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ady MeyerNovember 10, 1999Abstra
tAn in
remental approa
h is used to simulate the evolution of neural
ontrollers for robust obsta
le-avoidan
e in a Khepera robot and provesto be more eÆ
ient than a dire
t approa
h. During a �rst evolutionarystage, obsta
le-avoidan
e 
ontrollers in medium-light 
onditions are gen-erated. During a se
ond evolutionary stage, 
ontrollers avoiding strongly-lighted regions, where the previously a
quired obsta
le-avoidan
e 
apa
-ities would be impaired, are obtained. The best 
ontrollers thus evolvedare su

essfully downloaded on a Khepera robot. The SGOCE paradigmthat is used in these experiments is des
ribed in the text. Future resear
hwill target at furthering the in
remental evolutionary pro
ess and evolvingmore intri
ate behaviors.1 Introdu
tionA

ording to a re
ent review [26℄ of evolutionary approa
hes to neural 
ontrolin mobile robots, it appears that the 
orresponding resear
h e�orts usually 
allupon a dire
t en
oding s
heme, where the phenotype of a given robot | i.e.,its neural 
ontroller and, o

asionally, its body plan | is dire
tly en
oded intoits genotype. However, it has often been argued (e.g., [13, 18℄) that indire
ten
oding s
hemes | where the genotype a
tually spe
i�es developmental rulesa

ording to whi
h 
omplex neural networks and morphologies 
an be derivedfrom simple programs | are more likely to s
ale up with the 
omplexity of the
ontrol problems to be solved, if only be
ause the size of the genotypi
 spa
eto be explored may be mu
h smaller than that of the spa
e of the resultantphenotypes.The feasibility of su
h indire
t approa
hes, whi
h 
ombine the pro
esses ofevolution and development, has been demonstrated through several simulations[2, ?, 5, 10, 19, 20, 32, 36, 38, 39℄ and a few appli
ations involving real robots[6, 15, 16, 11, 28, 29℄. However, the fa
t that the great majority of 
ontrollersand behaviors that have thus been generated are very simple, together withthe diÆ
ulties en
ountered when more 
omplex 
ontrollers and behaviors were1



sought [11, 20℄, led us to suspe
t that so-
alled in
remental approa
hes [4, 12, 23℄should ne
essarily be used in 
onjun
tion with indire
t en
oding s
hemes in morerealisti
 appli
ations. In other words, a

ording to su
h a strategy, appropriate
ontrollers and behaviors should be evolved and developed through su

essivestages in whi
h good solutions to a simpler version of a given problem are usediteratively to seed the initial population of solutions likely to solve a harderversion of the same problem.In [20℄ su
h an in
remental strategy has been used to evolve and developneural 
ontrollers that permitted a simulated inse
t to su

essively walk, followan odor gradient, and avoid obsta
les. In this paper, it is used within the 
on-text of an evolutionary roboti
s appli
ation, where neural 
ontrollers for robustobsta
le-avoidan
e in a Khepera robot are automati
ally generated. This work
alls upon a two-stage approa
h, in whi
h 
ontrollers for obsta
le-avoidan
e inmedium-light 
onditions are �rst evolved, and then improved to operate alsoin more 
hallenging strong-light 
onditions, when a lighted lamp is added intothe environment. Comparisons with results obtained under the alternative one-shot strategy are provided and support the above-mentioned intuition about theusefulness of an in
remental approa
h.2 Material and methodsThis se
tion will des
ribe the task to be a

omplished, and the SGOCE1 paradigmthat underlies our methodology. This task derives from the 
hara
teristi
s andlimitations of the sensory motor apparatus of Khepera, whi
h will be brie
ysummarized hereafter. Likewise, a short des
ription will be provided of howthis sensory motor apparatus has been simulated in this work. As for the de-s
ription of the SGOCE methodology, it will deal su

essively with the develop-mental 
ode that links the genotype of the robot to its phenotype, the synta
ti

onstraints that limit the 
omplexity of the phenotypes generated, the evolu-tionary algorithm inspired from geneti
 programming [21, 22℄ that generatesdevelopmental programs, and the in
remental strategy that helps produ
e neu-ral 
ontrol ar
hite
tures likely to exhibit in
reasingly adaptive 
apa
ities.2.1 The obsta
le-avoidan
e task2.1.1 The real Khepera.Khepera [31℄ is a 
ir
ular-shaped miniature mobile robot | with a diameter of55 mm, a height of 30 mm, and a weight of 70 g | that is mounted on twowheels and two small Te
on balls. In its basi
 
on�guration, it is equipped witheight proximity sensors | six on the front, two on the ba
k | that may alsoa
t as visible-light dete
tors. The wheels are 
ontrolled by two DC motors within
remental en
oders that move in both dire
tions.1This name is the a
ronym for the expression "Simple Geometry Oriented Cellular En
od-ing". 2



In ea
h proximity sensor of Khepera, an infra-red light emitter and re
eiverare embedded. This hardware allows two things to be measured: the normalambient light | through re
eivers only | and the light re
e
ted by the ob-sta
les | using both emitters and re
eivers. In medium-light 
onditions, thishardware makes it possible to dete
t an obsta
le a short distan
e away | notmore than about 5 
m. However, under strong light 
onditions, the 
orrespond-ing re
eptors tend to saturate : the light emitted by the robot and re
e
tedby obsta
les 
annot be distinguished from ambient light and, thus, 
annot bedete
ted (Figure 1). Therefore, this work aims at automati
ally evolving a ro-bust obsta
le-avoidan
e 
ontroller likely to di�erentiate between the two light
onditions and to take appropriate motor de
isions.[Figure 1 
omes about here℄In the present work, su
h a 
ontroller has been generated through simulationsperformed under the SGOCE paradigm. Then the 
orresponding network hasbeen downloaded onto a Khepera robot and its ability to generate the requestedbehavior has been 
he
ked.2.1.2 The simulated Khepera.A 
ylindri
al robot like Khepera is easier to model than a robot of arbitraryshape and with many degrees of freedom. Still, some phenomena, like fri
tion,
annot be simulated with pre
ision. Also, ea
h sensor or motor has a uniquebehavior that 
an only be approximated in a simulation.Our simulator is based on, and improves, an already existing simulator [27℄and makes it possible to exe
ute the same 
ontrol program, either on the simu-lated robot or on the real one. It has four important features.Firstly, it 
an be 
ontrolled by another independant program, making iteasier to interfa
e it with an already existing evolutionary algorithm software.This is important from a pra
ti
al point of view, be
ause the 
ode 
an be reusedmore easily.Se
ondly, it 
ontains a set of fun
tions spe
i�
ally designed for arti�
ial neu-ral network evolution. One su
h fun
tion makes it possible for the evolutionarysoftware to send to the simulator the des
ription of a dynami
 neural network,whi
h will be 
onne
ted in a spe
i�
 way with the sensors and motors of therobot, whether real or simulated. Another fun
tion makes it possible to sim-ulate the dynami
s of that network during a given period of time, in order to
ontrol the robot. This fun
tion returns a �tness value, whi
h is 
omputed onthe basis of information normally available to the robot, and whi
h, when usedwith the real robot, is run entirely on board.A third important feature of our simulator is its speed. Integer 
al
ulationsare used to update the state of the neural network when 
omputations are per-formed on board. Moreover, the sensor simulation method used by Mi
hel has3



been repla
ed by a tabulation te
hnique, a

ording to whi
h, prior to evolution,the values returned by a sensor in a given environment are re
orded in a look-up-table for a number of di�erent positions and orientations. Note that unlikein [30℄, where the values stored were measured on the real robot, here, we syn-thetize these values to make it easier to 
hange the environmental 
onditions.At evaluation time, the sensor values are 
omputed by interpolation from thevalues stored in the table.Finally, another important feature to mention is the way in whi
h sensorbehavior is modelled. As already stated, Khepera IR sensors 
an work in eitherof two di�erent modes. In passive mode, they return a measurem of the ambientlight intensity I . In a
tive mode, they return m+, a measure of the intensityI+, i.e., the sum of the ambient intensity I and of the intensity dI of the lightpossibly re
e
ted o� an obsta
le (Figure 1).If the robot is at a spe
i�
 position relative to a given 
on�guration ofobsta
les, then the value dI will be the same whatever the level I of the ambientlight. The proximity measure p = K � (m�m+) 
an thus be used to 
ara
terizethe presen
e of an obsta
le. However, be
ause the fun
tion relating intensity Ito measure m is non-linear, the same dI value will not yield the same di�eren
e(m�m+) for di�erent levels of I . For this reason, p is not simply a fun
tion ofthe intensity dI re
e
ted from the IR-ray, but also depends on I .We have modi�ed Mi
hel's IR sensor model in order to take into a

ountthe possible e�e
t of the ambient light level I on p. At tabulation time, we sumthe intensities 
onveyed by rays emitted by pun
tual light sour
es pla
ed in theenvironment and possibly by the robot, whi
h are re
eived at the position of thesensor. Only then is the value of the measure returned by the sensor 
omputed,using the response 
urve of Figure 1.2.2 The SGOCE evolutionary paradigmThis paradigm is used to en
ode, into a robot's genotype, the developmentalrules that will generate its phenotype. In the present appli
ation, this phenotypeis instantiated as a general re
urrent neural network 
ontrolling the behavior ofthe robot that is grown from a few initial 
ells provided by the experimenter.This neural network is made up of individual neurons ea
h behaving as a leakyintegrator [35℄ | i.e., it is a universal dynami
s approximator, liable to approx-imate the traje
tory of any smooth dynami
 system [1℄.2.2.1 The developmental 
ode.Our en
oding s
heme is a simple geometri
 variation of Gruau's 
ellular en
oding[10℄. It implements developmental rules that are en
oded into arti�
ial tree-like 
hromosomes that 
ontain two 
ategories of instru
tions. Some spe
ifymorphologi
al transformations applying to spe
i�
 
ells, while others are usedto generate stru
tured developmental programs.4



[Figure 2 
omes about here℄This s
heme also employs a two-dimensional substrate within whi
h the ex-perimenter initially arranges a set of sensory 
ells that may be 
onne
ted to therobot's sensors, a set of motoneurons that may be 
onne
ted to the robot's a
tu-ators, and a set of pre
ursor 
ells from whi
h the developmental pro
ess will beinitiated (Figure 2). Ea
h pre
ursor 
ell is given a 
opy of the robot's genotypeand, as it exe
utes the 
orresponding program, divides, grows 
onne
tions toother 
ells, di�erentiates into a fun
tional neuron, or dies (Figures 3 and 4).[Figure 3 
omes about here℄[Figure 4 
omes about here℄At the end of su
h a pro
ess, a 
omplete neural 
ontroller is obtained, whosear
hite
ture re
e
ts the geometry and symmetries initially imposed by the ex-perimenter, to a degree that depends on the side-e�e
ts of the developmentalinstru
tions that have been 
arried out. This 
ontroller is 
onne
ted to thesensors and a
tuators of the robot through 
onne
tions to the sensory 
ells andmotoneurons in
orporated into its ar
hite
ture. This, together with the useof an appropriate �tness fun
tion (to be des
ribed later) makes it possible toassess the 
ontroller's 
apa
ity to generate the spe
i�
 behavior sought by theexperimenter.2.2.2 Synta
ti
 
onstraints.[Figure 5 
omes about here℄In order to redu
e the size of the genotypi
 sear
h-spa
e and the 
omplexityof the networks generated, we restri
t the stru
ture of the 
orresponding devel-opmental programs by requiring that all evolving subprograms be well-formedtrees a

ording to a given 
ontext-free tree-grammar (Figure 5). Furthermore,su
h a grammar makes it possible to 
ontrol the nature and size of the programmodi�
ations that o

ur between two su

essive generations through use of ge-neti
 operators like mutation or 
rossover. Thus, a mutation operator makes itpossible to repla
e a sub-tree by another randomly generated 
ompatible2 sub-tree. Likewise, a 
rossover operator makes it possible to ex
hange a sub-tree in2Two sub-trees are said to be 
ompatible if they are derived from the same grammati
alvariable. For instan
e, if grammar GRAM-A (Figure 5) is used to de�ne the 
onstraints on5



one developmental program for a 
ompatible sub-tree in another developmentalprogram.2.2.3 Evolutionary algorithm.To slow down 
onvergen
e by favoring the 
reation of e
ologi
al ni
hes, we use asteady-state evolutionary algorithm that involves a population of N randomly-generated well-formed programs distributed over a 
ir
le and whose mode ofoperation is outlined in Figure 6.[Figure 6 
omes about here℄The following pro
edure is repeated until a given number of individuals havebeen generated and tested:1. A position P is 
hosen on the 
ir
le.2. A two-tournament sele
tion s
heme is applied in whi
h the better of twoprograms randomly sele
ted from the neighborhood of P is retained3.3. The program sele
ted is allowed to reprodu
e, and three geneti
 operatorsmay modify it. The re
ombination operator is applied with probabilityp
. It ex
hanges two sub-trees between the program to be modi�ed andanother program randomly sele
ted from the neighborhood of P . Twotypes of mutation are used. The �rst mutation operator is applied withprobability pm. It 
hanges one randomly sele
ted sub-tree into anotherrandomly generated one. The se
ond mutation operator is applied withprobability 1 and modi�es the values of a random number of parameters,implementing what Spen
er 
alled a 
onstant perturbation strategy [37℄.Firstly, the number nmut of parameters to be modi�ed is drawn froma binomial distribution B(n; p), and nmut parameters are then sele
tedrandomly | all parameters having the same probability of being 
hosen| to be mutated.4. The �tness of the new program is assessed by 
olle
ting statisti
s whilethe behavior of the animat 
ontrolled by the 
orresponding arti�
ial neuralnetwork is simulated over a given period of time.5. A two-tournament anti-sele
tion s
heme, in whi
h the worst of two ran-domly 
hosen programs is sele
ted, is used to de
ide whi
h individual (inthe neighborhood of P ) will be repla
ed by the modi�ed program.a given sub-program, sub-tree SIMULT3(SETBIAS, DEFTAU, SIMULT4(GROW, DRAW,GROW, NOLINK)) in that sub-program may be repla
ed by sub-tree DIE, be
ause bothsub-trees are derivations of the Neuron variable in GRAM-A.3A program's probability ps of being sele
ted de
reases with the distan
e d to P : ps =max(R � d; 0)=R2 , with R=4. Programs for whi
h d is greater than or equal to R 
annot besele
ted (ps = 0). 6



In all the experiments reported in this paper, N = 100, p
 = 0:6, pm = 0:2,n = 6 and p = 0:5.2.2.4 In
remental approa
h.The arti�
ial evolution of robust 
ontrollers for obsta
le-avoidan
e was 
arriedout using the Khepera simulator to solve su

essively two problems of in
reasingdiÆ
ulty. Basi
ally, this entailed evolving a �rst neural 
ontroller that used itssensors in a
tive mode to measure the proximity value p, in order to avoid obsta-
les su

essfully in medium-light 
onditions. Then, a se
ond neural 
ontrollerwas evolved that operated in passive mode in strong-light 
onditions and usedmeasures of the ambient light level m to modulate the normal fun
tion of the�rst 
ontroller. In other words, su
h an in
remental approa
h relied upon thehypothesis that the se
ond 
ontroller would be able to evaluate the lo
al inten-sity of ambient light so as to 
hange nothing in the 
orre
t obsta
le-avoidan
ebehavior se
ured by the �rst 
ontroller in medium-lighted regions, but to alterit | in whatever adapted manner evolution would dis
over | when the robottravelled through strong-lighted regions likely to impair the proper operation ofthe �rst 
ontroller.During Stage 1, to evolve the �rst 
ontroller and generate a 
lassi
al obsta
le-avoidan
e behavior in medium-light 
onditions, the following �tness fun
tionwas used:f1 =Xt �0:5 + vl(t) + vr(t)4 � Vmax � ��1� jvl(t)� vr(t)j2 � Vmax � ��1� Pfront pi(t)4 � Pmax � (1)where vl(t) and vr(t) were the velo
ities of the left and right wheels, respe
tively;Vmax was the maximum absolute velo
ity; pi(t) was the proximity measurereturned by ea
h sensor i among the four front sensors; Pmax was the largestmeasured value that 
an be returned.In the righthand part of this equation, the �rst fa
tor rewarded fast 
on-trollers, the se
ond fa
tor en
ouraged straight lo
omotion, and the third fa
torpunished the robot ea
h time it sensed an obsta
le in front of it.Using the substrate of Figure 2 and the grammar of Figure 5, 
ontrollerslikely to in
lude eight di�erent sensory 
ells and four motoneurons were evolvedafter a random initialization of the population. The �tness of these 
ontrollerswas assessed by letting them 
ontrol the simulated robot over 500 time-steps,in a square environment 
ontaining an obsta
le (Figure 7-a).For this purpose, the sensory 
ells D0 to D7 in Figure 2 were 
onne
ted tothe robot's sensors su
h that the instantaneous a
tivation value ea
h 
ell propa-gated throught the neural network to the motoneurons was set to the proximitymeasure p returned by the 
orresponding sensor. Likewise, the motoneuronswere 
onne
ted to the robot's a
tuators su
h that a pair of motoneurons wasasso
iated with ea
h wheel, the di�eren
e between their inputs determining thespeed and dire
tion of rotation of the 
orresponding wheel.7



[Figure 7 
omes about here℄Ea
h 
ontroller was evaluated �ve times in the environment of Figure 7-a,starting in the same position, but with �ve di�erent orientations, its �nal �tnessbeing the mean of these �ve evaluations.After 10,000 reprodu
tion events, the 
ontroller with the highest �tness(
alled AVOID1 hereafter) has been used to seed an initial population thatwas subje
ted to a se
ond evolutionary stage involving strong-light 
onditions.During Stage 2, the 
orresponding �tness fun
tion be
ame:f2 =Xt �0:5 + vl(t) + vr(t)4 � Vmax � ��1� jvl(t)� vr(t)j2 � Vmax � (2)In this equation, the third term that was in
luded in the righthand partof equation 1 was eliminated be
ause it referred to a
tive-mode sensory inputsthat 
ould not be trusted in strong-light 
onditions. However, fast motion andstraight lo
omotion were still en
ouraged.[Figure 8 
omes about here℄Using the substrate of Figure 8 and the grammar of Figure 9, 
ontrollerslikely to in
lude 16 di�erent sensors and four motoneurons were evolved during10,000 additional reprodu
tion events.This time, the a
tivation values that the new sensory 
ells L0 to L7 inFigure 8 propagated through a given 
ontroller were ea
h set to the ambientlight measure m returned by the robot's 
orresponding sensor. The �tness ofthe 
orresponding 
ontroller was assessed in the same square environment asthe one used in Stage 1, but with a lighted lamp positioned in one of its 
orners(Figure 7-b).Again, the �nal �tness was the mean of �ve evaluations that 
orresponded to�ve trials of 500 time-steps, ea
h starting in the same position, but with di�erentorientations and light intensities. In parti
ular, one su
h trial was performedin medium-light 
onditions when the lamp was swit
hed o�, two others wereperformed when the lamp was 
ontributing a small amount of additional light,and the last two were performed in strong light 
onditions, when the lamp
ontributed its maximum light intensity.At the end of Stage 2, the best neural network thus obtained was downloadedand tested on a Khepera for 50 se
onds.[Figure 9 
omes about here℄8



3 Experimental resultsThe evolutionary run just des
ribed has been repli
ated ten times, the �tnessesof the best 
ontrollers obtained at the end of Stage 1 in medium-light 
onditions,on the one side, and at the end of Stage 2 in strong-light 
onditions, on the otherside, being respe
tively given in 
olumns 1 and 4 of Table 1.[Table 1 
omes about here℄Column 2 of Table 1 provides �tnesses that have been obtained when, atthe end of Stage 1, ea
h 
ontroller sele
ted in medium-light 
onditions wastransferred and tested in strong-light 
onditions. As for 
olumn 3 of Table 1, itprovides �tnesses that were obtained when the best 
ontrollers sele
ted at theend of Stage 2 were tested in medium-light 
onditions again.The 
omparison of strong-light �tnesses indi
ates that 
ontrollers sele
tedat the end of Stage 1 are less eÆ
ient than those that are obtained at the endof Stage 2 when the lighted lamp is added to the environment. Thus, thisse
ond evolutionary stage helped improving the behavior of the robot in strong-light 
onditions. Likewise, 
omparison of medium-light �tnesses indi
ates thatthe 
ontrollers sele
ted at the end of Stage 2, a

ording to their 
apa
ities at
oping with strong-light 
onditions, didn't loss the essential of their abilitiesto generate appropriate behavior in medium-light 
onditions. Indeed, althoughtheir �tnesses tend to be slightly lower than those of the best 
ontrollers of Stage1, they still are of the same order of magnitude.To assess the usefulness of the in
remental approa
h advo
ated here, tenadditional 
ontrol runs have been performed, ea
h involving 10,000 reprodu
tionevents and the same number of evaluations (100,000) that were done in thein
remental runs. Ea
h su
h run dire
tly started with the substrate of Figure 8and 
alled upon both GRAM-A and GRAM-B grammars, thus permitting thesimultaneous evolution of both neural modules. The �tness of ea
h individualwas the mean of 10 evaluations: �ve in the 
onditions of Stage 1 des
ribedabove, and �ve in the 
onditions of Stage 2. Columns 5 and 6 of Table 1provide the �tnesses of the best individuals thus sele
ted, these �tnesses havingbeen assessed in both medium-light and strong-light 
onditions. A quantitative
omparison of in
remental and 
ontrol runs indi
ates that the means of themedium-light and strong-light �tnesses obtained at the end of the in
rementalruns are statisti
ally higher (Mann-Whitney test, signi�
an
y level = 0.05) thanthe 
orresponding means obtained at the end of the 
ontrol runs. Moreover, aqualitative 
omparison of the behaviors generated by these 
ontrollers indi
atethat the behaviors of the 
ontrol runs are far less satisfa
tory than those oftheir in
remental 
ompetitors. In fa
t, in every 
ontrol run, but Run 4, therobot alternated moving forward and ba
kward and never turned. As for the
ontroller of Run 4, its �tness in medium-light 
onditions suddenly in
reased inthe last generations and led to an obsta
le-avoidan
e behavior as good as those9



of the best 
ontrollers evolved in the in
remental runs, but at the detriment ofits abilities to deal with strong-light 
onditions, whi
h were severely impaired.To understand how the 
ontrollers obtained during the in
remental runs su
-
eeded to generate satisfa
tory behaviors, the internal organization of the neuralnetworks obtained at the end of Stage 1 (Figure 10) and Stage 2 (Figure 11) inone of these runs has been s
rutinized. The 
orresponding simulated behaviorsare respe
tively shown in Figures 12A-D. It thus appears that the single-module
ontroller uses the four front sensors only. It drives the robot at maximal speedin open areas, and makes it possible to avoid obsta
les in two di�erent ways. Ifthe obsta
le is dete
ted on one given side, then the opposite wheel slows down,allowing for dire
t avoidan
e. When the dete
tion is as strong on both sides,then the robot slows down, reverses its dire
tion, and turn slightly while re
oil-ing. After a short period of time, forward lo
omotion resumes. However, whenpla
ed in strong-light 
onditions, this 
ontroller is unable to dete
t obsta
lesand thus keeps bumping into walls. The two-module 
ontroller 
orre
ts this de-fault by avoiding strongly lighted regions in the following way. In medium-light
onditions, all L-sensors return high m values. Ex
itatory links 
onne
t ea
hof the two frontal L-sensors | L0 and L1 | to one interneuron of module 1apie
e. Ea
h of these interneurons, in turn, sends a forward motion 
ommandto the motor on the opposite side. As a 
onsequen
e, whenever the value mreturned by one of these two sensors de
reases | an event that 
orrespondsto the dete
tion of a high light intensity | the 
orresponding interneuron inModule 1 be
omes less a
tivated and the wheel on the opposite side slows down.This results in a light avoidan
e behavior.[Figure 10 
omes about here℄[Figure 11 
omes about here℄[Figure 12 
omes about here℄[Figure 13 
omes about here℄Figures 13A-D show the behavior exhibited by Khepera when the networksdes
ribed above are downloaded onto the robot and are allowed to 
ontrol itfor 50 se
onds in a square arena of size 60x60 
m designed to s
ale the sim-ulated environment. Su
h �gures were obtained through the on-line re
ord ofthe su

essive orders sent to the robot's motors and through the o�-line re
on-stru
tion of the 
orresponding traje
tories. They demonstrate that the behavior10



a
tually exhibited by Khepera is qualitatively similar to the behavior obtainedthrough simulation | in terms of the robot's ability to avoid obsta
les and toqui
kly move along straight traje
tories | and that it �ts the experimenter'sspe
i�
ations. The main behavioral di�eren
e o

urs when, at the end of themedium-light stage, 
ontrollers are tested in the presen
e of the additional lamp:the a
tual behavior of Khepera is more disrupted than the simulated behavior,probably be
ause light that is re
e
ted by the ground in the experimental arenais not adequately taken into a

ount by the simulator (Figures 12.B and 13.B).Su
h dis
repan
ies do not o

ur at the end of the strong-light stage be
ausethe robot then avoids the region where the lamp is situated and where su
hdisturbing light re
e
tions are the strongest.4 Dis
ussionAlthough obsta
le-avoidan
e would appear a behavior easy to evolve in Khep-era, as demonstrated by the su

essful results already obtained by numerousresear
hers [6, 9, 8, 17, 24, 28, 29, 30, 34℄, results presented herein indi
ate thatsu
h a behavior is easily disrupted when the ambient light is high. These re-sults also indi
ate that evolving a robust obsta
le-avoidan
e behavior, althoughnot trivial, is nevertheless possible. The solution that has been automati
allydis
overed here 
onsists in avoiding situations were the sensory 
apa
ities ofthe robot be
ome too limited to se
ure a still adapted behavior. Finally, theseresults do not 
ontradi
t the intuition that su
h non trivial behaviors are easierto evolve using a divide-and-
onquer in
remental approa
h. This intuition isfurther supported by the observation that nature itself seems to resort to su
han in
remental approa
h, if one admits that, in an ever 
hanging environment,sele
tion pressures never remain 
onstant, and if one observes that, sin
e theappearan
e of life on Earth, the adaptive 
apa
ities of man 
learly originate inthe simpler adaptive 
apa
ities of numerous intermediate spe
ies.Be that as it may, the results obtained herein are preliminary, and numer-ous additional experiments should be performed to assess the usefulness of avariety of implementation details. It seems a priori possible, for example, thatindividual neurons, behaving as traditional threshold units [25, 33℄, (M
Clel-land and Rumelhart, 1986; Rumelhart and M
Clelland, 1986), might be used toprodu
e similar results to those obtained here with leaky integrators, althoughthe re
oiling behavior reported in Se
tion 3 might have been harder to produ
ewith non dynami
 neurons. We nevertheless used su
h neurons be
ause theirdynami
 properties might prove to be mandatory in future extensions of thiswork.Likewise, it is presently un
lear whether the lo
al intera
tions and the ge-neti
 operators that were used in our evolutionary algorithm are truly relevantand whether they might have been repla
ed by other options. Finally, one maywonder how integral ea
h detail of the initial setup 
hosen by the experimenter| e.g., the grammars, the substrate's layout, the �tness fun
tions | was forevolutionary su

ess. However, it is interesting to note that the evolutionary11



parameters used were the same here and in all other appli
ations of the SGOCEparadigm [19, 20, 14, 7℄. The di�erent developmental substrates and gram-mars used in all appli
ations were also 
hosen to be as similar as possible andsatisfa
tory results were always found without tuning.To further assess the potentialities of in
remental evolution, future resear
he�orts will aim at 
arrying on the evolutionary pro
ess one step further, resort-ing to a third evolutionary stage and a third �tness fun
tion. This might entailin
orporating into Khepera's 
ontrol ar
hite
ture a rudimentary motivationalsystem, a

ording to whi
h the robot | while still being able to avoid en
oun-tered obsta
les | would seek the light when a simulated internal energy sensordete
ted low energy 
onditions, and would avoid light in normal or high energy
onditions. Comparisons with a similar, but simpler, experiment 
arried on by[8℄ are likely to be enlightening be
ause, in the latter approa
h, evolution wasdire
tly performed on the physi
al robot, i.e., without human intervention, andwith a dire
t en
oding s
heme.5 Con
lusionPreliminary results presented herein support the hypothesis that 
omplex be-haviors in real robots are more likely to be generated through an in
rementalevolutionary pro
ess than through dire
t evolution. They also suggest that re-alisti
 simulators may be devised, whi
h permit neural 
ontrollers evolved insimulation to be su

essfully downloaded onto the 
orresponding robot, at leastfor simple robots. A two-stage in
remental strategy made it possible to evolve arobust obsta
le-avoidan
e behavior in a Khepera robot, although additional ex-periments are required to assess the relevan
e of ea
h detail of the 
orrespondingimplementation. Future resear
h will aim at elaborating the behavior thus farobtained through additional evolutionary stages that will manage a rudimentarymotivational system.Referen
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TablesTable 1/1: Stage 1 Stage 2 Controlrun medium-light strong-light medium-light strong-light medium-light strong-light1 323.253 097.104 345.746 359.786 245.934 258.7402 326.283 102.576 296.758 309.380 240.169 252.0953 339.701 159.331 171.105 224.239 241.174 252.1254 302.774 105.761 280.408 314.011 397.838 183.0065 321.416 101.187 301.514 345.597 254.706 226.5496 396.320 107.621 258.273 239.041 228.097 230.3997 204.426 230.999 193.847 235.449 245.495 246.5348 312.598 185.041 296.922 262.145 203.891 232.9499 310.051 219.790 255.324 304.069 170.998 224.54910 398.471 181.863 346.630 409.280 221.416 231.129
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Figure 2/13:
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Figure 4/13:
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Figure 5/13:Terminal symbolsDIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.VariablesStart1, Level1, Neuron, Bias, Tau, Connex, Link.Produ
tion rulesStart1�!DIVIDE(Level1, Level1)Level1�!DIVIDE(Neuron, Neuron)Neuron�!SIMULT3(Bias, Tau, Connex) j DIEBias�!SETBIAS j DEFBIASTau�!SETTAU j DEFTAUConnex�!SIMULT4(Link, Link, Link, Link)Link�!GROW j DRAW j NOLINKStarting symbolStart1.
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Figure 6/13:
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Figure 7/13:

(a) Medium-light environment. (b) Strong-light environment.
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Figure 8/13:
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Figure 9/13:Terminal symbolsDIVIDE, GROW, DRAW, GROW2, SETBIAS, SETTAU, DIE,NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.VariablesStart1, Level1, Neuron, Bias, Tau, Connex, Link.Produ
tion rulesStart1�!DIVIDE(Level1, Level1)Level1�!DIVIDE(Neuron, Neuron)Neuron�!SIMULT3(Bias, Tau, Connex) j DIEBias�!SETBIAS j DEFBIASTau�!SETTAU j DEFTAUConnex�!SIMULT4(Link, Link, Link, Link)Link�!GROW j DRAW j GROW2 j NOLINKStarting symbolStart1.
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Figure 10/13:
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Figure 11/13:
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Figure 12/13:

(A) Best of Stage 1, medium-light (sim.) (B) Best of Stage 1, strong-light (sim.)

(C) Best of Stage 2, medium-light (sim.) (D) Best of Stage 2, strong-light (sim.)
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Figure 13/13:

(A) Best of Stage 1, medium-light (real) (B) Best of Stage 1, strong-light (real)

(C) Best of Stage 2, medium-light (real) (D) Best of Stage 2, strong-light (real)
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Table and Figure 
aptionsTable 1/1:The performan
e of the best individuals of ea
h run, when evaluated either inmedium-light or in strong-light 
onditions. The in
remental approa
h results inthe performan
e values shown in 
olumns 3 and 4 (Stage 2), while the 
ontrolexperiments results are shown in 
olumns 5 and 6 (Control). The �rst two
olumns (Stage 1) provide results obtained after Stage 1 during the in
rementalapproa
h.Figure 1/13:(Left) This part of the �gure shows the di�erent sour
es that 
ontribute tothe intensity re
eived by a sensor. The geometri
al 
on�guration 
onsideredis the same in all four situations. The ambient light 
ontributes an intensityI . When the lamp is lighted, the sensor re
eives an additional 
ontribution J ,through dire
t and/or re
e
ted rays. Finally, in a
tive mode, the re
e
ted IR-ray yields an intensity dI at the level of the sensor. The value of dI depends onlyon the geometri
al 
on�guration 
onsidered. Intensities are summed, but thesensor response is non-linear. (Right) In strong-light 
onditions, the responseof a sensor 
an saturate. In su
h a 
ase, where I 0 = I + J , the same in
rease inintensity dI 
aused by the re
e
tion of an IR-ray emitted by the robot 
auses asmaller de
rease of the value measured than it does in the linear region of theresponse 
urve (medium-light 
onditions). In other words, although dI intensityin
reases 
an be sensed in medium-light 
onditions | and the 
orrespondingobsta
le 
on�gurations 
an thus be dete
ted |, su
h is not the 
ase in strong-light 
onditions.Figure 2/13:An example of the initial state of the developmental substrate and of thestru
ture of the developmental program. This stru
ture is determined by theexperimenter. Here, ea
h of the two pre
ursor 
ells 
arries out a developmentalprogram that starts by a jump instru
tion to the evolving sub-program SP2.To solve other 
ontrol problems, additional pre
ursor 
ells might have beenin
luded in the substrate, ea
h of whi
h would exe
ute a di�erent sub-programbefore, o

asionally, jumping to SP2 or to other evolving sub-programs. Duringevolution the 
omposition of sub-program SP2 
an be modi�ed within the limitsde�ned by the 
onstraints en
oded in grammar GRAM-A (see explanations onsynta
ti
 
onstraints in the text). D0 to D7 are sensory 
ells andM0 toM3 aremotoneurons, whi
h have been pla
ed by the experimenter in spe
i�
 positionswithin the substrate.
30



Figure 3/13:While reading the genotype, a pre
ursor 
ell generates a neural networkafter several developmental steps. This network may involve the sensory 
ellsand the motoneurons made available by the experimenter. Ea
h pre
ursor 
ellis asso
iated with a frame of referen
e that is inherited by its daughter 
ell whendivision o

urs.Figure 4/13:Depending on the values of the arguments of some developmental instru
-tions, targets for 
onne
tions are sought in a given dire
tion and at a givendistan
e, in the lo
al framework asso
iated with the a
ting 
ell. These 
onne
-tions link two di�erent neurons or 
orrespond to self-
onne
tions. They 
an alsoregress and die when their targets lie outside the developmental substrate.Figure 5/13:The GRAM-A grammar. This grammar de�nes a set of sub-programs |those that 
an be generated from it, starting with the Start1 symbol. WhenGRAM-A is used, a 
ell that exe
utes su
h a sub-program undergoes two divi-sion 
y
les, yielding four daughter 
ells, whi
h 
an either die or modify internalparameters (time-
onstant and bias) that will in
uen
e their future behavioras neurons. Finally, ea
h surviving 
ell establishes a limited number of 
onne
-tions, either with another 
ell, or with the sensory 
ells and motoneurons thathave been positioned by the experimenter in the developmental substrate.Figure 6/13:The evolutionary algorithm (See text for explanation).Figure 7/13:The environment that was used to evaluate the �tness of ea
h 
ontroller.(a) Medium-light 
onditions of Stage 1. The star indi
ates the starting positionof ea
h run. (b) Strong-light 
onditions of Stage 2. A lighted lamp is posi-tioned in the lower-left 
orner of the environment. Con
entri
 ar
s illustratethe 
orresponding intensity gradient.Figure 8/13:The initial 
on�guration of the developmental substrate and the programstru
ture used for Stage 2. The same substrate is used for 
ontrol experiments,in whi
h both modules are evolved simultaneously. In these latter experiments,both SP4 and SP5 are initialized randomly and are submitted to evolution under
onstraints given by GRAM-A and GRAM-B, respe
tively.Figure 9/13:The GRAM-B grammar. It is identi
al to GRAM-A ex
ept for the additionof one instru
tion (GROW2) that makes it possible to 
reate a 
onne
tion fromthe se
ond to the �rst module.Figure 10/13:The best 
ontroller obtained after Stage 1 for the parti
ular run that re-sulted in the 
ontroller of Figure 11. The outputs of the motoneurons M2 andM3 are interpreted as forward motion 
ommands for the right and left wheels,respe
tively, while the output of the motoneurons M0 and M1 
orrespond toba
kward motion 
ommands. Solid lines 
orrespond to ex
itatory 
onne
tions,31



while dotted lines indi
ate inhibitory links. This network 
ontains four interneu-rons.Figure 11/13:The best 
ontroller obtained after Stage 2. This networks 
ontains fourinterneurons in Module 1 and eight interneurons in Module 2.Figure 12/13:(Top) The simulated behavior of the single-module 
ontroller of Figure 10.When starting in front of the lamp, the 
orresponding robot gets stu
k in the 
or-ner with the lamp. (Bottom) Simulated behavior of the two-module 
ontrollerof Figure 11. Now, the robot avoids the lighted region of the environment.Figure 13/13:The paths a
tually travelled by the Khepera robot, whi
h have been re-
onstru
ted o�-line using motor orders re
orded during the trial. (Top) Realbehavior of the single-module 
ontroller of Figure 10. Due to re
e
tions presentin the real world, but not in the simulation, the behavior under strong-light
onditions is di�erent from that of Figure 12. (Bottom) Real behavior of thetwo-module 
ontroller of Figure 11. Now, the real behavior is qualitativelysimilar to the simulated behavior shown in Figure 12.
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