
Evolution and Development of Neural Networks
Controlling Locomotion, Gradient-Following, and

Obstacle-Avoidance in Artificial Insects
Jérôme Kodjabachian and Jean-Arcady Meyer

AnimatLab. Ecole Normale Supérieure. France.

Abstract— This paper describes how the SGOCE paradigm has been
used to evolve developmental programs capable of generating neural net-
works that control the behavior of simulated insects. This paradigm is char-
acterized by an encoding scheme, by an evolutionary algorithm, and by an
incremental strategy that are described in turn. The additional use of an in-
sect model equipped with 6 legs and two antennae made it possible to gen-
erate control modules that allowed to successively add gradient-following
and obstacle-avoidance capacities to walking behavior. The advantages of
this evolutionary approach, together with directions for future work, are
discussed.

Keywords— SGOCE Paradigm, Recurrent Neural Networks, Leaky In-
tegrators, Genetic Programming, Animats.

I. INTRODUCTION

Since the pioneering attempts of a few researchers [1], [2],
[3], [4], [5] in the late 80’s, the automatic design of artificial
neural networks using some variety of evolutionary algorithm is
a common occurrence (reviews in [6], [7], [8], [9]), in particular
in the application domains of evolutionary robotics (for a review,
see [10]) and of animat design (for a review, see [11]). However,
such an approach is not without raising specific problems [12],
notably that of choosing how to genetically encode the neural
networks produced by the evolutionary algorithm.

Indeed, it turns out that numerous encoding schemes that are
currently used in such application domains, because they im-
plement a direct so-called genotype-to-phenotype mapping, are
hampered by a lack of scalability, according to which the size of
the genetic description of a neural network grows as the square
of the network’s size. As a consequence, the evolutionary algo-
rithm explores a genotypic space that grows bigger and bigger
as the phenotypic solutions sought get more and more complex.
Moreover, it also turns out that such encoding schemes are usu-
ally not able to generate modular architectures, i.e. that they do
not allow for repeated substructures that would help to encode
complex control architectures in compact genotypes.

In [11], we have argued that it might be wise to tackle these
problems in the same way that nature does, i.e., by using an
indirect genotype-to-phenotype mapping that would insert a de-
velopmental process between the genotype and the phenotype of
an animat interacting with its environment. In [13], we have im-
plemented such a developmental process within the framework
of an incremental evolutionary approach that made it possible to
evolve 1-D locomotion controllers in 6-legged animats.

This paper reports on the extension of this approach to the au-
tomatic generation of neural networks controlling 2-D locomo-
tion and higher-level behaviors in simulated insects. It aims to
contribute to the animat approach to cognitive science [14] and
artificial life [15]. As such, it is heavily inspired by the work

of Beer [16] - who designed the nervous system of an artificial
coackroach capable of walking, of avoiding obstacles and of get-
ting to an odorous food source — although the controllers that
are used in the present work are evolved instead of being hand-
coded. It is also heavily inspired by the work of Beer and Gal-
lagher [17] — who let evolve the nervous system of a walking
insect — although the neural networks that are evolved here are
capable of controlling more than mere locomotion. The paper
starts with a description of the SGOCE evolutionary paradigm
and of the SWAN model of a hexapod animat that we are us-
ing. Experimental results on the evolution of artificial insects
exhibiting a tripod walking rhythm and capable of both follow-
ing an odor gradient and avoiding obstacles are then described.
The paper ends with a discussion of the results and proposes
directions for future work.

II. THE SGOCE EVOLUTIONARY PARADIGM

This paradigm is characterized by an encoding scheme that
relates the animat’s genotype and phenotype, by syntactic con-
straints that limit the complexity of the developmental programs
generated, by an evolutionary algorithm that generates the de-
velopmental programs, and by an incremental strategy that helps
producing neural control architectures likely to exhibit increas-
ing adaptive capacities.

A. The encoding scheme

SGOCE is a simple geometry-oriented variation of Gruau’s
cellular encoding scheme [18], [19], [20] that is used to evolve
simple developmental programs capable of generating neural
networks of arbitrary complexity. According to the SGOCE
scheme, each cell in a developing network occupies a given po-
sition in a 2D metric substrate and can get connected to other
cells through efferent or afferent connections. In particular, such
cells can get connected to sensory or motor neurons that have
been positioned by the experimenter at initialization time in spe-
cific locations within the substrate. Moreover, during develop-
ment, such cells may divide and produce new cells and new con-
nections that expand the network. Ultimately, they may become
fully functional neurons that participate to the behavioral con-
trol of a given animat, although they also may occasionally die
and reduce the network’s size.

SGOCE developmental programs call upon subprograms that
have a tree-like structure like those of genetic programming
[21], [22]. Therefore, a population of such subprograms can
evolve from generation to generation, a process during which
individual instructions can be mutated within a given subpro-



gram and sub-trees belonging to two different subprograms can
be exchanged.

f(Xi)
fitness

Xi

BehaviorProgram Xi Neural controller

Fig. 1. The three stages of the fitness evaluation procedure of a developmental
program (Xi). First, the program is executed to yield an artificial neural net-
work. Then the neural network is used to control the behavior of a simulated
animat that has to solve a given task in an environment. Finally, the fitness
of Program Xi is assessed, according to how well the task has been solved.

At each generation, the fitness of each developmental pro-
gram is assessed (Figure 1). To this end, the experimenter must
provide and position within the substrate a set of precursor cells,
each characterized by a local frame that will be inherited by each
neuron of its lineage and according to which the geometrical
specifications of the developmental instructions will be inter-
preted. Likewise, the experimenter must provide and position
a set of sensory cells and motoneurons that will be used by the
animat to interact with its environment. Lastly, an overall de-
scription of the structure of the developmental program that will
generate the animat’s control architecture, together with a speci-
fication of the grammar that will constrain its evolvable subpro-
grams as described further, must be supplied (Figure 2).

Each cell within the animat’s control architecture is assumed
to hold a copy of this developmental program. Therefore, the
program’s evaluation starts with the sequential execution of its
instructions by each precursor cell and by each new cell occa-
sionally created during the course of development (Figure 3).
At the end of this stage, a complete neural network is obtained,
whose architecture will reflect the geometry and symmetries ini-
tially imposed by the experimenter, to a degree that depends on
the side-effects of the developmental instructions that have been
executed. Through its sensory cells and its motoneurons, this
neural network is then connected to the sensors and actuators of
the insect model to be described later. This, together with the use
of an appropriate fitness function, makes it possible to assess the
network’s capacity to generate a specific behavior. Thus, from
generation to generation, the reproduction of good controllers
– and hence of good developmental programs – can be favored
to the detriment of the reproduction of bad controllers and bad
programs, according to standard genetic algorithm practice [23].

In the present application, a small set of developmental in-
structions can be included in evolvable subprograms (Table I). A
cell division instruction (DIVIDE) makes it possible for a given
cell to generate a copy of itself. A direction parameter (�) and
a distance parameter (r) associated with that instruction specify

?

GRAM-1

Sensory cell Precursor cellMotoneuron

P2R2

P3R3

R0 P0 R4 P4

R1 P1 R5 P5

JP6

0

JP6

1

JP6

2

JP6

3

JP6

4

JP6

5 6

A0 U0 A2 U2 A4 U4

A1 U1 A3 U3 A5 U5

PC0 PC2 PC4

PC1 PC3 PC5

Developmental Program

R: RS-motoneuron
P: PS-motoneuron

U: UP-motoneuron
PC: precursor cellA: angle sensor

Fig. 2. Setup for the evolution of a neural network that will be used in sec-
tion III-A to control locomotion in a six-legged animat. The figure shows
the initial positions of the sensory cells, motoneurons and precursor cells
within the substrate, as well as the structure of the developmental programs
that call upon 7 subprograms. JP is a call instruction that forces a cell to
start reading a new subprogram. Only subprogram 6 needs to be evolved.
Its structure is constrained by the GRAM-1 tree-grammar (to be described
in section II-B). Additional details are to be found in the text.

the position of the daughter cell to be created in the coordinates
of the local frame attached to the mother cell. Then, the local
frame associated to the daughter cell is centered on this cell’s
position and is oriented as the mother cell’s frame (Figure 4).
Two instructions (GROW and DRAW) respectively create one
new efferent and one new afferent connection. The cell to be
connected to the current one is the closest to a target position
that is specified by the instruction parameters, provided that the
target position lays on the substrate (Figure 4). No connection
is created if the target is outside of the substrate’s limits. An-
other instruction called GROW2 will be used in sections III-B
and III-C below. It is similar to instruction GROW but creates
a connection from a cell in a given neural module to another
cell in another module. The synaptic weight of a new connec-
tion is given by the parameter w. Two additional instructions
(SETTAU and SETBIAS) specify the values of a neuron’s time
constant � and bias b. Finally the instruction DIE causes a cell
to die.

Neurons of intermediate complexity between abstract binary
neurons and detailed compartmental models are used in the



GROW(.1, 10, -1)

DRAW(.5, 10, 2)

-1

GROW(.1, 10, -1)

DRAW(.5, 10, 2)

-1

2

GROW(.1, 10, -1)

DRAW(.5, 10, 2) 2 2

-1-1

GROW(.1, 10, -1)

DRAW(.5, 10, 2)

GROW(.9,10, 1) GROW(.9,10, 1)

GROW(.9,10, 1)GROW(.9,10, 1)

2

-1
-1

2

1

Step 2

Step 4
Final phenotype

Step 1

Step 3

DIVIDE(.8, 5)

DIVIDE(.8, 5) DIVIDE(.8, 5)

DIVIDE(.8, 5)

y

x

GROW(.1, 10, -1)

GROW(.9,10, 1)

precursor cell

motoneurons

sensory cell

S0

M0 M1

Genotype
Developmental

Substrate

Environment

Organism

DIVIDE(.8, 5)

DRAW(.5, 10, 2)

DIE

DIE

SETTAU(.5)

DIE

DIE

DIE

SETTAU(.5)

SETTAU(.5)

SETTAU(.5)

SETTAU(.5)

Fig. 3. The developmental encoding scheme of SGOCE. The genotype that specifies the animat’s nervous system is encoded as a grammar tree whose nodes are
specific developmental instructions. Within such chromosomes, mutations change one branch into another, and crossovers swap branches. Each cell in the
developping network reads the chromosome at a different position. More or less developmental steps are required to generate a phenotype, depending upon the
length of the corresponding genotype.

DIVIDE � r create a new cell
GROW � r w create a connection to another cell
DRAW � r w create a connection from another cell
SETBIAS b modify the bias parameter
SETTAU � modify the time constant parameter
DIE trigger cellular death

TABLE I

developping cell neuron

α

r

DIVIDE α r

GROW xγ

β

γ

s

t

GROW β w

DIVIDE α r

GROW xγGROW β w

DIVIDE α r

GROW xγGROW β ws t s tts

w

x

B) C)A)

Fig. 4. The effect of a sample developmental code. A) When the upper cell
executes the DIVIDE instruction, it divides. The position of the daughter
cell in the mother cell’s local frame is given by the parameters � and r of
the DIVIDE instruction, which respectively set the angle and the distance at
which the daughter cell is positioned. B) Next, the mother cell reads the left
sub-node of the DIVIDE instruction while the daughter cell reads the right
sub-node. C) As a consequence, a connection is grown from each of both
cells. The two first parameters of a GROW instruction determine a target
point in the local frame of the correspondingcell. The connection is realized
with the cell closest to the target point — a developingcell, an interneuron, a
motoneuron or a sensory cell — and its synaptic weight is given by the third
parameter of the GROW instruction. Note that, in this specific example, the
daughter cell being closest to its own target point, a recurrent connection
is created on that cell. Finally, the two cells stop developing and become
interneurons.

present application. Contrary to neurons used in traditional PDP
applications [24], [25], such neurons exhibit an internal dynam-
ics. However, instead of simulating each activity spike of a real
neuron, the leaky-integrator model used here only monitors each
neuron’s average firing frequency. According to this model, the
mean membrane potentialmi of a neuron Ni is governed by the
equation:

� � dmi�dt � �mi �
X

wi�jxj � Ii

where xj � ���e��mj�Bj ���� is the neuron’s short-term av-
erage firing frequency, Bj is a uniform random variable whose
mean bj is the neuron’s firing threshold, and � is a time con-
stant associated with the passive properties of the neuron’s mem-
brane. Ii is the input that neuron Ni may receive from a given
sensor, and wi�j is the synaptic weight of a connection from
neuron Nj to neuron Ni. This model has already been used in
several applications involving continuous-time recurrent neural
network controllers [17], [26], [19], [27]. It has the advantage
of being a universal dynamics approximator [28], i.e., of being
likely to approximate the trajectory of any smooth dynamic sys-
tem.

B. Syntactic restrictions

In order to reduce the size of the genetic search-space and
the complexity of the generated networks, a context-free tree-
grammar is used to impose each evolvable subprogram to have
the structure of a well-formed tree. For instance, Figure 5 shows
the GRAM-1 grammar used in Section III-A to constrain the
structure of the subprograms that participate in the developmen-
tal process of locomotion controllers.

The set of terminal symbols consists of the developmental in-
structions listed in Table I and of additional structural instruc-
tions that have no side-effect on the developmental process. NO-
LINK is a “no-operation” instruction. DEFBIAS and DEFTAU



Terminal symbols

DIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start1, Level1, Level2, Neuron, Bias, Tau, Connex, Link.

Production rules

Start1��DIVIDE(Level1, Level1)

Level1��DIVIDE(Level2, Level2)

Level2��DIVIDE(Neuron, Neuron)

Neuron��SIMULT3(Bias, Tau, Connex) j DIE

Bias��SETBIAS j DEFBIAS

Tau��SETTAU j DEFTAU

Connex��SIMULT4(Link, Link, Link, Link)

Link��GROW j DRAW j NOLINK

Starting symbol

Start1.

Fig. 5. The GRAM-1 grammar.

leave the default value of the parameter b and � unchanged.
These instructions label nodes of arity 0. SIMULT3 and SI-
MULT4 are branching instructions that allow the sub-nodes of
their corresponding nodes to be executed simultaneously. The
introduction of such instructions makes it possible for the re-
combination operator to act upon whole interneuron descrip-
tions or upon sets of grouped connections, and thus to hopefully
exchange meaningful building blocks. Those instructions are
associated to nodes of arity 3 and 4, respectively.

As a consequence of the use of syntactic constraints that pre-
define the overall structure of a developmental program, the tim-
ing of the corresponding developmental process is constrained.
First divisions occur, then cells die or parameters are set, and fi-
nally connections are grown. No more than three successive di-
visions can occur and the number of connections created by any
cell is limited to four. Thus, the final numbers of interneurons
and connections created by a subprogram well-formed accord-
ing to GRAM-1 cannot be greater than 8 and 32 respectively.

C. Evolutionary algorithm

To slow down convergence and to favor the apparition of eco-
logical niches, the SGOCE evolutionary paradigm resorts to a
steady state genetic algorithm that involves a population of N
randomly generated well-formed programs distributed over a
circle and whose functioning is sketched in Figure 6.

The following procedure is repeated until a given number of
individuals have been generated and tested:
1. A positionP is chosen on the circle.
2. A 2-tournament selection scheme is applied, in which the
best of two programs randomly selected from the neighborhood
of P is kept1.
3. The selected program is allowed to reproduce and three ge-
netic operators possibly modify it. The recombination operator
is applied with probability pc. It exchanges two compatible2

�A program’s probability ps of being selected decreases with the distance d
to P : ps � max�R � d� ���R�, with R=4. Programs for which d is greater
than or equal to R cannot be selected (ps=0)
�Two sub-trees are compatible if they are derived from the same grammatical

ReplacementSelection

Evaluation

Random Initialization

Mate

Genetic operators

Local
Neighborhood

Population of Chromosomes

Fig. 6. The evolutionary algorithm. See text for explanation.

sub-trees between the program to be modified and another pro-
gram selected from the neighborhood of P . Two types of muta-
tion are used. The first mutation operator is applied with proba-
bility pm. It changes a randomly selected sub-tree into another
compatible, randomly generated one. The second mutation op-
erator is applied with probability �. It modifies the values of a
random number of parameters, implementing a constant pertur-
bation strategy [29]. The number of parameters to be modified
is drawn from a binomial distributionB�n� p�.
4. The fitness of the new program is assessed by collecting
statistics while the behavior of the animat controlled by the cor-
responding artificial neural network is simulated over a given
period of time.
5. A 2-tournament anti-selection scheme, in which the worse
of two randomly chosen programs is selected, is used to decide
which individual (in the neighborhood of P ) will be replaced by
the modified program.

In all the experiments reported in this paper, pc � ���, pm �
���, n � � and p � ��	.

D. Incremental methodology

The SGOCE paradigm resorts to an incremental approach that
takes advantage of the geometrical nature of the developmental
model. In a first evolutionary stage, locomotion controllers for
a simulated insect are evolved. At the end of that stage, the
developmental program corresponding to the best evolved con-
troller is selected to be the locomotion module used thereafter
(section III-A). During further evolutionary stages, other neural
modules are evolved that control higher-level behaviors. These
modules may influence the locomotion module by creating inter-
modular connections. For instance, Figure 7 shows how the suc-
cessive connection of two additional modules with a locomotion
controller has been used in the experiments reported below to
first generate a gradient-following behavior (section III-B) and
then to generate additional obstacle-avoidance capacities (sec-
tion III-C).

E. The SWAN model

The experimental results to be described herein made use of
the SWAN model of a simulated walking animat [30] that is

variable, like Start1, Level1, etc., in Figure 5.



Module 3 Module 2 Module 1

precursor cellsensory cellmotoneuron

Fig. 7. The SGOCE incremental approach. During a first evolutionary stage,
Module 1 is evolved. This module receives proprioceptive information
through sensory cells and influences actuators through motoneurons. In
a second evolutionary stage, Module 2 is evolved. This module receives
specific exteroceptive information through dedicated sensory cells and can
influence the behavior of the animat by making connections with the neu-
rons of the first module. Finally, in a third evolutionary stage, Module 3 is
evolved. Like Module 2, it receives specific exteroceptive informations and
it influences Module 1 through inter-incremental connections. In the present
work, no connections between Module 2 and Module 3 are allowed.

inspired by the work of Beer and Gallagher [17]. Each of the
6 legs of the animat is equipped with two pairs of muscles that
allow control of its angular position and of the height of its foot
(Figure 8, Left).

For three of those muscles, a corresponding motoneuron spec-
ifies the value of the resting length parameter in a simple muscle
model (Figure 8, Middle). Furthermore, each leg is equipped
with a sensor that measures the leg’s angular position �. Thus
the available motors and sensors correspond to those of Beer
and Gallagher’s simulated insect [17]. However, a difference
with Beer and Gallagher’s scheme is that the foot status (up or
down) is not determined by the state of the corresponding UP-
motoneurons only. More realistically, instantaneous foot posi-
tions are determined by the dynamics of the physical model of
the animat.

Additionally, depending upon the activity level of the PS-
and RS-motoneurons, forces acting on the animat’s body can be
greater on one side than on the other. This entails leg displace-
ments from a vertical plane and the triggering of return forces
proportional to the angular displacement � that are responsible
for the animat’s rotations (Figure 8, Right).

Lastly, the SWAN model allows for the monitoring of the an-
imat’s overall equilibrium. When the animat sets upright after
having fallen, the weight of its body opposes the force exerted
by the UP-muscles, thus lengthening the return to stability.

A

ϕ

y

x

u

l(u)
k

k, l

tunable muscle:

non-tunable muscle:

A

x

y

F

UP

θ

DOWN

Return force
PS

RS

Fig. 8. The SWAN model. Left: According to the former version of this model
[13], each leg has two degrees of freedom. Thanks to the antagonistic PS-
(Power Strike) and RS- (Return Strike) muscles a leg can rotate around an
axis �Ay� orthogonal to the plane of the figure. The UP- and DOWN-
muscles allow the position of the foot F to be translated along the �Ax�
axis. The resting lengths of the tunable PS-, RS- and UP-muscles depend on
the activity levels u of the corresponding motoneurons. The resting length
of the DOWN-muscle is supposed to be non-tunable. Middle: A muscle is
modeled as a spring of fixed stiffness k and of (possibly variable) resting
length l (after [31]). Right: In the extended model of the hexapod animat
that has been used herein, each leg is afforded a third degree of freedom and
can accordingly deviate from the vertical plane parallel to the body axis. In
this case, a return force proportional to the deviation tends to bring the leg
back to the vertical plane.

III. EXPERIMENTAL RESULTS

The SGOCE methodology and the SWAN model have been
used to evolve the developmental programs of neural networks
that are able to control 2D-locomotion, gradient following and
obstacle avoidance in a 6-legged animat. This has been possible
thanks to a 3-stage incremental approach, according to which
an efficient locomotion controller was first generated and then
connected to two additional controllers. The first one permit-
ted the simulated insect to reach a given odor source, while the
second provided the added capacity of avoiding obstacles while
walking towards the odorous goal.

A. 2D-locomotion

Results concerning the automatic production of 1D-
locomotion controllers have been reported at length elsewhere
[13]. In particular, it has been shown that some of the neural
networks that have been obtained were capable of generating a
tripod gait because they called upon 4 central pattern genera-
tors that were responsible for the rhythmic movements of the
middle and back legs. Moreover, suitable connections were re-
sponsible for the synchronization of each tripod, according to
which the front and back legs on each side of the animat were
moved in synchrony with the middle leg of the opposite side.
Likewise, other connections were making for phase opposition
in the rhythms of the two opposite tripods.

Such results have been obtained with a 1D version of the
SWAN model in which only 2 degrees of freedom were afforded
to each animat’s leg. The fitness function was the distance cov-
ered during the evaluation augmented by a term encouraging any
leg motion:

f � x�tmax� �

Z tmax

t��
�
X
p

j
d�p
dt

�t�j�
X
p

j
dhp
dt

�t�j�dt

where x�t� was the position of the animat’s center of mass at
time t, tmax was the evaluation time, and �p�t� and hp�t� were



GROW

GROW

GROW

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

GROW

SETBIAS
GROW

GROW

GROWSETTAU

SETBIAS
GROW

GROW

SETTAU GROW

SETBIAS
GROW

GROW

SETTAU GROW

SETBIAS
GROW

GROW

GROWSETTAU

SETBIAS

SETTAU

SETBIAS

SETTAU

SETBIAS

DRAW

NOLINK

DIE

DRAW

NOLINK

NOLINK

DRAW

DRAW

DRAW

NOLINK

DEFTAU DRAW

DRAW

NOLINK

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

Develomental time

Fig. 9. Left: A developmental subprogram obtained for the locomotion task after 100.000 selection-replacement events. Instructions parameters are not shown.
Right: The corresponding developped locomotion network. Filled lines are excitatory connections, dotted lines are inhibitory connections. Fan-in connection
arrive at the top and fan-out connections depart from the bottom of each neuron [13].

the angular position and the height of leg p at time t [30]. Al-
though no explicit selection pressure was introduced for not
falling, falls were implicitly penalized because the stepping up-
right process slowed down locomotion.

The extension of this approach to 2D-locomotion has been
straightforward because it only entailed adding a third degree
of freedom to the SWAN model, as described in section II-E
above. In other words, simply modifying the SWAN model
made it possible for a previously generated 1D-locomotion con-
troller to generate tripod walking in a 2D-environment. Fig-
ure 9 shows the best developmental subprogram (subsequently
called LOCO1) that has been obtained after 100,000 selection-
replacement events had been made by the genetic algorithm in
a population of 200 programs. It also shows the corresponding
neural network, which included 38 interneurons and 100 con-
nections — after useless interneurons and connections had been
pruned — and which will serve as Module 1 in the subsequent
experiments described herein. Several 2D-trajectories generated
by Module 1, together with an illustration of the tripod gait ob-
tained, are shown on Figure 10: the turning direction of the ani-
mat depends upon initial conditions but, after a transitory period,
straight locomotion resumes.

It thus appears that using Module 1 and the extended SWAN
model together affords the simulated insect the possibility of
walking straight ahead and of changing direction, provided that
some dissymetry is imposed to the activity levels of motoneu-
rons controlling leg and foot movements on each side of the
animat. In the following sections, such a dissymetry will be
generated through new connections brought by additional neu-
ral controllers.

B. Gradient-following

In this section, a new neural module is used to control the
already evolved locomotion module in order to solve a goal-
seeking task.

To this end, we evolved a gradient following module that re-
ceived information from two sensors, each measuring the inten-

-80

-60

-40

-20

0

20

40

60

80

-10 0 10 20 30 40 50 60 70 80

Fig. 10. Top: Tripod gait produced by an animat controlled by the controller
shown in figure 9. The horizontal axis represents time. A dot is plotted
when the corresponding leg is raised. Legs are numbered as in Figure 2.
Bottom: 100 trajectories generated by the controller when the extended
SWAN model was used. All the trajectories start from the same point �����.
Differences in the random number sequences used to implement neuronal
noise lead to differences in the initial turning directions.

sity of an odor signal perceived at the tip of an antenna. This
intensity decreased with proportion to the square of the distance
from an odorous source.

The gradient following module stemmed from two precursor
cells that read the same developmental subprogram and executed
its instructions in a symetric way (Figure 11). It had the pos-
sibility of influencing the behavior of the locomotion module
through inter-incremental connections created during develop-
ment. A new developmental instruction (GROW2) was used
to create a connection from a cell in the second module to a
cell in the locomotion module. This instruction worked like the



LOCO1

GRAM-2

?

P2R2

P3R3

R0 P0 R4 P4

R1 P1 R5 P5

A0 U0 A2 U2 A4 U4

A1 U1 A3 U3 A5 U5

PC0 PC2

PC3 PC5

Module 1

PC7

PC6

Module 2

O1

O0

5

JP8

4

JP8

3

JP8

2

JP8

1

JP8

7

JP9
WAIT1
DRAW

6

JP9
WAIT1
DRAW

0

JP8

PC4

98

O: odor sensor

PC1

Developmental Program

Fig. 11. Setup for the evolution of a goal-seeking controller. DRAW instruc-
tions in subprograms 6 and 7 create a default connection between a precur-
sor cell of Module 2 and the associated sensory cell. These connections are
copied to any daughter cell the precursor cells may have. WAIT instructions
are necessary to synchronize the developments of the two modules because
Module 1 goes through 3 division cycles while Module 2 goes through only
2 such cycles. Sub-Program 9 is evolved according to the GRAM-2 tree-
grammar (specified in Figure 12 below).

Terminal symbols

DIVIDE, GROW, DRAW, GROW2, SETBIAS, SETTAU, DIE,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start1, Level1, Neuron, Bias, Tau, Connex, Link.

Production rules

Start1��DIVIDE(Level1, Level1)

Level1��DIVIDE(Neuron, Neuron)

Neuron��SIMULT3(Bias, Tau, Connex) j DIE

Bias��SETBIAS j DEFBIAS

Tau��SETTAU j DEFTAU

Connex��SIMULT4(Link, Link, Link, Link)

Link��GROW j DRAW j GROW2 j NOLINK

Starting symbol

Start1.

Fig. 12. The GRAM-2 grammar.

instruction GROW except that the geometric parameters were
interpreted in the local frame’s orthogonal projection into the
locomotion module3.

The GRAM-2 Grammar (Figure 12) defines the set of devel-
opmental subprograms that were used for Module 2. The cor-
responding subprograms could create at most 4 neurons and 16
connections. Because such subprograms were executed by both
precursor cells, this resulted in a maximum of 8 neurons and 32
connections in Module 2.

To evaluate the fitness of each program, a set of N � 	 envi-
ronments envi with different source positions was used. In each
environment, the animat’s task was to reach the source of odor,
considered as a goal. The animat always started from the same

�The second module had the same dimensions as the first and was considered
to be positioned above it.

position and was allowed to walk for a given time tmax, or until
it reached the goal. This event was considered to have occured
if the point X situated between the tips of the animat’s two an-
tennae came close enough to the source S. The corresponding
fitness function was:

f�envi� � t
�i�
end �min

n
d�X�t�� S�t��� t � 
�� t

�i�
end�
o

fitness �

P
i f�envi�

N

where t
�i�
end was the time at which the evaluation in Environ-

ment envi stopped.
This function rewarded animats that quickly approached the

source during the evaluation.
Five different experiments have been done, each starting with

a different initial population. In each experiment, individuals
able to reach the source in each of the five positions of the learn-
ing set were obtained after 20.000 selection-replacement events.
Such abilities proved to be general enough for allowing the ani-
mat to reach the goal in almost any other positions, which some-
times required lengthening the evaluation time tmax (Figure 13).

Figure 14 describes how the gradient following capacities are
implemented in the control architecture of the animat whose be-
havior is shown in Figure 13. This animat’s Module 2 contains
6 interneurons and 22 connections. Subsequently, the develop-
mental program of this module will be called GRAD1.

C. Obstacle-avoidance

In this section, we seek to implement a minimal reactive nav-
igation system that allows an animat to both follow an odor-
gradient and to avoid obstacles.

To this end, capitalizing on the developmental subprograms
LOCO1 and GRAD1 previously generated, we let evolve a
Module 3 that added obstacle-avoidance capacities to those of
walking and gradient-following already secured. This module
stemmed from two precursor cells that read the same develop-
mental subprogram and executed its instruction in a symetric
way (Figure 15). It was assumed to receive information from
two sensors, each indicating if an antenna got into contact with
an obstacle, and it could influence the behavior of the locomo-
tion module through inter-incremental connections created dur-
ing the evolutionary process. To avoid parasitic interferences, no
inter-incremental connections from Module 3 to Module 2 were
allowed. The GRAM-3 grammar that was used is described in
Figure 16. It only permitted each precursor cell to grow at most
four connections to neurons of Module 1.

To evaluate the fitness of each program, a set ofN � 	 differ-
ent environments envi, each containing a source of odor (goal)
and several obstacles, has been used. In each environment, the
behavior of the animat was simulated until a final time tmax was
reached or until the animat reached the goal. When an obstacle
was hit, the animat could no longer move until the end of the
trial. The corresponding fitness function was:

f�envi� �
�

t
�i�
end

�
�
d�X���� S���� � d�X�t�i�

end
�� S�t�i�

end��
�

�

Z t
�i�
end

�

s�t� � dt



a) b) c)

d) e) f)

g) h) i)

Fig. 13. Generalization experiments for the gradient-following task. An animat, which has been selected to reach a goal in 5 different test positions, is tested against
9 other goal positions. When the animat occasionally misses the goal (as in cases f and g), it may nevertheless reach it later (as in case h) if the evaluation time
is lengthened.

inhibitory

Polysynaptic

Monosynaptic

connection

connection

Monosynaptic

connection

excitatory

R4U2

U3 R5

H2

H1

H0

G2

G1

G0

D1

C1

O0

O1

Fig. 14. Gradient following mechanism for the animat of Figure 13. The activity of the two odor sensorsO� andO� are compared thanks to the reciprocal inhibitory
connection between neuronsG� andH�. When the goal is on the right of the animat, InterneuronH� wins the competition against G�. If such is the case, a
rotation towards the goal is instigated by the inhibition of MotoneuronR�, that prevents the right hind leg from rising. As soon as the difference between the
signals received by both antennae becomes small enough, straight locomotion resumes. The inhibitory connection from InterneuronH� to InterneuronC� in
Module 1 seems to play no meaningful functional role.



Module 2 Module 1Module 3

GRAD1LOCO1 ?

GRAM-3

PC7

PC6

O0

O1

PC8

PC9

C1

C0 P2R2

P3R3

R0 P0 R4 P4

R1 P1 R5 P5

A0 U0 A2 U2 A4 U4

A1 U1 A3 U3 A5 U5

PC0 PC2 PC4

PC1 PC3 PC5

JP10 JP10

9

JP12
WAIT3
DRAW JP10

8

JP12
WAIT3
DRAW JP10

JP11
WAIT1
DRAW JP10

JP11
WAIT1
DRAW JP10

0 1 2 3 4

Developmental Program

5 6 7 10 11 12

C: contact sensor

Fig. 15. Setup for the evolution of an obstacle-avoidance controller. DRAW
instructions in subprograms 6 to 9 create a default connection between a
precursor cell of Modules 2 or 3 and the associated sensory cell. These
connections are copied to any daughter cell the precursor cells may have.
WAIT instructions are added to synchronize the developments of the dif-
ferent modules because Module 1 goes through 3 division cycles, while
Module 2 goes through only 2 such cycles, and Module 3 does not lead to
any division. Sub-program 12 is evolved according to the GRAM-3 tree-
grammar specified in Figure 16 below.

Terminal symbols

GROW2, SETBIAS, SETTAU,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start1, Bias, Tau, Connex, Link.

Production rules

Start1��SIMULT3(Bias, Tau, Connex)

Bias��SETBIAS j DEFBIAS

Tau��SETTAU j DEFTAU

Connex��SIMULT4(Link, Link, Link, Link)

Link��GROW2 j NOLINK

Starting symbol

Start1.

Fig. 16. The GRAM-3 grammar.

fitness �

P
i f�envi�

N

where t
�i�
end was the time at which the evaluation in Environ-

ment envi stopped, and s�t� was set to � if the animat was sta-
ble at time t and to � otherwise. The first term in the func-
tion rewarded an individual according to the rate of decrease of
its distance to the goal during the evaluation. The second term
explicitely favored individuals that did not fall and will be dis-
cussed later on.

Again, five different experiments have been done, each start-
ing with a different initial population. In each experiment, indi-
viduals able to reach the source and to avoid obstacles in each
of the five environments of the learning set were obtained after
20.000 selection-replacement events. Besides being surrounded
or not by a rectangular wall, these test environments only con-
tained circular obstacles. Generalization experiments, where in-
dividuals were tested in new environments, were often success-
full, although some difficulties avoiding collisions with obsta-
cles exhibiting sharp corners have been noticed (Figure 17).

Figure 18 describes how the obstacle avoidance capacities are
implemented in the control architecture of the animat whose be-

havior is shown in Figure 17. The corresponding Module 3 con-
tains 2 interneurons and 6 connections.

IV. DISCUSSION

Insofar as the use of the SGOCE paradigm only requires that
the experimenter provides a means of connecting the network’s
input and output neurons to the problem domain, together with
a suitable fitness function, this paradigm should prove useful
for the automatic design of neural networks in many application
area. Thanks to the possibility of using appropriate grammars,
it is likely to reduce the complexity of the networks it generates.
However, it should be stressed that recourse to developmental
programs to evolve neural networks has probably numerous con-
sequences that are yet to be fully understood and assessed. In
particular, it will probably be very difficult and counter-intuitive
to understand the role that mutations and crossovers may have
depending upon where they occur within tree-like developmen-
tal programs. It is, for instance, well known that a mutation
occurring in the part of a genotype that is expressed in an early
developmental phase will have more extensive consequences on
the final phenotype than a mutation occurring in a late phase.
Because it is already very difficult to adapt the genetic operators
of traditional evolutionary algorithms so that they can select and
favor useful building blocks, it is possible that the acquisition
of the corresponding empirical or theoretical knowledge will be
much more difficult and lengthy for applications resorting to a
developmental process.

Be that as it may, results that have been obtained here prove
that the SGOCE evolutionary paradigm provides a convenient
means of generating neural networks capable of controlling the
behavior of an animat. In particular, such results go further
than any previous attempt [32], [17], [33], [29], [19] at au-
tomatically designing the control architecture of simulated in-
sects or real 6-legged robots, attempts that have been limited
to the evolution of mere straight locomotion controllers. As
compared to the way these attempts were conducted, the effi-
ciency of the SGOCE paradigm is probably due to the com-
pact encoding it affords, thus tremendously reducing the size
of the search space that other approaches are committed to ex-
plore. This paper also demonstrates that the incremental ap-
proach on which the SGOCE paradigm relies makes it possible
to progressively enrich an animat’s behavioral repertoire by cap-
italizing upon already functional neural networks whose inner
workings are modulated by additional control modules. Such
capacities are afforded by the geometry oriented processes of
axonal growth that have been added to Gruau’s basic encoding
scheme [19]. SGOCE’s incremental approach is similar to that
used by Brooks [34] for the hand design of so-called subsump-
tion architectures. It is also similar to the methodology advo-
cated by de Garis [32] and by Harvey et al. [35]. Lastly, it is
commonly used by nature to build control hierarchies [36] that
are responsible for the adaptive behavior of animals.

Recourse to grammars constraining the structure of the devel-
opmental programs is not mandatory, although it helped in the
present application to reduce the complexity of the evolved con-
trollers and, thus, to reduce simulation time. In [37] a locomo-
tion controller that has been evolved in the absence of syntactic
constraints is presented: it exhibits 192 neurons and 2222 con-



a) b) c)

d) e) f)

g) h) i)

Fig. 17. Experimental results obtained when gradient-following and obstacle-avoidance behaviors are evolved. Cases (a-c) show the animat’s trajectory within 3
out of the 5 test environments. Cases (d-i) show results of generalization experiments, in 6 new environments. The animat can deal with obstacle shapes never
met during evolution (f-i). However, it cannot always avoid hitting sharp corners (h).

nections. However, it should be stressed that a potential draw-
back of using grammars is that the controllers thus generated
may be too constrained. For instance, in the absence of addi-
tional experiments, one cannot dismiss the possibility that a less
stringent grammar than GRAM-3 might have permitted the in-
clusion of more neurons and connections into Module 3, which
would have improved obstacle-avoidance behavior and helped
to deal more efficiently with sharp corners. Such a remark sug-
gests future interesting research directions, which would let the
grammars co-evolve with the developmental programs.

Likewise, although efficient overall behaviors have been ob-
tained here while forbidding interconnections between Modules
2 and 3, it would certainly be interesting to seek how to opti-
mize the animat’s control architectures, for instance thanks to
using co-evolving modules. In particular, in the absence of ad-
ditional experiments, one may wonder whether the absence of
suitable interconnections was not responsible for some antago-
nistic effects that Modules 2 and 3 had with respect of Module 1,
antagonistic effects that were responsible for the animat’s high
falling rate in preliminary experiments. Although such effects
have been cured by adding a second term penalizing falls in the
fitness function of section III-C, future work might reveal that
proper interconnections — like those that have been hand-coded
by Beer [16] — are more suited to this end.

In the same manner, the solutions described in this paper were
certainly heavily determined by the initial setups that have been
used. In particular, according to their respective positions in the
substrate, some cells had a better chance of getting connected
to each other than did others. This, in particular, was the case
with sensors, motoneurons and precursor cells whose initial po-
sitions were set by the experimenter, and which were, therefore,
more or less likely to be incorporated into the final, developed
neural network. Here again, a possible way of combating the
negative consequences of an experimenter’s arbitrary choice is

to let the morphology of the animat co-evolve with its control
architecture, an approach already explored by others [38], [39].

Finally, co-evolution could be used to let the learning set co-
evolve with the animat population, so as to propose the most
challenging environmental situations according to current pop-
ulation abilities. Such a possibility has been first proposed by
Hillis [40] and further explored in [41], [42], [43].

The present work also demonstrates that, among the different
paradigms that have been used to evolve the control architecture
of an animat —- e.g., Lisp functions [21], [44], logic trees [45],
[46], classifier systems [47] — recurrent artificial neural net-
works exhibit several specific and attractive features. Besides
being universal dynamics approximators as already mentioned,
it turns out that they are low-level, non specific primitives that
can be combined to give rise to several mechanisms known to
be at work in the control architectures of animals [48]. Thus,
inside the controllers that have been evolved in this work, it is
possible to identify reflexes and feedback mechanisms, together
with oscillators and central pattern generators. Other mecha-
nisms, like chronometers and rudimentary memories, have also
been observed in a previous work [13]. Furthermore, incremen-
tal architectures like those that have been sought and generated
herein are also known to be exhibited by the nervous systems of
animals. Simple connections between such modules proved to
be sufficient to control behaviors of increasing complexity, but
the generality of this finding remains to be assessed. In particu-
lar, it will be enlightening to see how far such an approach could
lead towards the discovery of more cognitive abilities than the
simple stimulus-response pathways that have been evolved so
far.

There are several research directions to be investigated in or-
der to improve the behavior of the insects that have been syn-
thetized here. In particular, it turns out that the locomotion con-
troller that has been evolved as Module 1 is perfectly capable of



excitatory

connection

connection

connection

Polysynaptic

inhibitory

Monosynaptic

Monosynaptic
I0

J0

C1

C0

R0U0 U2

U3R1U1

D4

C4

Fig. 18. Obstacle avoidance mechanism for the animat of Figure 17. When the right antenna contacts an obstacle, the corresponding sensory cell C� sends an
excitatory signal to Interneuron J�. If the intensity of this signal is sufficient, the interneuron modulates the locomotion behavior so as to turn left, mainly by
inhibiting motoneuronU�, thus preventing the left front leg from rising. As soon as the right antenna does no longer detect the obstacle, straight locomotion
resumes. The effect of the excitatory connection from Interneuron J� to Interneuron D� of Module 1 is more difficult to elucidate, although it has been
observed that the presence of this connection enhances the obstacle avoidance behavior.

generating backward locomotion. Therefore, recourse to appro-
priate fitness functions would probably lead to the generation of
animats exhibiting improved obstacle-avoidance behavior that
would, in particular, be able to escape from dead-ends.

It may likewise be hoped that the extension of the results
described in [13], which lead to the automatic discovery of a
switch device, will make it possible to implement more com-
plex memory mechanisms in the animat’s control architecture.
This, together with the use of additional sensors that would af-
ford minimal visual capacities, might help improving the ani-
mat’s navigation behavior if it could detect and memorize spe-
cific landmarks in its environment.

Lastly, additional developmental instructions could be de-
vised that would allow the synaptic weights of some connections
to be changed during an animat’s lifetime, thanks to an individ-
ual learning process. In a similar manner, other developmen-
tal instructions could be devised that would allow the develop-
mental pathway to be dynamically changed depending upon the
specific interactions that the animat experiences with its envi-
ronment. Besides its operational value, every step in such direc-
tions would contribute to theoretical biology and enable to better
understand the interactions between development, learning and
evolution, i.e., the three main adaptive processes exhibited by
natural systems [11].

V. CONCLUSION

It has been shown here that the current implementation of
the SGOCE evolutionary paradigm makes it possible to au-
tomatically design the control architecture of a simulated in-
sect that is capable not only of quickly walking according to
an efficient tripod gait, but also of following an odor gradi-
ent while avoiding obstacles. Such results provide marked im-
provements over current state-of-the-art in the automatic de-
sign of straight-locomotion controllers for artificial insects or
real 6-legged robots. They rely upon specific mechanisms im-
plementing the developmental process of a recurrent dynamic
neural network and upon an incremental strategy that amounts
to fixing the architecture of functional sub-networks in a still
evolving higher-level control system. There are several ways of
improving the corresponding mechanisms, in particular by let-
ting evolve several characteristics that have been arbitrarily set
here by the experimenter, or by devising new developmental in-
structions that would add individual learning capacities to the
processes of development and evolution. Such research efforts
might be as usefull in an engineering perspective as in a contri-
bution to a better understanding of the mechanisms underlying
adaptation and cognition in natural systems.



REFERENCES

[1] W. B. Dress, “Darwinian optimization of synthetic neural systems,” in Pro-
ceedings of the IEEE First International Conference on Neural Networks,
SOS Printing, San Diego, CA, 1987.

[2] A. Guha, S. Harp, and T. Samad, “Genetic synthesis of neural networks,”
Tech. Rep. CSDD-88-I4852-CC-1, Honeywell Corporate Systems Devel-
opment Division, 1988.

[3] D. Whitley, “Applying genetic algorithms to neural net learning,” Tech.
Rep. CS-88-128, Department of Computer Science, Colorado State Uni-
versity, 1988.

[4] R. K. Belew, J. McInerney, and N. N. Schraudolph, “Evolving networks:
Using the genetic algorithm with connectionist learning,” Tech. Rep.
CS90-174, CSE, UCSD, CA, June 1990.

[5] G. F. Miller, P. M. Todd, and S. U. Hedge, “Designing neural networks
using genetic algorithms,” in Proceedings of the Third International Con-
ference on Genetic Algorithms, Morgan Kaufmann, 1989.

[6] J. Schaffer, D. Whitley, and L. Eschelman, “Combinations of genetic al-
gorithms and neural networks: A survey of the state of the art,” in Com-
binations of Genetic Algorithms and Neural Networks (D. Whitley and
J. Schaffer, eds.), IEEE Computer Society Press, 1992.

[7] I. Kuscu and C. Thorton, “Design of artificial neural networks using ge-
netic algorithms: review and prospect,” Cognitive Science Research Paper
319, ISSN 1350-3162, University of Sussex, Brighton, UK, 1994.

[8] K. Balakrishnan and V. Honavar, “Evolutionary design of neural archi-
tectures — preliminary taxonomy and guide to literature,” Tech. Rep. CS
TR#95-01, Artificial Intelligence Group, Iowa State University, 1995.

[9] J. Branke, “Evolutionary algorithms for neural network design and train-
ing,” in Proceedings of the First Nordic Workshop on Genetic Algorithms
and its Applications (Talander, ed.), (Vaasa), 1995.

[10] T. Gomi and A. Griffith, “Evolutionary Robotics — An overview,” in
Proceedings of the IEEE Third International Conference on Evolutionary
Computation, IEEE Press, 1996.

[11] J. Kodjabachian and J.-A. Meyer, “Evolution and development of con-
trol architectures in animats,” Robotics and Autonomous Systems, vol. 16,
pp. 161–182, December 1995.

[12] M. Matarić and D. Cliff, “Challenges in evolving controllers for physical
robots,” Robotics and Autonomous Systems, vol. 19, pp. 67–83, 1996.

[13] J. Kodjabachian and J.-A. Meyer, “Evolution and development of modu-
lar control architectures for 1-d locomotion in six-legged animats,” 1997.
Submitted for publication.

[14] J.-A. Meyer, “The animat approach to cognitive science,” in Comparative
Approaches to Cognitive Science (H. Roitblat and J.-A. Meyer, eds.), The
MIT Press / Bradford Books, 1995.

[15] J.-A. Meyer, “Artificial life and the animat approach to artificial intelli-
gence,” in Artificial Intelligence (M. Boden, ed.), Academic Press, 1996.

[16] R. Beer, Intelligence as Adaptive Behavior: An Experiment in Computa-
tional Neuroethology. Academic Press, San Diego, CA, 1990.

[17] R. Beer and J. Gallagher, “Evolving dynamical neural networks for adap-
tive behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91–122, 1992.

[18] F. Gruau, Synthèse de Réseaux de Neurones par Codage Cellulaire et Al-
gorithmes Génétiques. Thèse d’université, ENS Lyon, Université Lyon I,
January 1994.

[19] F. Gruau, “Automatic definition of modular neural networks,” Adaptive
Behavior, vol. 3, no. 2, pp. 151–184, 1994.

[20] F. Gruau, “Artificial cellular development in optimization and compila-
tion,” in Evolvable Hardware’95 (E. Sanchez and Tomassini, eds.), Lec-
ture Notes in Computer Science, Springer Verlag, 1996.

[21] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, 1992.

[22] J. Koza, Genetic Programming II: Automatic Discovery of Reusable Sub-
programs. The MIT Press, 1994.

[23] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[24] J. L. McClelland and D. E. Rumelhart, eds., Parallel Distributed Process-
ing, vol. 1. The MIT Press/Bradford Books, Cambridge, MA, 1986.

[25] D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Process-
ing, vol. 2. The MIT Press/Bradford Books, Cambridge, MA, 1986.

[26] D. Cliff, I. Harvey, and P. Husbands, “Explorations in evolutionary
robotics,” Adaptive Behavior, vol. 2, no. 1, pp. 73–110, 1993.

[27] D. Cliff and G. F. Miller, “Co-evolution of pursuit and evasion ii: Simu-
lation methods and results,” in From Animals to Animats 4. Proceedings
of the Fourth International Conference on Simulation of Adaptive Behav-
ior (P. Maes, M. J. Mataric, J.-A. Meyer, J. B. Pollack, and S. W. Wilson,
eds.), The MIT Press/Bradford Books, Cambridge, MA, 1996. Submitted.

[28] R. D. Beer, “On the dynamics of small continuous-time recurrent neural
networks,” Adaptive Behavior, vol. 3, no. 4, pp. 469–510, 1995.

[29] G. Spencer, “Automatic generation of programs for crawling and walking,”
in Advances in Genetic Programming (K. E. K. Jr., ed.), pp. 335–353, The
MIT Press / Bradford Books, Cambridge, MA, 1994.

[30] J. Kodjabachian, “Simulating the dynamics of a six-legged animat,” tech.
rep., AnimatLab, ENS, Paris, 1996.

[31] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Sci-
ence, ch. 36: Muscles, Effectors of the Motor Systems. Prentice Hall
International Inc., third ed., 1991.

[32] H. de Garis, Genetic Programming: GenNets, Artificial Nervous Systems,
Artificial Embryos. PhD thesis, Université Libre de Bruxelles, Belgium,
1991.

[33] M. A. Lewis, A. H. Fagg, and A. Solidum, “Genetic programming ap-
proach to the construction of a neural network for control of a walking
robot,” in IEEE International Conference on Robotics and Automation,
(Nice, France), pp. 2618–2623, 1992.

[34] R. A. Brooks, “A robot that walk: Emergent behavior form a carefully
evolved network,” Neural Computation, vol. 1, no. 2, pp. 253–262, 1989.

[35] I. Harvey, P. Husbands, and D. Cliff, “Seeing the light: Artificial evolu-
tion, real vision,” in From Animals to Animats 3. Proceedings of the Third
International Conference on Simulation of Adaptive Behavior (D. Cliff,
P. Husbands, J.-A. Meyer, and S. W. Wilson, eds.), pp. 392–401, The MIT
Press/Bradford Books, Cambridge, MA, 1994.

[36] Dawkins, The blind watchmaker. Longman Scientific & Technical, Essex,
England, 1986.

[37] J.-A. Meyer, “From natural to artificial life: Biomimetic mechanisms in
animat design,” Robotics and Autonomous Systems, 1997. In press.

[38] K. Sims, “Evolving 3D morphology and behavior by competition,” in Pro-
ceedings of the Fourth International Workshop on Artificial Life (R. A.
Brooks and P. Maes, eds.), The MIT Press/Bradford Books, Cambridge,
MA, 1994.

[39] F. Dellaert and R. D. Beer, “A developmental model for the evolution of
complete autonomousagents,” in From Animals to Animats 4. Proceedings
of the Fourth International Conference on Simulation of Adaptive Behav-
ior (P. Maes, M. J. Mataric, J.-A. Meyer, J. B. Pollack, and S. W. Wilson,
eds.), The MIT Press/Bradford Books, Cambridge, MA, 1996. Submitted.

[40] W. D. Hillis, “Coevolving parasites improve simulated evolution as an op-
timization procedure,” in Artificial Life II (C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, eds.), pp. 313–324, Addison-Wesley, 1992.

[41] J. Paredis, “Coevolutionary computation,” Artificial Life, vol. 2, no. 4,
pp. 355–376, 1995.

[42] C. D. Rosin and R. K. Belew, “Methods for competitive co-evolution:
Finding opponents worth beating,” in Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms (L. J. Eshelman, ed.), pp. 373–
380, Morgan Kaufmann, San Mateo, CA, 1995.

[43] H. Juillé and J. B. Pollack, “Dynamics of co-evolutionary learning,” in
From Animals to Animats 4. Proceedings of the Fourth International Con-
ference on Simulation of Adaptive Behavior (P. Maes, M. J. Mataric, J.-A.
Meyer, J. B. Pollack, and S. W. Wilson, eds.), pp. 526–534, The MIT
Press/Bradford Books, Cambridge, MA, 1996.

[44] C. W. Reynolds, “Evolution of corridor following behavior in a noisy
world,” in From Animals to Animats 3. Proceedings of the Third Inter-
national Conference on Simulation of Adaptive Behavior (D. Cliff, P. Hus-
bands, J.-A. Meyer, and S. W. Wilson, eds.), pp. 402–410, The MIT
Press/Bradford Books, Cambridge, MA, 1994.

[45] W.-P. Lee, J. Hallam, and H. H. Lund, “A hybrid GA/GP approach for co-
evolving controllers and robot bodies to achieve fitness-specified tasks,” in
Proceedings of the Third IEEE International Conference on Evolutionary
Computation, 1996.

[46] W.-P. Lee, J. Hallam, and H. H. Lund, “Applying genetic programming
to evolve behavior primitives and arbitrators for mobile robots,” 1997. To
appear in Proceedings of the Fourth IEEE International Conference on
Evolutionary Computation.

[47] L. B. Booker, “Classifier systems that learn internal world models,” Ma-
chine Learning, vol. 3, pp. 161–192, 1988.

[48] C. R. Gallistel, The Organization of Action: A New Synthesis. Laurence
Erlbaum Associates, Hillsdale, New Jersey, 1980.


