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Abstract

An incremental approach is used to simulate the evolution of neural
controllers for robust obstacle-avoidance in a Khepera robot and proves
to be more efficient than a direct approach. During a first evolutionary
stage, obstacle-avoidance controllers in medium-light conditions are gen-
erated. During a second evolutionary stage, controllers avoiding strongly-
lighted regions, where the previously acquired obstacle-avoidance capac-
ities would be impaired, are obtained. The best controllers thus evolved
are successfully downloaded on a Khepera robot. The SGOCE paradigm
that is used in these experiments is described in the text. Future research
will target at furthering the incremental evolutionary process and evolving
more intricate behaviors.

1 Introduction

According to a recent review [26] of evolutionary approaches to neural control
in mobile robots, it appears that the corresponding research efforts usually call
upon a direct encoding scheme, where the phenotype of a given robot — i.e.,
its neural controller and, occasionally, its body plan  is directly encoded into
its genotype. However, it has often been argued (e.g., [13, 18]) that indirect
encoding schemes  where the genotype actually specifies developmental rules
according to which complex neural networks and morphologies can be derived
from simple programs — are more likely to scale up with the complexity of the
control problems to be solved, if only because the size of the genotypic space
to be explored may be much smaller than that of the space of the resultant
phenotypes.

The feasibility of such indirect approaches, which combine the processes of
evolution and development, has been demonstrated through several simulations
[2, 7, 5, 10, 19, 20, 32, 36, 38, 39] and a few applications involving real robots
[6, 15, 16, 11, 28, 29]. However, the fact that the great majority of controllers
and behaviors that have thus been generated are very simple, together with
the difficulties encountered when more complex controllers and behaviors were



sought [11, 20], led us to suspect that so-called incremental approaches [4, 12, 23]
should necessarily be used in conjunction with indirect encoding schemes in more
realistic applications. In other words, according to such a strategy, appropriate
controllers and behaviors should be evolved and developed through successive
stages in which good solutions to a simpler version of a given problem are used
iteratively to seed the initial population of solutions likely to solve a harder
version of the same problem.

In [20] such an incremental strategy has been used to evolve and develop
neural controllers that permitted a simulated insect to successively walk, follow
an odor gradient, and avoid obstacles. In this paper, it is used within the con-
text of an evolutionary robotics application, where neural controllers for robust
obstacle-avoidance in a Khepera robot are automatically generated. This work
calls upon a two-stage approach, in which controllers for obstacle-avoidance in
medium-light conditions are first evolved, and then improved to operate also
in more challenging strong-light conditions, when a lighted lamp is added into
the environment. Comparisons with results obtained under the alternative one-
shot strategy are provided and support the above-mentioned intuition about the
usefulness of an incremental approach.

2 Material and methods

This section will describe the task to be accomplished, and the SGOCE! paradigm
that underlies our methodology. This task derives from the characteristics and
limitations of the sensory motor apparatus of Khepera, which will be briefly
summarized hereafter. Likewise, a short description will be provided of how
this sensory motor apparatus has been simulated in this work. As for the de-
scription of the SGOCE methodology, it will deal successively with the develop-
mental code that links the genotype of the robot to its phenotype, the syntactic
constraints that limit the complexity of the phenotypes generated, the evolu-
tionary algorithm inspired from genetic programming [21, 22] that generates
developmental programs, and the incremental strategy that helps produce neu-
ral control architectures likely to exhibit increasingly adaptive capacities.

2.1 The obstacle-avoidance task
2.1.1 The real Khepera.

Khepera [31] is a circular-shaped miniature mobile robot  with a diameter of
55 mm, a height of 30 mm, and a weight of 70 g that is mounted on two
wheels and two small Teflon balls. In its basic configuration, it is equipped with
eight proximity sensors — six on the front, two on the back — that may also
act as visible-light detectors. The wheels are controlled by two DC motors with
incremental encoders that move in both directions.

!This name is the acronym for the expression ”Simple Geometry Oriented Cellular Encod-

”»

ing”.



In each proximity sensor of Khepera, an infra-red light emitter and receiver
are embedded. This hardware allows two things to be measured: the normal
ambient light through receivers only and the light reflected by the ob-
stacles  using both emitters and receivers. In medium-light conditions, this
hardware makes it possible to detect an obstacle a short distance away  not
more than about 5 cm. However, under strong light conditions, the correspond-
ing receptors tend to saturate : the light emitted by the robot and reflected
by obstacles cannot be distinguished from ambient light and, thus, cannot be
detected (Figure 1). Therefore, this work aims at automatically evolving a ro-
bust obstacle-avoidance controller likely to differentiate between the two light
conditions and to take appropriate motor decisions.

[Figure 1 comes about here]

In the present work, such a controller has been generated through simulations
performed under the SGOCE paradigm. Then the corresponding network has
been downloaded onto a Khepera robot and its ability to generate the requested
behavior has been checked.

2.1.2 The simulated Khepera.

A cylindrical robot like Khepera is easier to model than a robot of arbitrary
shape and with many degrees of freedom. Still, some phenomena, like friction,
cannot be simulated with precision. Also, each sensor or motor has a unique
behavior that can only be approximated in a simulation.

Our simulator is based on, and improves, an already existing simulator [27]
and makes it possible to execute the same control program, either on the simu-
lated robot or on the real one. It has four important features.

Firstly, it can be controlled by another independant program, making it
easier to interface it with an already existing evolutionary algorithm software.
This is important from a practical point of view, because the code can be reused
more easily.

Secondly, it contains a set of functions specifically designed for artificial neu-
ral network evolution. One such function makes it possible for the evolutionary
software to send to the simulator the description of a dynamic neural network,
which will be connected in a specific way with the sensors and motors of the
robot, whether real or simulated. Another function makes it possible to sim-
ulate the dynamics of that network during a given period of time, in order to
control the robot. This function returns a fitness value, which is computed on
the basis of information normally available to the robot, and which, when used
with the real robot, is run entirely on board.

A third important feature of our simulator is its speed. Integer calculations
are used to update the state of the neural network when computations are per-
formed on board. Moreover, the sensor simulation method used by Michel has



been replaced by a tabulation technique, according to which, prior to evolution,
the values returned by a sensor in a given environment are recorded in a look-
up-table for a number of different positions and orientations. Note that unlike
in [30], where the values stored were measured on the real robot, here, we syn-
thetize these values to make it easier to change the environmental conditions.
At evaluation time, the sensor values are computed by interpolation from the
values stored in the table.

Finally, another important feature to mention is the way in which sensor
behavior is modelled. As already stated, Khepera IR sensors can work in either
of two different modes. In passive mode, they return a measure m of the ambient,
light intensity I. In active mode, they return m™, a measure of the intensity
I, i.e., the sum of the ambient intensity I and of the intensity dI of the light
possibly reflected off an obstacle (Figure 1).

If the robot is at a specific position relative to a given configuration of
obstacles, then the value dI will be the same whatever the level I of the ambient,
light. The proximity measure p = K - (m —m™) can thus be used to caracterize
the presence of an obstacle. However, because the function relating intensity
to measure m is non-linear, the same dI value will not yield the same difference
(m —m™) for different levels of I. For this reason, p is not simply a function of
the intensity dI reflected from the IR-ray, but also depends on I.

We have modified Michel’s IR sensor model in order to take into account
the possible effect of the ambient light level I on p. At tabulation time, we sum
the intensities conveyed by rays emitted by punctual light sources placed in the
environment and possibly by the robot, which are received at the position of the
sensor. Only then is the value of the measure returned by the sensor computed,
using the response curve of Figure 1.

2.2 The SGOCE evolutionary paradigm

This paradigm is used to encode, into a robot’s genotype, the developmental
rules that will generate its phenotype. In the present application, this phenotype
is instantiated as a general recurrent neural network controlling the behavior of
the robot that is grown from a few initial cells provided by the experimenter.
This neural network is made up of individual neurons each behaving as a leaky
integrator [35] — i.e., it is a universal dynamics approximator, liable to approx-
imate the trajectory of any smooth dynamic system [1].

2.2.1 The developmental code.

Our encoding scheme is a simple geometric variation of Gruau’s cellular encoding
[10]. It implements developmental rules that are encoded into artificial tree-
like chromosomes that contain two categories of instructions. Some specify
morphological transformations applying to specific cells, while others are used
to generate structured developmental programs.



[Figure 2 comes about here]

This scheme also employs a two-dimensional substrate within which the ex-
perimenter initially arranges a set of sensory cells that may be connected to the
robot’s sensors, a set of motoneurons that may be connected to the robot’s actu-
ators, and a set of precursor cells from which the developmental process will be
initiated (Figure 2). Each precursor cell is given a copy of the robot’s genotype
and, as it executes the corresponding program, divides, grows connections to
other cells, differentiates into a functional neuron, or dies (Figures 3 and 4).

[Figure 3 comes about here]

[Figure 4 comes about here]

At the end of such a process, a complete neural controller is obtained, whose
architecture reflects the geometry and symmetries initially imposed by the ex-
perimenter, to a degree that depends on the side-effects of the developmental
instructions that have been carried out. This controller is connected to the
sensors and actuators of the robot through connections to the sensory cells and
motoneurons incorporated into its architecture. This, together with the use
of an appropriate fitness function (to be described later) makes it possible to
assess the controller’s capacity to generate the specific behavior sought by the
experimenter.

2.2.2 Syntactic constraints.

[Figure 5 comes about here]

In order to reduce the size of the genotypic search-space and the complexity
of the networks generated, we restrict the structure of the corresponding devel-
opmental programs by requiring that all evolving subprograms be well-formed
trees according to a given context-free tree-grammar (Figure 5). Furthermore,
such a grammar makes it possible to control the nature and size of the program
modifications that occur between two successive generations through use of ge-
netic operators like mutation or crossover. Thus, a mutation operator makes it
possible to replace a sub-tree by another randomly generated compatible? sub-
tree. Likewise, a crossover operator makes it possible to exchange a sub-tree in

2Two sub-trees are said to be compatible if they are derived from the same grammatical
variable. For instance, if grammar GRAM-A (Figure 5) is used to define the constraints on



one developmental program for a compatible sub-tree in another developmental
program.

2.2.3 Evolutionary algorithm.

To slow down convergence by favoring the creation of ecological niches, we use a
steady-state evolutionary algorithm that involves a population of N randomly-
generated well-formed programs distributed over a circle and whose mode of
operation is outlined in Figure 6.

[Figure 6 comes about here]

The following procedure is repeated until a given number of individuals have
been generated and tested:

1. A position P is chosen on the circle.

2. A two-tournament selection scheme is applied in which the better of two
programs randomly selected from the neighborhood of P is retained?.

3. The program selected is allowed to reproduce, and three genetic operators
may modify it. The recombination operator is applied with probability
pe. It exchanges two sub-trees between the program to be modified and
another program randomly selected from the neighborhood of P. Two
types of mutation are used. The first mutation operator is applied with
probability p,,. It changes one randomly selected sub-tree into another
randomly generated one. The second mutation operator is applied with
probability 1 and modifies the values of a random number of parameters,
implementing what Spencer called a constant perturbation strategy [37].
Firstly, the number n,,,; of parameters to be modified is drawn from
a binomial distribution B(n,p), and n.,,,; parameters are then selected
randomly — all parameters having the same probability of being chosen

to be mutated.

4. The fitness of the new program is assessed by collecting statistics while
the behavior of the animat controlled by the corresponding artificial neural
network is simulated over a given period of time.

5. A two-tournament anti-selection scheme, in which the worst of two ran-
domly chosen programs is selected, is used to decide which individual (in
the neighborhood of P) will be replaced by the modified program.

a given sub-program, sub-tree SIMULT3(SETBIAS, DEFTAU, SIMULT4(GROW, DRAW,
GROW, NOLINK)) in that sub-program may be replaced by sub-tree DIE, because both
sub-trees are derivations of the Neuron variable in GRAM-A.

3A program’s probability ps of being selected decreases with the distance d to P: ps =
maz(R — d,0)/R?, with R=4. Programs for which d is greater than or equal to R cannot be
selected (ps = 0).



In all the experiments reported in this paper, N = 100, p. = 0.6, p,, = 0.2,
n =06 and p = 0.5.

2.2.4 Incremental approach.

The artificial evolution of robust controllers for obstacle-avoidance was carried
out using the Khepera simulator to solve successively two problems of increasing
difficulty. Basically, this entailed evolving a first neural controller that used its
sensors in active mode to measure the proximity value p, in order to avoid obsta-
cles successfully in medium-light conditions. Then, a second neural controller
was evolved that operated in passive mode in strong-light conditions and used
measures of the ambient light level m to modulate the normal function of the
first controller. In other words, such an incremental approach relied upon the
hypothesis that the second controller would be able to evaluate the local inten-
sity of ambient light so as to change nothing in the correct obstacle-avoidance
behavior secured by the first controller in medium-lighted regions, but to alter
it in whatever adapted manner evolution would discover ~ when the robot
travelled through strong-lighted regions likely to impair the proper operation of
the first controller.

During Stage 1, to evolve the first controller and generate a classical obstacle-
avoidance behavior in medium-light conditions, the following fitness function
was used:

o (o0 ) (1 L), (o B

where v;(t) and v, (t) were the velocities of the left and right wheels, respectively;
Vinae was the maximum absolute velocity; p;(t) was the proximity measure
returned by each sensor i among the four front sensors; P,,,, was the largest
measured value that can be returned.

In the righthand part of this equation, the first factor rewarded fast con-
trollers, the second factor encouraged straight locomotion, and the third factor
punished the robot each time it sensed an obstacle in front of it.

Using the substrate of Figure 2 and the grammar of Figure 5, controllers
likely to include eight different sensory cells and four motoneurons were evolved
after a random initialization of the population. The fitness of these controllers
was assessed by letting them control the simulated robot over 500 time-steps,
in a square environment containing an obstacle (Figure 7-a).

For this purpose, the sensory cells D0 to D7 in Figure 2 were connected to
the robot’s sensors such that the instantaneous activation value each cell propa-
gated throught the neural network to the motoneurons was set to the proximity
measure p returned by the corresponding sensor. Likewise, the motoneurons
were connected to the robot’s actuators such that a pair of motoneurons was
associated with each wheel, the difference between their inputs determining the
speed and direction of rotation of the corresponding wheel.



[Figure 7 comes about here]

Each controller was evaluated five times in the environment of Figure 7-a,
starting in the same position, but with five different orientations, its final fitness
being the mean of these five evaluations.

After 10,000 reproduction events, the controller with the highest fitness
(called AVOID1 hereafter) has been used to seed an initial population that
was subjected to a second evolutionary stage involving strong-light conditions.
During Stage 2, the corresponding fitness function became:

f2_2<0'5+%;2@>'<1_w> (2)

t

In this equation, the third term that was included in the righthand part
of equation 1 was eliminated because it referred to active-mode sensory inputs
that could not be trusted in strong-light conditions. However, fast motion and
straight locomotion were still encouraged.

[Figure 8 comes about here]

Using the substrate of Figure 8 and the grammar of Figure 9, controllers
likely to include 16 different sensors and four motoneurons were evolved during
10,000 additional reproduction events.

This time, the activation values that the new sensory cells LO to L7 in
Figure 8 propagated through a given controller were each set to the ambient
light measure m returned by the robot’s corresponding sensor. The fitness of
the corresponding controller was assessed in the same square environment as
the one used in Stage 1, but with a lighted lamp positioned in one of its corners
(Figure 7-b).

Again, the final fitness was the mean of five evaluations that corresponded to
five trials of 500 time-steps, each starting in the same position, but with different
orientations and light intensities. In particular, one such trial was performed
in medium-light conditions when the lamp was switched off, two others were
performed when the lamp was contributing a small amount of additional light,
and the last two were performed in strong light conditions, when the lamp
contributed its maximum light intensity.

At the end of Stage 2, the best neural network thus obtained was downloaded
and tested on a Khepera for 50 seconds.

[Figure 9 comes about here]



3 Experimental results

The evolutionary run just described has been replicated ten times, the fitnesses
of the best controllers obtained at the end of Stage 1 in medium-light conditions,
on the one side, and at the end of Stage 2 in strong-light conditions, on the other
side, being respectively given in columns 1 and 4 of Table 1.

[Table 1 comes about here]

Column 2 of Table 1 provides fitnesses that have been obtained when, at
the end of Stage 1, each controller selected in medium-light conditions was
transferred and tested in strong-light conditions. As for column 3 of Table 1, it
provides fitnesses that were obtained when the best controllers selected at the
end of Stage 2 were tested in medium-light conditions again.

The comparison of strong-light fitnesses indicates that controllers selected
at the end of Stage 1 are less efficient than those that are obtained at the end
of Stage 2 when the lighted lamp is added to the environment. Thus, this
second evolutionary stage helped improving the behavior of the robot in strong-
light conditions. Likewise, comparison of medium-light fitnesses indicates that
the controllers selected at the end of Stage 2, according to their capacities at
coping with strong-light conditions, didn’t loss the essential of their abilities
to generate appropriate behavior in medium-light conditions. Indeed, although
their fitnesses tend to be slightly lower than those of the best controllers of Stage
1, they still are of the same order of magnitude.

To assess the usefulness of the incremental approach advocated here, ten
additional control runs have been performed, each involving 10,000 reproduction
events and the same number of evaluations (100,000) that were done in the
incremental runs. Each such run directly started with the substrate of Figure 8
and called upon both GRAM-A and GRAM-B grammars, thus permitting the
simultaneous evolution of both neural modules. The fitness of each individual
was the mean of 10 evaluations: five in the conditions of Stage 1 described
above, and five in the conditions of Stage 2. Columns 5 and 6 of Table 1
provide the fitnesses of the best individuals thus selected, these fitnesses having
been assessed in both medium-light and strong-light conditions. A quantitative
comparison of incremental and control runs indicates that the means of the
medium-light and strong-light fitnesses obtained at the end of the incremental
runs are statistically higher (Mann-Whitney test, significancy level = 0.05) than
the corresponding means obtained at the end of the control runs. Moreover, a
qualitative comparison of the behaviors generated by these controllers indicate
that the behaviors of the control runs are far less satisfactory than those of
their incremental competitors. In fact, in every control run, but Run 4, the
robot alternated moving forward and backward and never turned. As for the
controller of Run 4, its fitness in medium-light conditions suddenly increased in
the last generations and led to an obstacle-avoidance behavior as good as those



of the best controllers evolved in the incremental runs, but at the detriment of
its abilities to deal with strong-light conditions, which were severely impaired.

To understand how the controllers obtained during the incremental runs suc-
ceeded to generate satisfactory behaviors, the internal organization of the neural
networks obtained at the end of Stage 1 (Figure 10) and Stage 2 (Figure 11) in
one of these runs has been scrutinized. The corresponding simulated behaviors
are respectively shown in Figures 12A-D. It thus appears that the single-module
controller uses the four front sensors only. It drives the robot at maximal speed
in open areas, and makes it possible to avoid obstacles in two different ways. If
the obstacle is detected on one given side, then the opposite wheel slows down,
allowing for direct avoidance. When the detection is as strong on both sides,
then the robot slows down, reverses its direction, and turn slightly while recoil-
ing. After a short period of time, forward locomotion resumes. However, when
placed in strong-light conditions, this controller is unable to detect obstacles
and thus keeps bumping into walls. The two-module controller corrects this de-
fault by avoiding strongly lighted regions in the following way. In medium-light
conditions, all L-sensors return high m values. Excitatory links connect each
of the two frontal L-sensors — L0 and L1 — to one interneuron of module 1
apiece. Each of these interneurons, in turn, sends a forward motion command
to the motor on the opposite side. As a consequence, whenever the value m
returned by one of these two sensors decreases an event that corresponds
to the detection of a high light intensity — the corresponding interneuron in
Module 1 becomes less activated and the wheel on the opposite side slows down.
This results in a light avoidance behavior.

[Figure 10 comes about here]

[Figure 11 comes about here]

[Figure 12 comes about here]

[Figure 13 comes about here]

Figures 13A-D show the behavior exhibited by Khepera when the networks
described above are downloaded onto the robot and are allowed to control it
for 50 seconds in a square arena of size 60x60 cm designed to scale the sim-
ulated environment. Such figures were obtained through the on-line record of
the successive orders sent to the robot’s motors and through the off-line recon-
struction of the corresponding trajectories. They demonstrate that the behavior

10



actually exhibited by Khepera is qualitatively similar to the behavior obtained
through simulation — in terms of the robot’s ability to avoid obstacles and to
quickly move along straight trajectories and that it fits the experimenter’s
specifications. The main behavioral difference occurs when, at the end of the
medium-light stage, controllers are tested in the presence of the additional lamp:
the actual behavior of Khepera is more disrupted than the simulated behavior,
probably because light that is reflected by the ground in the experimental arena
is not adequately taken into account by the simulator (Figures 12.B and 13.B).
Such discrepancies do not occur at the end of the strong-light stage because
the robot then avoids the region where the lamp is situated and where such
disturbing light reflections are the strongest.

4 Discussion

Although obstacle-avoidance would appear a behavior easy to evolve in Khep-
era, as demonstrated by the successful results already obtained by numerous
researchers [6, 9, 8, 17, 24, 28, 29, 30, 34], results presented herein indicate that
such a behavior is easily disrupted when the ambient light is high. These re-
sults also indicate that evolving a robust obstacle-avoidance behavior, although
not trivial, is nevertheless possible. The solution that has been automatically
discovered here consists in avoiding situations were the sensory capacities of
the robot become too limited to secure a still adapted behavior. Finally, these
results do not contradict the intuition that such non trivial behaviors are easier
to evolve using a divide-and-conquer incremental approach. This intuition is
further supported by the observation that nature itself seems to resort to such
an incremental approach, if one admits that, in an ever changing environment,
selection pressures never remain constant, and if one observes that, since the
appearance of life on Earth, the adaptive capacities of man clearly originate in
the simpler adaptive capacities of numerous intermediate species.

Be that as it may, the results obtained herein are preliminary, and numer-
ous additional experiments should be performed to assess the usefulness of a
variety of implementation details. It seems a priori possible, for example, that
individual neurons, behaving as traditional threshold units [25, 33], (McClel-
land and Rumelhart, 1986; Rumelhart and McClelland, 1986), might be used to
produce similar results to those obtained here with leaky integrators, although
the recoiling behavior reported in Section 3 might have been harder to produce
with non dynamic neurons. We nevertheless used such neurons because their
dynamic properties might prove to be mandatory in future extensions of this
work.

Likewise, it is presently unclear whether the local interactions and the ge-
netic operators that were used in our evolutionary algorithm are truly relevant
and whether they might have been replaced by other options. Finally, one may
wonder how integral each detail of the initial setup chosen by the experimenter
— e.g., the grammars, the substrate’s layout, the fitness functions — was for
evolutionary success. However, it is interesting to note that the evolutionary
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parameters used were the same here and in all other applications of the SGOCE
paradigm [19, 20, 14, 7]. The different developmental substrates and gram-
mars used in all applications were also chosen to be as similar as possible and
satisfactory results were always found without tuning.

To further assess the potentialities of incremental evolution, future research
efforts will aim at carrying on the evolutionary process one step further, resort-
ing to a third evolutionary stage and a third fitness function. This might entail
incorporating into Khepera’s control architecture a rudimentary motivational
system, according to which the robot  while still being able to avoid encoun-
tered obstacles  would seek the light when a simulated internal energy sensor
detected low energy conditions, and would avoid light in normal or high energy
conditions. Comparisons with a similar, but simpler, experiment carried on by
[8] are likely to be enlightening because, in the latter approach, evolution was
directly performed on the physical robot, i.e., without human intervention, and
with a direct encoding scheme.

5 Conclusion

Preliminary results presented herein support the hypothesis that complex be-
haviors in real robots are more likely to be generated through an incremental
evolutionary process than through direct evolution. They also suggest that re-
alistic simulators may be devised, which permit neural controllers evolved in
simulation to be successfully downloaded onto the corresponding robot, at least
for simple robots. A two-stage incremental strategy made it possible to evolve a
robust obstacle-avoidance behavior in a Khepera robot, although additional ex-
periments are required to assess the relevance of each detail of the corresponding
implementation. Future research will aim at elaborating the behavior thus far
obtained through additional evolutionary stages that will manage a rudimentary
motivational system.
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Tables

Table 1/1:

run

O © 00 ~JO Ut i W =

—

Stage 1
medium-light | strong-light
323.253 097.104
326.283 102.576
339.701 159.331
302.774 105.761
321.416 101.187
396.320 107.621
204.426 230.999
312.598 185.041
310.051 219.790
398.471 181.863

Stage 2
medium-light | strong-light
345.746 359.786
296.758 309.380
171.105 224.239
280.408 314.011
301.514 345.597
258.273 239.041
193.847 235.449
296.922 262.145
255.324 304.069
346.630 409.280

Control
medium-light | strong-light
245.934 258.740
240.169 252.095
241.174 252.125
397.838 183.006
254.706 226.549
228.097 230.399
245.495 246.534
203.891 232.949
170.998 224.549
221.416 231.129
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Figures
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Figure 2/13:
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Figure 4/13:
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Figure 5/13:

Terminal symbols

DIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,
NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.
Variables

Startl, Levell, Neuron, Bias, Tau, Connex, Link.
Production rules

Start1—DIVIDE(Levell, Levell)

Levell —DIVIDE(Neuron, Neuron)
Neuron—SIMULT3(Bias, Tau, Connex) | DIE
Bias—SETBIAS | DEFBIAS

Tau-—SETTAU | DEFTAU
Connex—SIMULT4(Link, Link, Link, Link)
Link—GROW | DRAW | NOLINK

Starting symbol

Start1.
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Figure 6/13:
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Figure 7/13:

(a) Medium-light environment. (b) Strong-light environment.
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Figure 8/13:
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Figure 9/13:

Terminal symbols

DIVIDE, GROW, DRAW, GROW2, SETBIAS, SETTAU, DIE,
NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULTA4.
Variables

Startl, Levell, Neuron, Bias, Tau, Connex, Link.
Production rules

Start1—DIVIDE(Levell, Levell)

Levell —DIVIDE(Neuron, Neuron)
Neuron—SIMULT3(Bias, Tau, Connex) | DIE
Bias—SETBIAS | DEFBIAS

Tau-—SETTAU | DEFTAU
Connex—SIMULT4(Link, Link, Link, Link)
Link—GROW | DRAW | GROW2 | NOLINK
Starting symbol

Start1.
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Figure 10/13:
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Figure 11/13:
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Figure 12/13:

| |

(A) Best of Stage 1, medium-light (sim.) (B) Best of Stage 1, strong-light (sim.)

(C) Best of Stage 2, medium-light (sim.) (D) Best of Stage 2, strong-light (sim.)
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Figure 13/13:

(A) Best of Stage 1, medium-light (real) (B) Best of Stage 1, strong-light (real)

(C) Best of Stage 2, medium-light (real) (D) Best of Stage 2, strong-light (real)
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Table and Figure captions

Table 1/1:

The performance of the best individuals of each run, when evaluated either in
medium-light or in strong-light conditions. The incremental approach results in
the performance values shown in columns 3 and 4 (Stage 2), while the control
experiments results are shown in columns 5 and 6 (Control). The first two
columns (Stage 1) provide results obtained after Stage 1 during the incremental
approach.

Figure 1/13:

(Left) This part of the figure shows the different sources that contribute to
the intensity received by a sensor. The geometrical configuration considered
is the same in all four situations. The ambient light contributes an intensity
I. When the lamp is lighted, the sensor receives an additional contribution .J,
through direct and/or reflected rays. Finally, in active mode, the reflected IR~
ray yields an intensity dI at the level of the sensor. The value of dI depends only
on the geometrical configuration considered. Intensities are summed, but the
sensor response is non-linear. (Right) In strong-light conditions, the response
of a sensor can saturate. In such a case, where I' = I +.J, the same increase in
intensity dI caused by the reflection of an IR-ray emitted by the robot causes a
smaller decrease of the value measured than it does in the linear region of the
response curve (medium-light conditions). In other words, although dI intensity
increases can be sensed in medium-light conditions — and the corresponding
obstacle configurations can thus be detected —, such is not the case in strong-
light conditions.

Figure 2/13:

An example of the initial state of the developmental substrate and of the
structure of the developmental program. This structure is determined by the
experimenter. Here, each of the two precursor cells carries out a developmental
program that starts by a jump instruction to the evolving sub-program SP2.
To solve other control problems, additional precursor cells might have been
included in the substrate, each of which would execute a different sub-program
before, occasionally, jumping to SP2 or to other evolving sub-programs. During
evolution the composition of sub-program SP2 can be modified within the limits
defined by the constraints encoded in grammar GRAM-A (see explanations on
syntactic constraints in the text). D0 to D7 are sensory cells and M0 to M3 are
motoneurons, which have been placed by the experimenter in specific positions
within the substrate.
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Figure 3/13:

While reading the genotype, a precursor cell generates a neural network
after several developmental steps. This network may involve the sensory cells
and the motoneurons made available by the experimenter. Each precursor cell
is associated with a frame of reference that is inherited by its daughter cell when
division occurs.

Figure 4/13:

Depending on the values of the arguments of some developmental instruc-
tions, targets for connections are sought in a given direction and at a given
distance, in the local framework associated with the acting cell. These connec-
tions link two different neurons or correspond to self-connections. They can also
regress and die when their targets lie outside the developmental substrate.
Figure 5/13:

The GRAM-A grammar. This grammar defines a set of sub-programs
those that can be generated from it, starting with the Startl symbol. When
GRAM-A is used, a cell that executes such a sub-program undergoes two divi-
sion cycles, yielding four daughter cells, which can either die or modify internal
parameters (time-constant and bias) that will influence their future behavior
as neurons. Finally, each surviving cell establishes a limited number of connec-
tions, either with another cell, or with the sensory cells and motoneurons that
have been positioned by the experimenter in the developmental substrate.
Figure 6/13:

The evolutionary algorithm (See text for explanation).

Figure 7/13:

The environment that was used to evaluate the fitness of each controller.
(a) Medium-light conditions of Stage 1. The star indicates the starting position
of each run. (b) Strong-light conditions of Stage 2. A lighted lamp is posi-
tioned in the lower-left corner of the environment. Concentric arcs illustrate
the corresponding intensity gradient.

Figure 8/13:

The initial configuration of the developmental substrate and the program
structure used for Stage 2. The same substrate is used for control experiments,
in which both modules are evolved simultaneously. In these latter experiments,
both SP4 and SP5 are initialized randomly and are submitted to evolution under
constraints given by GRAM-A and GRAM-B, respectively.

Figure 9/13:

The GRAM-B grammar. It is identical to GRAM-A except for the addition
of one instruction (GROW?2) that makes it possible to create a connection from
the second to the first module.

Figure 10/13:

The best, controller obtained after Stage 1 for the particular run that re-
sulted in the controller of Figure 11. The outputs of the motoneurons M2 and
M3 are interpreted as forward motion commands for the right and left wheels,
respectively, while the output of the motoneurons M0 and M1 correspond to
backward motion commands. Solid lines correspond to excitatory connections,
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while dotted lines indicate inhibitory links. This network contains four interneu-
rons.
Figure 11/13:

The best controller obtained after Stage 2. This networks contains four
interneurons in Module 1 and eight interneurons in Module 2.

Figure 12/13:

(Top) The simulated behavior of the single-module controller of Figure 10.
When starting in front of the lamp, the corresponding robot gets stuck in the cor-
ner with the lamp. (Bottom) Simulated behavior of the two-module controller
of Figure 11. Now, the robot avoids the lighted region of the environment.
Figure 13/13:

The paths actually travelled by the Khepera robot, which have been re-
constructed off-line using motor orders recorded during the trial. (Top) Real
behavior of the single-module controller of Figure 10. Due to reflections present
in the real world, but not in the simulation, the behavior under strong-light
conditions is different from that of Figure 12. (Bottom) Real behavior of the
two-module controller of Figure 11. Now, the real behavior is qualitatively
similar to the simulated behavior shown in Figure 12.

32



