled by an instruction type and a variable number of param-
eters; it has a given number of sub-nodes that depends on its
label’s instruction type.

DIVIDE � r create a new cell
GROW � r w create a connection to another cell
DRAW � r w create a connection from another cell
SETBIAS b modify the bias parameter
SETTAU � modify the time constant parameter
DIE trigger cellular death

TABLE I

The experimenter chooses the size of the substrate and posi-
tions the sensory cells and motoneurons that may be incorpo-
rated in the final neural network. He also positions a set of ini-
tial cells (or precursor cells), each of which is liable to execute
a given subprogram. Finally, he associates with each precur-
sor cell a local frame centered on that cell, according to which
the geometrical specification contained in the subprograms will
be interpreted. At the beginning of the developmental process,
all precursor cells start executing their associated subprograms
simultaneously.

The execution of a subprogram starts when a cell reads the
node at its root. Whenever a cell reads a node, it executes the
corresponding instruction and records in an appropriate event
list that the sub-nodes of that node are to be read after a given
time interval2. If the current instruction is a so-called cellular
division instruction, a copy of the cell is created and, after the
given interval, the daughter cell reads the right sub-node in the
subprogram while the mother cell reads the left sub-node (nodes
labeled by cellular division instructions have exactly two sub-
nodes). A cell halts its development when it reads a node with
no sub-node. From that moment it is called an interneuron.

We call developmental instruction an instruction that has the
important side-effect of creating a new cell, of modifying a cell’s
parameters or of creating connections, either with another cell
or with one element of a set of available sensors and actuators.
The execution by a set of preexisting cells of a program contain-
ing such instructions leads to the formation of a complete ANN
whose architecture may be arbitrarily complex and that may in-
teract with the problem’s environment.

As for neural dynamics, they are governed by a leaky inte-
grator model that has already been used in several applications
involving continuous-time recurrent neural network motion con-
trollers [14], [22], [18], [23]. This model has the advantage of
being a universal dynamics approximator [24], i.e., of being able
to approximate the trajectory of any smooth dynamic system.
Thus, the mean membrane potential mi of a neuron Ni evolves
according to:

�i � dmi�dt � �mi �
X

wi�jxj � Ii

where xj � ���e��mj�Bj ���� is the neuron’s short-term av-
erage firing frequency, Bj is a uniform random variable whose

�In the current implementation, all time intervals are of the same length.

mean bj is the neuron’s bias, and �i is the time constant asso-
ciated with the passive properties of Ni’s membrane. Ii is the
input that neuron Ni may receive from a given sensor, and wi�j
is the synaptic weight of a connection from neuronNj to neuron
Ni.

In this paper we use a small set of general, low level, de-
velopmental instructions (Table I). A cellular division instruc-
tion (DIVIDE) makes it possible for a mother cell to generate a
daughter cell. A direction parameter (�) and a distance parame-
ter (r) associated with that instruction specify the position of the
daughter cell to be created in the coordinates of the local frame
attached to the mother cell. Then, the local frame associated
with the daughter cell is centered on that cell and is oriented in
the same way as the mother cell’s frame (Figure 1). Two instruc-
tions (GROW and DRAW) respectively create one new efferent
and one new afferent connection. The cell to be linked to the
current one is the closest to a target position that is specified
by the instruction parameters (Figure 1). However, no connec-
tion is created if the target is outside the substrate’s limits. The
synaptic weight of a new connection is given by the parameter
w. Two additional instructions (SETTAU and SETBIAS) spec-
ify the values of a cell’s time constant � and bias b. Lastly, the
instruction DIE causes a cell to die.

developping cell neuron

α

r

DIVIDE α r

GROW xγ

β

γ

s

t

GROW β w

DIVIDE α r

GROW xγGROW β w

DIVIDE α r

GROW xγGROW β ws t s tts

w

x

B) C)A)

Fig. 1. The effect of a sample developmental code. A) When the upper cell
executes the DIVIDE instruction, it divides. The position of the daughter
cell in the mother cell’s local frame is given by parameters � and r of the
DIVIDE instruction, which set respectively the angle and the distance at
which the daughter cell is positioned. B) Next, the mother cell reads the left
sub-node of the DIVIDE instruction while the daughter cell reads the right
sub-node. C) As a consequence, a connection is grown from each of both
cells. The first two parameters of a GROW instruction determine a target
point in the local frame of the corresponding cell. The connection is made
with the cell closest to the target point — a developingcell, an interneuron, a
motoneuron or a sensory cell — and its synaptic weight is given by the third
parameter of the GROW instruction. Note that, in this specific example, the
daughter cell being closest to its own target point, a recurrent connection
is created on that cell. Finally, the two cells stop developing and become
interneurons.

The DIVIDE instruction labels nodes that have exactly two
sub-nodes. All other developmental instructions label nodes
with no sub-node. Non-developmental instructions associated
with nodes with different numbers of sub-nodes will be intro-
duced in the next sub-section.

B. Syntactic restrictions

In order to reduce the size of the genetic search-space and the
complexity of the generated networks, we constrain the structure
of the programs in the population by requiring that all subpro-
grams be well-formed trees according to a given context-free



Terminal symbols

DIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start1, Level1, Level2, Neuron, Bias, Tau, Connex, Link.

Production rules

Start1��DIVIDE(Level1, Level1)

Level1��DIVIDE(Level2, Level2)

Level2��DIVIDE(Neuron, Neuron)

Neuron��SIMULT3(Bias, Tau, Connex) j DIE

Bias��SETBIAS j DEFBIAS

Tau��SETTAU j DEFTAU

Connex��SIMULT4(Link, Link, Link, Link)

Link��GROW j DRAW j NOLINK

Starting symbol

Start1.

Fig. 2. The GRAM1 grammar. Figure 8 shows a subprogram recognized by
GRAM1.

tree-grammar. Such syntactic restrictions have already been
used by Koza and Rice to evolve neural networks [25]. How-
ever, while in their application such constraints were imposed to
obtain valid descriptions of neural networks, here we use them
to limit the sizes of the individual programs by concentrating
the search on a restricted family of “interesting” programs. This
approach is also similar to those of [26], [27] and is related to
the notion of strongly typed genetic programming [28].

Figure 2 shows the grammar GRAM1 used in Section IV-A to
constrain the form of the evolved subprograms that participate
in the developmental process of locomotion controllers.

The set of terminal symbols consists of the developmental in-
structions listed in Table I and of additional structural instruc-
tions that have no side-effect on the developmental process. NO-
LINK is a “no-operation” instruction. DEFBIAS and DEFTAU
leave the default value of the parameter b and � unchanged.
Those instructions label nodes of arity 0. SIMULT3 and SI-
MULT4 are branching instructions that allow the sub-nodes of
their corresponding nodes to be executed simultaneously. The
introduction of such instructions makes it possible for the re-
combination operator to act upon whole interneuron descrip-
tions or upon sets of grouped connections, and thus hopefully
to exchange meaningful building blocks. Those instructions are
associated with nodes of arity 3 and 4, respectively.

As a consequence of the use of syntactic constraints that pre-
define the overall structure of a developmental program, the tim-
ing of the corresponding developmental process is constrained.
First divisions occur, then cells die or parameters are set, and fi-
nally connections are grown. No more than three successive di-
visions can occur and the number of connections created by any
cell is limited to four. Thus, the final numbers of interneurons
and connections created by a subprogram that is well-formed
according to GRAM1 cannot exceed eight and 32 respectively.

C. Evolutionary algorithm

In order to evolve neuro-controllers, the experimenter must
supply the initial conditions for the developmental process, i.e.

the size of the substrate, the positions of sensors, motoneurons
and precursor cells, and the number of subprograms. Each sub-
program can either be pre-specified or evolved. In the latter case,
a set of syntactic constraints must be given. Finally, the exper-
imenter provides a fitness function that evaluates the programs
(see Section IV).

To slow down convergence and to favor the apparition of eco-
logical niches, we use a steady-state evolutionary algorithm that
involves a population of N randomly generated well-formed
programs distributed over a circle and whose mode of opera-
tion is outlined in Figure 3.

ReplacementSelection

Evaluation

Random Initialization

Mate

Genetic operators

Local
Neighborhood

Population of Chromosomes

Fig. 3. The evolutionary algorithm.

The following procedure is repeated until a given number of
individuals have been generated and tested:

1. A positionP is chosen on the circle.
2. A 2-tournament selection scheme is applied in which the bet-
ter of two programs randomly selected from the neighborhood
of P is kept3.
3. The selected program is allowed to reproduce and three ge-
netic operators possibly modify it. The recombination operator
is applied with a probability of pc. It exchanges two compati-
ble4 sub-trees between the program to be modified and another
program selected from the neighborhood of P . Two types of
mutation are used. The first mutation operator is applied with a
probability of pm. It changes a randomly selected sub-tree into
another compatible, randomly generated one. The second muta-
tion operator is applied with a probability of �. It modifies the
values of a random number of parameters, implementing a con-
stant perturbation strategy [16]. The number of parameters to
be modified is drawn from a binomial distributionB�n� p�.
4. The fitness of the new program is assessed by collecting
statistics while the behavior of the animat controlled by the cor-
responding artificial neural network is simulated over a given
period of time.
5. A 2-tournament anti-selection scheme, in which the less suit-
able of two randomly chosen programs is selected, is used to

�A program’s probability ps of being selected decreases with the distance d
to P : ps�d� � max�R � d� ���R�, with R � �. Programs for which d is
greater than or equal to R cannot be selected (ps � �).
�Two sub-trees are compatible if they are derived from the same grammatical

variable, like Start1, Level1, etc., in Figure 2.



decide which individual (in the neighborhood of P ) will be re-
placed by the modified program.

In all the experiments reported on in this paper, pc � ���,
pm � ���, n � � and p � ��	.

D. Incremental methodology

We use an incremental approach that takes advantage of the
geometrical nature of the developmental model.

MODULE 1

(Locomotion)information

motor

commands

proprioceptive

control

information
MODULE 2

(command)

Fig. 4. During a first evolutionary stage, Module 1 is evolved. That mod-
ule receives proprioceptive information through sensory cells and influence
actuators through motoneurons. In a second evolutionary stage, Module 2
evolves. That module receives control information through special sensory
cells called control units and can influence the behavior of the animat by
making connections with the cells of the first module.

In a first evolutionary stage, locomotion controllers are
evolved. At the end of that stage, the developmental program
corresponding to the best evolved controller is selected to be
the locomotion module used thereafter. During a second evolu-
tionary stage, a second neural module is evolved. That module
can influence the locomotion module by creating inter-modular
connections. Figure 4 shows the information processed by each
module.

IV. EXPERIMENTAL RESULTS

The experiments presented in this paper made use of a model
of a six-legged animat called SWAN-1D [29].

Each the animat’s leg was equipped with two pairs of mus-
cles that allowed them to control the angular position of the leg
and the height of the foot (Figure 5, Left). For three of those
muscles, a corresponding motoneuron specified the value of the
resting length parameter in a simple muscle model (Figure 5,
Right). Furthermore, each leg was equipped with a sensor that
measured the leg’s angular position �.

Thus the available motors and sensors corresponded to those
of Beer and Gallagher’s simulated insect [14]. However, one
difference with Beer and Gallagher’s scheme was that the foot
status (up or down) was not determined solely by the state of
the corresponding UP-motoneurons. More realistically, these
positions were also influenced by the dynamics of the physi-
cal model of the animat. Our animat also differed from that of
Gruau [18], who used anterior and posterior extreme position
sensors instead of angle sensors.

A. Evolution of locomotion controllers

In the first evolutionary stage, locomotion controllers for sim-
ulated six-legged animats were evolved. In order to reduce the
size of the search space, we sought controllers made of six sub-

u

l(u)
k

k, l

tunable muscle:

non-tunable muscle:

A

x

y

F

UP

θ

DOWN

PS
RS

Fig. 5. Left: Each leg has two degrees of freedom. Thanks to the antagonis-
tic PS- (Power Strike) and RS- (Return Strike) muscles, the leg can rotate
around an axis �Ay� orthogonal to the plane of the figure. The UP- and
DOWN-muscles allow the position of the foot F to be translated along the
�Ax� axis. The resting lengths of the tunable PS-, RS- and UP-muscles
depend on the activity levels of the corresponding motoneuronsu. The rest-
ing length of the DOWN-muscle is supposed to be non-tunable. Right: The
muscle model. A muscle is modeled as a spring of set stiffness k and of
(possibly tunable) resting length l (after [30]).

networks grown according to the instructions of a unique devel-
opmental subprogram5.

Figure 6 shows the setting of the two-dimensional substrate
when the developmental process was initialized. Six precur-
sor cells called six associated subprograms (dotted lines) that,
in turn, each called subprogram 6. The positions and the local
frames of the different precursor cells reflected the assumed bi-
lateral symmetry of the animat’s morphology. The motoneurons
and sensory cells of each leg had specific coordinates in the lo-
cal frame associated with the corresponding precursor cell. The
execution of the whole developmental program resulted in the
creation of a neuro-controller made of six interconnected sub-
networks. According to such a logic, only subprogram 6 had to
be evolved.

The fitness function was the distance covered during the eval-
uation increased by a term encouraging any leg motion:

f � x�Tmax� �

Z Tmax

t��

�
X
p

j
d�p
dt

�t�j�
X
p

j
dhp
dt

�t�j�dt

where x�t� is the position of the animat’s center of mass at time
t, Tmax is the evaluation time, and �p�t� and hp�t� are the an-
gular position and the height of leg p at time t [29]. We did
not introduce explicit selection pressure for not falling. How-
ever, falls were implicitly penalized because they slowed down
locomotion.

We performed a series of five experiments. In each experi-
ment, 100,000 replacements were made in a population of 200
programs with different, randomly-generated subprograms 6,
well-formed according to GRAM1.

Several kinds of walking strategies were obtained. In four ex-
periments, symmetrical gaits — in which both sides were moved

�In this approach, although the same developmental subprogram was called
six times, the corresponding sub-networks might differ due to side-effects. In
Beer and Gallagher’s experiment, a more stringent constraint imposed the sym-
metry of the overall architecture.



the substrate:
Initial state of

GRAM1

?

Precursor cell

Sensor

A: angle sensor

PC: precursor cell
P: PS-motoneuron

U: UP-motoneuron
R: RS-motoneuron

P2R2

P3R3

R0 P0 R4 P4

R1 P1 R5 P5

JP6

0

JP6

1

JP6

2

JP6

3

JP6

4

JP6

5 6

Motoneuron

A0 U0 A2 U2 A4 U4

A1 U1 A3 U3 A5 U5

PC0 PC2 PC4

PC1 PC3 PC5

Developmental Program

Fig. 6. Setup for the evolution of a straight locomotion controller for a six-
legged animat. The figure shows the initial positions of the sensors, mo-
toneurons and precursor cells, as well as the structure of the developmental
programs that call upon seven subprograms. JP is a call instruction that
forces a cell to start reading a new subprogram. Only subprogram 6 needs
to be evolved. It’s organization is constrained by the GRAM1 grammar.
Additional details are to be found in the text.

Exp. 1

Exp. 2

Exp. 3

Exp. 4

Exp. 5

Fig. 7. Best gait in the final population for each of the five experiments. The
horizontal axis represents time. A dot is plotted when the corresponding leg
is raised. Legs are numbered as in Figure 6. Only the results of Experiment
2 correspond to a stable, tripod gait. All other experiments in the series led
to unstable, leaping behaviors.

synchronously — were generated. The corresponding behaviors
consisted in making a succession of leaps, using groups of two,
four or six legs together. Such solutions were the most likely to
evolve both in the series of experiment reported here and in oth-
ers as well. None of those gaits was stable because of the large
mass of the modeled body. However, in the course of Experi-
ment 2, a stable, non-symmetric tripod gait was obtained (Fig-
ure 7). This solution allowed the longest distance to be covered
during the given evaluation time.

External feedback provided by the sensors was used only by
the controllers that evolved during Experiment 5. Besides the
possible incidence of initial geometrical constraints that would
lessen the chances of such sensors being incorporated into the

control architecture, this is due to the fact that the simple envi-
ronment used (flat ground, no obstacles) did not really necessi-
tate the use of sensors. Furthermore, the controllers of Experi-
ment 5 appeared to be the most sensitive to starting conditions:
some initial leg positions could not trigger subsequent periodic
activity in the network, presumably because specific sensor val-
ues were needed. In the other experiments, whatever the initial
leg positions, intrinsic periodic activity was produced by central
pattern generators that are known to exist in arthropods and that
contribute to the generation of rhythmic locomotion movements
[31].

Figure 8 shows the subprogram 6 and the architecture of the
corresponding network for the best individual found in Experi-
ment 2. A part of the circuitry that is responsible for the control
of foot positions in that network is shown in Figure 9 and helps
to understand its inner workings. Two pairs of oscillators, asso-
ciated with the hind- and middle-legs, are coupled together.

Simulating either pair in isolation with the corresponding
coupling connections (from Ui to bopp�i� and from ai to Uopp�i�

where i is one oscillator and opp�i� is the other oscillator of the
same pair) results in the two corresponding legs oscillating out
of phase with each other.

Adding the coupling connections between the two pairs (from
Ui to bfopp�i�, where i is a hind-leg oscillator and fopp�i� is the
contralateral middle-leg oscillator) makes adjacent legs oscillate
out of phase with each other.

Finally, reintroducing the connections from c� and c� to U�

and U� respectively synchronizes the front-legs with the hind-
legs, producing a tripod pattern for the UP-motoneurons. It ap-
pears that the periodic activity of the other motoneurons is also
produced by the same four oscillators, and additional details on
how that particular network functions can be found in [32].

This network was selected to be Module 1 in the second evo-
lutionary stage where two kinds of Module 2 were evolved. In
Section IV-B, we report on experiments in which we looked for
a control mechanism such that the animat walked as long as a
boolean control unit received the value False and stopped when-
ever that unit received the value True. In Section IV-C, we de-
scribe another experiment where two control units were consid-
ered. The animat had to stop walking whenever the first unit
was briefly stimulated and had to resume walking whenever the
second unit was briefly stimulated.

B. Evolution of a command module

In this section, we let a two-module neural network to evolve
that is able to generate walking or resting according to the value
of a tonic boolean command input. The input value is set by
the experimenter and is communicated to the system through a
specific control unit.

Assuming that a simple architecture would solve the task, the
precursor cells of the second module were connected by default
to the control unit at the beginning of the developmental process
by ad hoc DRAW instructions. These cells were not allowed to
divide, to create other intra-modular connections or to modify
their bias parameters. Thus, only inter-modular connections to-
ward Module 1 were allowed. Under such conditions, the only
task of the evolutionary process was to find a set of connections



GROW

GROW

GROW

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

GROW

SETBIAS
GROW

GROW

GROWSETTAU

SETBIAS
GROW

GROW

SETTAU GROW

SETBIAS
GROW

GROW

SETTAU GROW

SETBIAS
GROW

GROW

GROWSETTAU

SETBIAS

SETTAU

SETBIAS

SETTAU

SETBIAS

DRAW

NOLINK

DIE

DRAW

NOLINK

NOLINK

DRAW

DRAW

DRAW

NOLINK

DEFTAU DRAW

DRAW

NOLINK

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

Develomental time

Fig. 8. Left: The best subprogram 6 found in Experiment 2 (parameter values are not shown). This subprogram generates a tripod gait and is called LOCO1
thereafter. Right: The corresponding artificial neural network after useless interneurons and connections have been pruned. Solid lines are excitatory connec-
tions, dotted lines are inhibitory connections. Fan-in connections arrive at the top and fan-out connections depart from the bottom of each neuron. The network
contains 38 interneurons and 100 connections.

a a’
b

c

U2

U3

U
U5

U4U0

U1

excitatory connection

motoneuron

interneuron

inhibitory connection

m
em

br
an

e 
po

te
nt

ia
l

time

U

c

b

a’

a

Fig. 9. Part of the circuitry that is responsible for foot-position control. A basic
oscillator (Upper, Left) is copied four times within the control architecture.
These oscillators are connected in such a way that the feet of adjacent legs
are raised out of phase with each other (Upper, Right). When the basic
oscillator is simulated in isolation, the membrane potentials of its different
neurons oscillate as shown at the bottom.

Terminal symbols

GROW2, NOLINK, SIMULT8.

Variables

Start2, Link2.

Production rules

Start2��SIMULT8(Link2, Link2, Link2, Link2, Link2, Link2, Link2, Link2)

Link2��GROW2 j NOLINK

Starting symbol

Start2.

Fig. 10. The GRAM2 grammar.

able to inhibit locomotion behavior when the value of the com-
mand input was maximal (True). Whenever the command input
value was zero (False), the neurons of the second module were
not activated — because of the specific default value of their
bias parameter — and the first module generated the default lo-
comotion behavior.

A new developmental instruction (GROW2) was used to cre-
ate a connection between a cell in the second module and a
cell in the locomotion module. This instruction works like the
GROW instruction except that the geometric parameters are in-
terpreted in the local frame’s orthogonal projection into the lo-
comotion module6. The GRAM2 grammar (Figure 10) defined
a set of well-formed subprograms liable to create a number of
connections (maximally 8) from a precursor cell of the second
module into the locomotion module.

Figure 11 shows the initial conditions for the developmental
process and the general structure of the programs.

During an evaluation, the value of the command input was
successively set to False, True, False, True and False. The fitness
function rewarded individuals for not moving and for standing
when the command was True:

�The second module has the same dimensions as the first and is considered to
be positioned above it.



?

GRAM2

DRAW

JP13
WAIT
DRAW

WAIT
JP13

WAIT
DRAW

JP13 JP13
WAIT
DRAW

7

DRAW
WAIT
JP13

PC7

PC6 PC10

PC11PC9

PC8

138 1110960 1 2 3 4 5

Precursor cell

JP12 JP12 JP12 JP12 JP12 JP12

12

Initial state of

JP13
WAIT
DRAW

LOCO1

Control unit

Developmental program

the substrates:

Fig. 11. Setup for the evolution of a command network. The figure shows the
initial positions of the control unit and the precursor cells, as well as the
structure of the developmental programs that calls upon 14 subprograms.
DRAW instructions (followed by appropriate parameters) are added to cre-
ate excitatory connections (dashed lines) from the control unit to precursor
cells 6 to 11. WAIT is a no-operation instruction used to delay the call of
subprogram 13. This delay allows time for the three successive divisions of
precursor cells 0 to 5 to occur before instruction GROW2 can be executed
by precursor cells 6 to 11. Sub-program 12 has been evolved in the previous
experiments; only subprogram 13 needs to be evolved.

f �

Z Tmax

t��

r�t� � dt

r�t� � �k � s�t� � jv�t�j� if True and r�t� � � otherwise;

where v�t� is the speed of the animat’s center of mass at time
t, k is a weighting coefficient set to 0.01 in the experiments de-
scribed herein, and s�t� is � if the animat is stable at time t and
� otherwise. No reward was granted while the command was
False.

We carried out five experiments in which 20,000 replace-
ments were performed in a population of 200 individuals. In
each experiment, highly rated controllers were found. Figure 12
illustrates the corresponding STOP and GO behaviors.

To check whether such controllers could generate intermedi-
ate speeds between fast-walking and resting, we subjected them
to intermediate command values. This strategy can be compared
to that used in [33] to evolve so-called steerable GenNets. How-
ever, instead of checking for interpolation in a controller pre-
viously evolved to exhibit two qualitatively identical behaviors
(e.g. two locomotion behaviors characterized by two different
speeds), we left the previously evolved controller unchanged
and submitted it to continuous command values.

Results shown in Figure 13 indicate that, when the control
unit is clamped to a value comprised between (about) 0.2 and
0.5, the animat walks at a reduced speed. Beyond 0.5, walking
is inhibited. Observation of the behavior reveals that this result
is due to a decrease in the animat’s step size, and not to a change
in the rhythm of its basic oscillators. Closer inspection of the
inner workings of the controllers gives some insight into how
step size is reduced. It thus turns out that the corresponding
mechanisms involve inhibitory connections from Module 2 to
the c neurons of the oscillators of Figure 9, in four experiments
out of five, or to the PS- and RS- motoneurons directly, in the
fifth experiment. It can easily be checked that the inhibition of
these neurons within an isolated oscillator results in a reduction
of its output amplitude, but in no significant frequency variation.

-5

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

di
st

an
ce

 w
al

ke
d

time

GO

STOP

GO

STOP

GO

Fig. 12. Distance covered as a function of time by the best controllers in the
final population for five different experiments. The boolean command input
is True between cycles 200 and 400 and between cycles 600 and 800.

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

Fig. 13. The distance coveredduring 1000 cycles when a fixed continuous com-
mand value is applied. Each curve represents the mean distance covered in
ten runs.

C. Evolution of a switching mechanism

In this section, again using the locomotion module evolved in
Section IV-A, we evolve a new Module 2 that can respond to
two phasic stimuli, S� and S�, by switching either to a resting
or to a walking behavior. These stimuli are delivered by the
experimenter through two specific control units.

For this task, we allowed intra-modular divisions and connec-
tions inside Module 2. No ad-hoc connections were imposed
and each bias was allowed to evolve. A new developmental in-
struction called DRAW2 was introduced. DRAW2 causes the
creation of an afferent connection from a cell of Module 1 to
the executing cell, and works like the DRAW instruction ex-
cept that it is interpreted in the orthogonal projection of the lo-
cal frame into Module 2. Furthermore only two precursor cells
were placed in Module 2. Under such conditions, the walking
behavior generated by Module 1 was liable to be perturbed even
in the absence of control signals.

The GRAM3 grammar (Figure 14) defined the set of valid
subprograms that described the developmental process of a pre-



Terminal symbols

DIVIDE, GROW, DRAW, GROW2, DRAW2, SETBIAS,

SETTAU, DIE,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start3, Levelb, Neuronb, Biasb, Taub, Connexb, Linkb.

Production rules

Start3��DIVIDE(Levelb, Levelb)

Levelb��DIVIDE(Neuronb, Neuronb)

Neuronb��SIMULT3(Biasb, Taub, Connexb) j DIE

Biasb��SETBIAS j DEFBIAS

Taub��SETTAU j DEFTAU

Connexb��SIMULT4(Linkb, Linkb, Linkb, Linkb)

Linkb��GROW j DRAW j GROW2 j DRAW2 j NOLINK

Starting symbol

Start3.

Fig. 14. The grammar GRAM3.

cursor cell of Module 2. Such subprograms can create up to four
neurons and 16 connections. Figure 15 depicts the initial setup
for the developmental process.

?

GRAM3

JP9
WAIT

LOCO1
WAIT

JP9

0 1 2 3 4 5

Precursor cell

Initial state of

6 7

JP8 JP8 JP8 JP8 JP8 JP8

PC6

PC7

Control unit

Developmental program

8 9

the substrates:

Fig. 15. Setup for the evolution of a switching mechanism. The figure shows
the initial positions of the control units and the precursor cells, as well as
the structure of the developmentalprograms that call upon ten subprograms.
Sub-program 8 has been evolved in the previous experiments. Only subpro-
gram 9 needs to be evolved.

In order to evolve a switching mechanism, we had to design a
conditional evaluation procedure in which each individual could
be evaluated up to three times in different conditions and with
different fitness functions. This was necessary to prevent the
networks from learning to predict the time of occurrence of the
stimuli. An alternative solution to this problem would have been
to present the stimuli at variable times. However such a solution
would have made fitness comparisons less robust because dif-
ferent individuals would have been evaluated in different condi-
tions.

In the first evaluation, we checked that the individual had not
lost its walking ability:

f �

Z Tmax

t��

v�t� � dt � x�Tmax�

Provided the corresponding individual walked along a mini-
mum distance, he was allowed to go through the next evalua-
tions. In the second evaluation, stimulus S� was presented on

Time:
500 600 7000 100 200 300 400 800

Eval. 1:

Eval. 2: S1

Eval. 3: S2S1

Fig. 16. Behavior of a good individual in the three phases of the evaluation.
That individual responds correctly to both stimuli. The conditional protocol
(described in the text) prevents the animats from just predicting the time of
occurence of the stimuli.

the first control unit, and the animat had to stop its progression.
It was rewarded according to the previously used fitness func-
tion:

f �

Z Tmax

t�TS�

�k � s�t� � jv�t�j� � dt

Finally, if the individual received a high enough rating, it was
allowed to undergo the third evaluation. During this last eval-
uation, stimulus S� was presented on the second control unit
some time after stimulus S� had been presented on the first con-
trol unit and the animat was thereafter rewarded for resuming
walking:

f �

Z Tmax

t�TS�

v�t� � dt

We made several experiments involving populations of 200
programs. After 60.000 replacements, controllers able to re-
spond correctly to both kinds of stimuli were obtained. Fig-
ure 16 shows the behavior of a network of the final population
in the corresponding experiment. Some experiments, although
leading to successfull results at evaluations 1 and 2, did not yield
to animats able to react correctly to S�. We suspect that this is
due to the fact that GRAM3 was too restrictive. Consequently,
the allowed numbers of neurons and connections per neuron
were too low and all of them were recruited to control the re-
sponse to S�.

The examination of successful controllers indicates that they
use the neurons of Module 2 to build switch mechanisms, which
can be in one of two stable states, quiescent or excited. Such
mechanisms can be implemented by a single neuron that has a
sufficiently strong self-connection or by a small network of in-
terconnected neurons, as demonstrated in [24]. According to
the current switch state, the animat executes either a resting or
a walking behavior. The presentation of S� forces the switch
into the excited, “resting” state, thanks to excitatory connec-
tions, while the presentation of S� forces it back into the qui-
escent, “walking” state by making use of inhibitory connections
(Figure 17).



Control unit 1 Control unit 2

S1 S2
Interneuron 1

Interneuron 2

Fig. 17. A solution discovered by the evolutionary algorithm to implement a
switch mechanism. Inhibitory and excitatory connections are represented
as in Figure 9. In the absence of significant input, both interneurons have a
low output value. WheneverS� is presented, however, they are excited and
the reciprocal excitatory connections keep their output values high. Finally,
wheneverS� occurs, they are inhibited and return to their quiescent state.

V. DISCUSSION

Results obtained here and elsewhere [10] demonstrate that an
incremental methodology can be used to automatically design
an animat’s control system that merges low-level controllers into
higher-level adaptive architectures. Such a methodology implies
that low-level controllers be first evolved under the effect of
appropriate fitness functions, and then that these controllers be
fixed and protected against drastic modifications that mutations
or other genetic operators might generate. Higher-level archi-
tectures can later be evolved and modulate the inner workings
of the low-level controllers, thus making it possible to cope with
the constraints of new fitness functions. Clearly, such a method-
ology bears a strong resemblance to that of Brooks [11] for the
hand-design of so-called subsumption architectures. It is likely
to be efficient for the sort of reasons put forth by Dawkins [34]
in his comparison of the working strategies of the blind watch-
makers: without a convenient means of protecting useful inner-
mechanisms from deleterious mutations, there is no chance of
having as complex an integrated whole as a clock evolve from
scratch. Such a methodology might also be well adapted to cur-
ing the unfortunate consequences of the well-known opportunis-
tic capacities of any evolving process: the fitness function likely
to select a complex behavior from scratch may be extremely
hard for a human to design and may offer numerous opportuni-
ties for the evolutionary process to follow unexpected trajecto-
ries. By decomposing the overall fitness function into successive
components, each easier to design, one can hope to channel the
evolutionary path. Finally, this methodology also bears a strong
resemblance to the strategy of incremental evolution advocated
by de Garis [12] and Harvey et al. [35], which suggests that, in
order to evolve controllers to achieve some challenging task, it
is better to start from a population that has already been selected
for a similar but less challenging task, rather than starting with
a population of random genotypes.

Be that as it may, the SGOCE paradigm appears to be well
suited to the incremental methodology advocated here. Associ-
ating an indirect encoding scheme with the evolutionary process
clearly reduces the size of the genotype space explored by the
genetic algorithm, while leaving opportunities for the genera-
tion of complex phenotypes. Resorting to syntactic constraints

on the structure of the genotypes allows us to limit the size of
the search space. Although such constraints have been set arbi-
trarily by the experimenter in the present work, they could also
be coded in a second chromosome that would evolve in paral-
lel with the chromosome coding for the developmental program.
However, such metarules would probably be long to evolve. Fi-
nally, besides having functional advantages already stressed by
several authors [14], [36], [37], [24], dynamic neural networks
appear to be well suited to the use of low-level developmen-
tal instructions, such as cell division and axonal growth pro-
cesses, that facilitate the automatic search for useful architec-
tures. The very general set of developmental instructions we
devised should make it easy to apply our methodology to other
problems.

Concerning the specific results obtained here, it appears that
the SGOCE paradigm made it possible to go further than any
previous comparable attempt at automatically designing a 6-
legged animat’s control architecture. Not only has a tripod-gait
controller been generated, but this controller has been included
in higher-level architectures capable of slowing down, stopping,
or resuming walking. Moreover, to take into account informa-
tion contributed by transient phenomena, the evolutionary pro-
cess has been committed to inventing a switch mechanism, i.e.,
a rudimentary form of memory that somehow encodes knowl-
edge about the world. One might argue this constitutes a first
step towards the invention of representations and truly cognitive
mechanisms, and that this step parallels other advances already
made in this direction with artificial evolutionary processes [38].

It should be stressed that the organization of the tripod-gait
controller that has been evolved and used in this work is cer-
tainly heavily dependent upon the specific implementation of the
SGOCE paradigm that we used. In particular, although in pre-
vious attempts [39] we succeeded in evolving tripod-gait walk-
ing without using syntactic constraints, the corresponding neu-
ral networks commonly comprised several hundred neurons and
connections, thus tremendously slowing down the simulations.
Therefore, we chose to constrain the complexity of the neu-
ral networks generated, maybe with the risk of restricting their
adaptive capacities, because complex neural networks are likely
to exhibit many functional redundancies. In this perspective, it
would be enlightening to compare the robustness of various lo-
comotion controllers with respect to various accidents ranging
from neuron or connection suppressions to whole leg amputa-
tions. A study of the effect of neuron losses on the controller
LOCO1 evolved in Section IV-A has revealed such redundan-
cies [32].

Likewise, the solutions described herein were certainly re-
stricted by the corresponding initial setups. In particular, ac-
cording to their respective positions in the substrate, some cells
had a better chance of getting connected to each other than did
others. This, in particular, was the case with sensors, motoneu-
rons and precursor cells whose initial positions were set by the
experimenter and that were, therefore, more or less likely to be
incorporated into the final, developed neural network. A possi-
ble way of combating the negative consequences of an experi-
menter’s arbitrary choice is to let some aspects of an animat’s
morphology evolve in parallel with its control architecture, an
approach already explored in [35], [40], [41], [9].



Finally, at this stage of our work, it is hard to draw any con-
clusion about the efficiency of the evolutionary algorithm used
here. We happened on these specific settings after numerous tri-
als and errors, which aimed at preserving over generations the
diversity of the fitness distribution in the population of chromo-
somes. Whether or not the results we obtained were optimal in
this respect will have to be ascertained through systematic com-
parisons that we haven’t yet had the opportunity to perform. It
seems, however, that an important implementation decision has
been the addition of a sort of constant disturbance strategy [16],
according to which several parameters were mutated each time
a developmental program was reproduced. Indeed, such a strat-
egy allowed a better exploration of the parameter space in the
absence of a learning algorithm.

VI. CONCLUSION

It has been shown here that the current implementation of the
SGOCE evolutionary paradigm makes it possible to automati-
cally design the control architecture of a six-legged animat ca-
pable not only of straight walking according to a tripod gait,
but also of slowing-down, stopping or resuming walking when
it receives appropriate tonic or phasic commands. It is also
shown elsewhere [10] that such an approach can be extended
to 2-D locomotion and that it is likely to automatically gen-
erate the control architecture of an animat capable of follow-
ing up an odor gradient and avoiding obstacles. We argue that
such results provide marked improvements over current state-of-
the-art in the automatic design of locomotion controllers. They
rely upon specific mechanisms implementing the developmen-
tal process of a recurrent dynamic neural network and upon an
incremental strategy that amounts to setting the architecture of
functional sub-networks in a still evolving, higher-level control
system. There are numerous ways of improving the correspond-
ing mechanisms, in particular by letting several characteristics
evolve that were arbitrarily set here by the experimenter. There
is also good reason to believe that the SGOCE paradigm will
prove capable of automatically generating control architectures
that implement more than mere stimulus-response pathways or
central pattern generators and that exhibit genuinely cognitive
abilities.

REFERENCES

[1] J.-A. Meyer and A. Guillot, “From SAB90 to SAB94: Four years of animat
research,” in From Animals to Animats 3. Proceedings of the Third Inter-
national Conference on Simulation of Adaptive Behavior (D. Cliff, P. Hus-
bands, J.-A. Meyer, and S. W. Wilson, eds.), The MIT Press/Bradford
Books, Cambridge, MA, 1994.

[2] M. Matarić and D. Cliff, “Challenges in evolving controllers for physical
robots,” Robotics and Autonomous Systems, vol. 19, pp. 67–83, 1996.

[3] J. Kodjabachian and J.-A. Meyer, “Evolution and development of con-
trol architectures in animats,” Robotics and Autonomous Systems, vol. 16,
pp. 161–182, December 1995.

[4] E. Boers and H. Kuiper, “Biological metaphors and the design of modular
artificial neural networks,” Master’s thesis, Dept. of CS and Exp. and The.
Psy., Leiden University, August 1992.

[5] F. Gruau, Synthèse de Réseaux de Neurones par Codage Cellulaire et Al-
gorithmes Génétiques. Thèse d’université, ENS Lyon, Université Lyon I,
January 1994.

[6] J. Vaario, An Emergent Modeling Method for Artificial Neurol Networks.
PhD thesis, University of Tokyo, August 1993.

[7] A. Cangelosi, D. Parisi, and S. Nolfi, “Cell division and migration in a
’genotype’ for neural networks,” Network: computation in neural systems,
1995.

[8] F. Dellaert and R. Beer, “Toward an evolvable model of development for
autonomous agent synthesis,” in Proceedings of the Fourth International
Workshop on Artificial Life (R. A. Brooks and P. Maes, eds.), The MIT
Press/Bradford Books, Cambridge, MA, 1994.

[9] K. Sims, “Evolving 3D morphology and behavior by competition,” in Pro-
ceedings of the Fourth International Workshop on Artificial Life (R. A.
Brooks and P. Maes, eds.), The MIT Press/Bradford Books, Cambridge,
MA, 1994.

[10] J. Kodjabachian and J.-A. Meyer, “Evolution and development of neu-
ral networks controlling locomotion, gradient-following, and obstacle-
avoidance in artificial insects,” 1997. Submitted for publication.

[11] R. A. Brooks, “A robot that walk: Emergent behavior form a carefully
evolved network,” Neural Computation, vol. 1, no. 2, pp. 253–262, 1989.

[12] H. de Garis, Genetic Programming: GenNets, Artificial Nervous Systems,
Artificial Embryos. PhD thesis, Université Libre de Bruxelles, Belgium,
1991.

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[14] R. Beer and J. Gallagher, “Evolving dynamical neural networks for adap-
tive behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91–122, 1992.

[15] M. A. Lewis, A. H. Fagg, and A. Solidum, “Genetic programming ap-
proach to the construction of a neural network for control of a walking
robot,” in IEEE International Conference on Robotics and Automation,
(Nice, France), pp. 2618–2623, 1992.

[16] G. Spencer, “Automatic generation of programs for crawling and walking,”
in Advances in Genetic Programming (K. E. K. Jr., ed.), pp. 335–353, The
MIT Press / Bradford Books, Cambridge, MA, 1994.

[17] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, 1992.

[18] F. Gruau, “Automatic definition of modular neural networks,” Adaptive
Behavior, vol. 3, no. 2, pp. 151–184, 1994.

[19] J. Koza, Genetic Programming II: Automatic Discovery of Reusable Sub-
programs. The MIT Press, 1994.

[20] F. Gruau and K. Quatramaran, “Cellular encoding for interactive evolu-
tionary robotics,” tech. rep., University of Sussex, School of Cognitive
Sciences, EASY Group, Brighton, UK, 1996.

[21] L. Bull, T. C. Fogarty, and M. Snaith, “Evolution in multi-agent sys-
tems: Evolving communicatingclassifier systems for gait in a quadrupedal
robot,” in Proceedings of the Sixth International Conference on Genetic
Algorithms (L. J. Eshelman, ed.), pp. 382–388, Morgan Kaufmann, San
Mateo, CA, 1995.

[22] D. Cliff, I. Harvey, and P. Husbands, “Explorations in evolutionary
robotics,” Adaptive Behavior, vol. 2, no. 1, pp. 73–110, 1993.

[23] D. Cliff and G. F. Miller, “Co-evolution of pursuit and evasion ii: Simu-
lation methods and results,” in From Animals to Animats 4. Proceedings
of the Fourth International Conference on Simulation of Adaptive Behav-
ior (P. Maes, M. J. Mataric, J.-A. Meyer, J. B. Pollack, and S. W. Wilson,
eds.), The MIT Press/Bradford Books, Cambridge, MA, 1996. Submitted.

[24] R. D. Beer, “On the dynamics of small continuous-time recurrent neural
networks,” Adaptive Behavior, vol. 3, no. 4, pp. 469–510, 1995.

[25] J. R. Koza and J. P. Rice, “Genetic generation of both the weights and ar-
chitecture for neural networks,” in an IEEE International Joint Conference
on Neural Networks, pp. II–397–II–404, 1991.

[26] F. Gruau, “Artificial cellular development in optimization and compila-
tion,” in Evolvable Hardware’95 (E. Sanchez and Tomassini, eds.), Lec-
ture Notes in Computer Science, Springer Verlag, 1996.

[27] S. M. Lucas, “Evolving neural network learning behaviours with set-based
chromosomes,” in ESANN’96, 1996.

[28] D. J. Montana, “Strongly typed genetic programming,” Evolutionary Com-
putation, vol. 3, no. 2, pp. 199–230, 1995.

[29] J. Kodjabachian, “Simulating the dynamics of a six-legged animat,” tech.
rep., AnimatLab, ENS, Paris, 1996.

[30] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Sci-
ence, ch. 36: Muscles, Effectors of the Motor Systems. Prentice Hall
International Inc., third ed., 1991.

[31] F. Delcomyn, “Factors regulating insect walking,” Annual Review of Ento-
mology, vol. 30, pp. 239–256, 1985.

[32] J. Kodjabachian, “Analysis of a neural locomotion controller found by sim-
ulated evolution,” 1997. In preparation.

[33] H. de Garis, “Steerable GenNets: The genetic programming of steerable
behaviors in GenNets,” in Toward a Practice of Autonomous Systems. Pro-
ceedings of the First European Conference on Artificial Life (P. Bourgine
and F. J. Varela, eds.), pp. 272–281, The MIT Press, Cambridge, MA,
1991.

[34] Dawkins, The blind watchmaker. Longman Scientific & Technical, Essex,
England, 1986.

[35] I. Harvey, P. Husbands, and D. Cliff, “Seeing the light: Artificial evolu-
tion, real vision,” in From Animals to Animats 3. Proceedings of the Third



International Conference on Simulation of Adaptive Behavior (D. Cliff,
P. Husbands, J.-A. Meyer, and S. W. Wilson, eds.), pp. 392–401, The MIT
Press/Bradford Books, Cambridge, MA, 1994.

[36] P. Husbands, I. Harvey, and D. T. Cliff, “Analysing recurrent dynamical
networks evolved for robot control,” in Proceedings of the Third IEE In-
ternational Conference on Artificial Neural Networks, IEE Press, London.,
1993.

[37] B. Yamauchi and R. Beer, “Integrating reactive, sequential, and learning
behavior using dynamicalneural networks,” in From Animals to Animats 3.
Proceedings of the Third International Conference on Simulation of Adap-
tive Behavior (D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson, eds.),
pp. 382–391, The MIT Press/Bradford Books, Cambridge, MA, 1994.

[38] R. D. Beer, “Toward the evolution of dynamical neural networks for min-
imally cognitive behavior,” in From Animals to Animats 4. Proceedings of
the Fourth International Conference on Simulation of Adaptive Behavior
(P. Maes, M. J. Mataric, J.-A. Meyer, J. B. Pollack, and S. W. Wilson, eds.),
pp. 421–429, The MIT Press/Bradford Books, Cambridge, MA, 1996.

[39] J.-A. Meyer, “From natural to artificial life: Biomimetic mechanisms in
animat design,” Robotics and Autonomous Systems, 1997. In press.

[40] C. W. Reynolds, “Evolution of corridor following behavior in a noisy
world,” in From Animals to Animats 3. Proceedings of the Third Inter-
national Conference on Simulation of Adaptive Behavior (D. Cliff, P. Hus-
bands, J.-A. Meyer, and S. W. Wilson, eds.), pp. 402–410, The MIT
Press/Bradford Books, Cambridge, MA, 1994.

[41] K. Sims, “Evolving virtual creatures,” in Computer Graphics Proceedings,
Annual Conference Series, pp. 15–23, 1994.


