
Inremental Evolution of Neural Controllers forRobust Obstale-Avoidane in Khepera.J. Chavas, Christophe Corne, P. HorvaiJ�erôme Kodjabahian, Jean-Arady MeyerNovember 10, 1999AbstratAn inremental approah is used to simulate the evolution of neuralontrollers for robust obstale-avoidane in a Khepera robot and provesto be more eÆient than a diret approah. During a �rst evolutionarystage, obstale-avoidane ontrollers in medium-light onditions are gen-erated. During a seond evolutionary stage, ontrollers avoiding strongly-lighted regions, where the previously aquired obstale-avoidane apa-ities would be impaired, are obtained. The best ontrollers thus evolvedare suessfully downloaded on a Khepera robot. The SGOCE paradigmthat is used in these experiments is desribed in the text. Future researhwill target at furthering the inremental evolutionary proess and evolvingmore intriate behaviors.1 IntrodutionAording to a reent review [26℄ of evolutionary approahes to neural ontrolin mobile robots, it appears that the orresponding researh e�orts usually allupon a diret enoding sheme, where the phenotype of a given robot | i.e.,its neural ontroller and, oasionally, its body plan | is diretly enoded intoits genotype. However, it has often been argued (e.g., [13, 18℄) that indiretenoding shemes | where the genotype atually spei�es developmental rulesaording to whih omplex neural networks and morphologies an be derivedfrom simple programs | are more likely to sale up with the omplexity of theontrol problems to be solved, if only beause the size of the genotypi spaeto be explored may be muh smaller than that of the spae of the resultantphenotypes.The feasibility of suh indiret approahes, whih ombine the proesses ofevolution and development, has been demonstrated through several simulations[2, ?, 5, 10, 19, 20, 32, 36, 38, 39℄ and a few appliations involving real robots[6, 15, 16, 11, 28, 29℄. However, the fat that the great majority of ontrollersand behaviors that have thus been generated are very simple, together withthe diÆulties enountered when more omplex ontrollers and behaviors were1



sought [11, 20℄, led us to suspet that so-alled inremental approahes [4, 12, 23℄should neessarily be used in onjuntion with indiret enoding shemes in morerealisti appliations. In other words, aording to suh a strategy, appropriateontrollers and behaviors should be evolved and developed through suessivestages in whih good solutions to a simpler version of a given problem are usediteratively to seed the initial population of solutions likely to solve a harderversion of the same problem.In [20℄ suh an inremental strategy has been used to evolve and developneural ontrollers that permitted a simulated inset to suessively walk, followan odor gradient, and avoid obstales. In this paper, it is used within the on-text of an evolutionary robotis appliation, where neural ontrollers for robustobstale-avoidane in a Khepera robot are automatially generated. This workalls upon a two-stage approah, in whih ontrollers for obstale-avoidane inmedium-light onditions are �rst evolved, and then improved to operate alsoin more hallenging strong-light onditions, when a lighted lamp is added intothe environment. Comparisons with results obtained under the alternative one-shot strategy are provided and support the above-mentioned intuition about theusefulness of an inremental approah.2 Material and methodsThis setion will desribe the task to be aomplished, and the SGOCE1 paradigmthat underlies our methodology. This task derives from the harateristis andlimitations of the sensory motor apparatus of Khepera, whih will be brieysummarized hereafter. Likewise, a short desription will be provided of howthis sensory motor apparatus has been simulated in this work. As for the de-sription of the SGOCE methodology, it will deal suessively with the develop-mental ode that links the genotype of the robot to its phenotype, the syntationstraints that limit the omplexity of the phenotypes generated, the evolu-tionary algorithm inspired from geneti programming [21, 22℄ that generatesdevelopmental programs, and the inremental strategy that helps produe neu-ral ontrol arhitetures likely to exhibit inreasingly adaptive apaities.2.1 The obstale-avoidane task2.1.1 The real Khepera.Khepera [31℄ is a irular-shaped miniature mobile robot | with a diameter of55 mm, a height of 30 mm, and a weight of 70 g | that is mounted on twowheels and two small Teon balls. In its basi on�guration, it is equipped witheight proximity sensors | six on the front, two on the bak | that may alsoat as visible-light detetors. The wheels are ontrolled by two DC motors withinremental enoders that move in both diretions.1This name is the aronym for the expression "Simple Geometry Oriented Cellular Enod-ing". 2



In eah proximity sensor of Khepera, an infra-red light emitter and reeiverare embedded. This hardware allows two things to be measured: the normalambient light | through reeivers only | and the light reeted by the ob-stales | using both emitters and reeivers. In medium-light onditions, thishardware makes it possible to detet an obstale a short distane away | notmore than about 5 m. However, under strong light onditions, the orrespond-ing reeptors tend to saturate : the light emitted by the robot and reetedby obstales annot be distinguished from ambient light and, thus, annot bedeteted (Figure 1). Therefore, this work aims at automatially evolving a ro-bust obstale-avoidane ontroller likely to di�erentiate between the two lightonditions and to take appropriate motor deisions.[Figure 1 omes about here℄In the present work, suh a ontroller has been generated through simulationsperformed under the SGOCE paradigm. Then the orresponding network hasbeen downloaded onto a Khepera robot and its ability to generate the requestedbehavior has been heked.2.1.2 The simulated Khepera.A ylindrial robot like Khepera is easier to model than a robot of arbitraryshape and with many degrees of freedom. Still, some phenomena, like frition,annot be simulated with preision. Also, eah sensor or motor has a uniquebehavior that an only be approximated in a simulation.Our simulator is based on, and improves, an already existing simulator [27℄and makes it possible to exeute the same ontrol program, either on the simu-lated robot or on the real one. It has four important features.Firstly, it an be ontrolled by another independant program, making iteasier to interfae it with an already existing evolutionary algorithm software.This is important from a pratial point of view, beause the ode an be reusedmore easily.Seondly, it ontains a set of funtions spei�ally designed for arti�ial neu-ral network evolution. One suh funtion makes it possible for the evolutionarysoftware to send to the simulator the desription of a dynami neural network,whih will be onneted in a spei� way with the sensors and motors of therobot, whether real or simulated. Another funtion makes it possible to sim-ulate the dynamis of that network during a given period of time, in order toontrol the robot. This funtion returns a �tness value, whih is omputed onthe basis of information normally available to the robot, and whih, when usedwith the real robot, is run entirely on board.A third important feature of our simulator is its speed. Integer alulationsare used to update the state of the neural network when omputations are per-formed on board. Moreover, the sensor simulation method used by Mihel has3



been replaed by a tabulation tehnique, aording to whih, prior to evolution,the values returned by a sensor in a given environment are reorded in a look-up-table for a number of di�erent positions and orientations. Note that unlikein [30℄, where the values stored were measured on the real robot, here, we syn-thetize these values to make it easier to hange the environmental onditions.At evaluation time, the sensor values are omputed by interpolation from thevalues stored in the table.Finally, another important feature to mention is the way in whih sensorbehavior is modelled. As already stated, Khepera IR sensors an work in eitherof two di�erent modes. In passive mode, they return a measurem of the ambientlight intensity I . In ative mode, they return m+, a measure of the intensityI+, i.e., the sum of the ambient intensity I and of the intensity dI of the lightpossibly reeted o� an obstale (Figure 1).If the robot is at a spei� position relative to a given on�guration ofobstales, then the value dI will be the same whatever the level I of the ambientlight. The proximity measure p = K � (m�m+) an thus be used to araterizethe presene of an obstale. However, beause the funtion relating intensity Ito measure m is non-linear, the same dI value will not yield the same di�erene(m�m+) for di�erent levels of I . For this reason, p is not simply a funtion ofthe intensity dI reeted from the IR-ray, but also depends on I .We have modi�ed Mihel's IR sensor model in order to take into aountthe possible e�et of the ambient light level I on p. At tabulation time, we sumthe intensities onveyed by rays emitted by puntual light soures plaed in theenvironment and possibly by the robot, whih are reeived at the position of thesensor. Only then is the value of the measure returned by the sensor omputed,using the response urve of Figure 1.2.2 The SGOCE evolutionary paradigmThis paradigm is used to enode, into a robot's genotype, the developmentalrules that will generate its phenotype. In the present appliation, this phenotypeis instantiated as a general reurrent neural network ontrolling the behavior ofthe robot that is grown from a few initial ells provided by the experimenter.This neural network is made up of individual neurons eah behaving as a leakyintegrator [35℄ | i.e., it is a universal dynamis approximator, liable to approx-imate the trajetory of any smooth dynami system [1℄.2.2.1 The developmental ode.Our enoding sheme is a simple geometri variation of Gruau's ellular enoding[10℄. It implements developmental rules that are enoded into arti�ial tree-like hromosomes that ontain two ategories of instrutions. Some speifymorphologial transformations applying to spei� ells, while others are usedto generate strutured developmental programs.4



[Figure 2 omes about here℄This sheme also employs a two-dimensional substrate within whih the ex-perimenter initially arranges a set of sensory ells that may be onneted to therobot's sensors, a set of motoneurons that may be onneted to the robot's atu-ators, and a set of preursor ells from whih the developmental proess will beinitiated (Figure 2). Eah preursor ell is given a opy of the robot's genotypeand, as it exeutes the orresponding program, divides, grows onnetions toother ells, di�erentiates into a funtional neuron, or dies (Figures 3 and 4).[Figure 3 omes about here℄[Figure 4 omes about here℄At the end of suh a proess, a omplete neural ontroller is obtained, whosearhiteture reets the geometry and symmetries initially imposed by the ex-perimenter, to a degree that depends on the side-e�ets of the developmentalinstrutions that have been arried out. This ontroller is onneted to thesensors and atuators of the robot through onnetions to the sensory ells andmotoneurons inorporated into its arhiteture. This, together with the useof an appropriate �tness funtion (to be desribed later) makes it possible toassess the ontroller's apaity to generate the spei� behavior sought by theexperimenter.2.2.2 Syntati onstraints.[Figure 5 omes about here℄In order to redue the size of the genotypi searh-spae and the omplexityof the networks generated, we restrit the struture of the orresponding devel-opmental programs by requiring that all evolving subprograms be well-formedtrees aording to a given ontext-free tree-grammar (Figure 5). Furthermore,suh a grammar makes it possible to ontrol the nature and size of the programmodi�ations that our between two suessive generations through use of ge-neti operators like mutation or rossover. Thus, a mutation operator makes itpossible to replae a sub-tree by another randomly generated ompatible2 sub-tree. Likewise, a rossover operator makes it possible to exhange a sub-tree in2Two sub-trees are said to be ompatible if they are derived from the same grammatialvariable. For instane, if grammar GRAM-A (Figure 5) is used to de�ne the onstraints on5



one developmental program for a ompatible sub-tree in another developmentalprogram.2.2.3 Evolutionary algorithm.To slow down onvergene by favoring the reation of eologial nihes, we use asteady-state evolutionary algorithm that involves a population of N randomly-generated well-formed programs distributed over a irle and whose mode ofoperation is outlined in Figure 6.[Figure 6 omes about here℄The following proedure is repeated until a given number of individuals havebeen generated and tested:1. A position P is hosen on the irle.2. A two-tournament seletion sheme is applied in whih the better of twoprograms randomly seleted from the neighborhood of P is retained3.3. The program seleted is allowed to reprodue, and three geneti operatorsmay modify it. The reombination operator is applied with probabilityp. It exhanges two sub-trees between the program to be modi�ed andanother program randomly seleted from the neighborhood of P . Twotypes of mutation are used. The �rst mutation operator is applied withprobability pm. It hanges one randomly seleted sub-tree into anotherrandomly generated one. The seond mutation operator is applied withprobability 1 and modi�es the values of a random number of parameters,implementing what Spener alled a onstant perturbation strategy [37℄.Firstly, the number nmut of parameters to be modi�ed is drawn froma binomial distribution B(n; p), and nmut parameters are then seletedrandomly | all parameters having the same probability of being hosen| to be mutated.4. The �tness of the new program is assessed by olleting statistis whilethe behavior of the animat ontrolled by the orresponding arti�ial neuralnetwork is simulated over a given period of time.5. A two-tournament anti-seletion sheme, in whih the worst of two ran-domly hosen programs is seleted, is used to deide whih individual (inthe neighborhood of P ) will be replaed by the modi�ed program.a given sub-program, sub-tree SIMULT3(SETBIAS, DEFTAU, SIMULT4(GROW, DRAW,GROW, NOLINK)) in that sub-program may be replaed by sub-tree DIE, beause bothsub-trees are derivations of the Neuron variable in GRAM-A.3A program's probability ps of being seleted dereases with the distane d to P : ps =max(R � d; 0)=R2 , with R=4. Programs for whih d is greater than or equal to R annot beseleted (ps = 0). 6



In all the experiments reported in this paper, N = 100, p = 0:6, pm = 0:2,n = 6 and p = 0:5.2.2.4 Inremental approah.The arti�ial evolution of robust ontrollers for obstale-avoidane was arriedout using the Khepera simulator to solve suessively two problems of inreasingdiÆulty. Basially, this entailed evolving a �rst neural ontroller that used itssensors in ative mode to measure the proximity value p, in order to avoid obsta-les suessfully in medium-light onditions. Then, a seond neural ontrollerwas evolved that operated in passive mode in strong-light onditions and usedmeasures of the ambient light level m to modulate the normal funtion of the�rst ontroller. In other words, suh an inremental approah relied upon thehypothesis that the seond ontroller would be able to evaluate the loal inten-sity of ambient light so as to hange nothing in the orret obstale-avoidanebehavior seured by the �rst ontroller in medium-lighted regions, but to alterit | in whatever adapted manner evolution would disover | when the robottravelled through strong-lighted regions likely to impair the proper operation ofthe �rst ontroller.During Stage 1, to evolve the �rst ontroller and generate a lassial obstale-avoidane behavior in medium-light onditions, the following �tness funtionwas used:f1 =Xt �0:5 + vl(t) + vr(t)4 � Vmax � ��1� jvl(t)� vr(t)j2 � Vmax � ��1� Pfront pi(t)4 � Pmax � (1)where vl(t) and vr(t) were the veloities of the left and right wheels, respetively;Vmax was the maximum absolute veloity; pi(t) was the proximity measurereturned by eah sensor i among the four front sensors; Pmax was the largestmeasured value that an be returned.In the righthand part of this equation, the �rst fator rewarded fast on-trollers, the seond fator enouraged straight loomotion, and the third fatorpunished the robot eah time it sensed an obstale in front of it.Using the substrate of Figure 2 and the grammar of Figure 5, ontrollerslikely to inlude eight di�erent sensory ells and four motoneurons were evolvedafter a random initialization of the population. The �tness of these ontrollerswas assessed by letting them ontrol the simulated robot over 500 time-steps,in a square environment ontaining an obstale (Figure 7-a).For this purpose, the sensory ells D0 to D7 in Figure 2 were onneted tothe robot's sensors suh that the instantaneous ativation value eah ell propa-gated throught the neural network to the motoneurons was set to the proximitymeasure p returned by the orresponding sensor. Likewise, the motoneuronswere onneted to the robot's atuators suh that a pair of motoneurons wasassoiated with eah wheel, the di�erene between their inputs determining thespeed and diretion of rotation of the orresponding wheel.7



[Figure 7 omes about here℄Eah ontroller was evaluated �ve times in the environment of Figure 7-a,starting in the same position, but with �ve di�erent orientations, its �nal �tnessbeing the mean of these �ve evaluations.After 10,000 reprodution events, the ontroller with the highest �tness(alled AVOID1 hereafter) has been used to seed an initial population thatwas subjeted to a seond evolutionary stage involving strong-light onditions.During Stage 2, the orresponding �tness funtion beame:f2 =Xt �0:5 + vl(t) + vr(t)4 � Vmax � ��1� jvl(t)� vr(t)j2 � Vmax � (2)In this equation, the third term that was inluded in the righthand partof equation 1 was eliminated beause it referred to ative-mode sensory inputsthat ould not be trusted in strong-light onditions. However, fast motion andstraight loomotion were still enouraged.[Figure 8 omes about here℄Using the substrate of Figure 8 and the grammar of Figure 9, ontrollerslikely to inlude 16 di�erent sensors and four motoneurons were evolved during10,000 additional reprodution events.This time, the ativation values that the new sensory ells L0 to L7 inFigure 8 propagated through a given ontroller were eah set to the ambientlight measure m returned by the robot's orresponding sensor. The �tness ofthe orresponding ontroller was assessed in the same square environment asthe one used in Stage 1, but with a lighted lamp positioned in one of its orners(Figure 7-b).Again, the �nal �tness was the mean of �ve evaluations that orresponded to�ve trials of 500 time-steps, eah starting in the same position, but with di�erentorientations and light intensities. In partiular, one suh trial was performedin medium-light onditions when the lamp was swithed o�, two others wereperformed when the lamp was ontributing a small amount of additional light,and the last two were performed in strong light onditions, when the lampontributed its maximum light intensity.At the end of Stage 2, the best neural network thus obtained was downloadedand tested on a Khepera for 50 seonds.[Figure 9 omes about here℄8



3 Experimental resultsThe evolutionary run just desribed has been repliated ten times, the �tnessesof the best ontrollers obtained at the end of Stage 1 in medium-light onditions,on the one side, and at the end of Stage 2 in strong-light onditions, on the otherside, being respetively given in olumns 1 and 4 of Table 1.[Table 1 omes about here℄Column 2 of Table 1 provides �tnesses that have been obtained when, atthe end of Stage 1, eah ontroller seleted in medium-light onditions wastransferred and tested in strong-light onditions. As for olumn 3 of Table 1, itprovides �tnesses that were obtained when the best ontrollers seleted at theend of Stage 2 were tested in medium-light onditions again.The omparison of strong-light �tnesses indiates that ontrollers seletedat the end of Stage 1 are less eÆient than those that are obtained at the endof Stage 2 when the lighted lamp is added to the environment. Thus, thisseond evolutionary stage helped improving the behavior of the robot in strong-light onditions. Likewise, omparison of medium-light �tnesses indiates thatthe ontrollers seleted at the end of Stage 2, aording to their apaities atoping with strong-light onditions, didn't loss the essential of their abilitiesto generate appropriate behavior in medium-light onditions. Indeed, althoughtheir �tnesses tend to be slightly lower than those of the best ontrollers of Stage1, they still are of the same order of magnitude.To assess the usefulness of the inremental approah advoated here, tenadditional ontrol runs have been performed, eah involving 10,000 reprodutionevents and the same number of evaluations (100,000) that were done in theinremental runs. Eah suh run diretly started with the substrate of Figure 8and alled upon both GRAM-A and GRAM-B grammars, thus permitting thesimultaneous evolution of both neural modules. The �tness of eah individualwas the mean of 10 evaluations: �ve in the onditions of Stage 1 desribedabove, and �ve in the onditions of Stage 2. Columns 5 and 6 of Table 1provide the �tnesses of the best individuals thus seleted, these �tnesses havingbeen assessed in both medium-light and strong-light onditions. A quantitativeomparison of inremental and ontrol runs indiates that the means of themedium-light and strong-light �tnesses obtained at the end of the inrementalruns are statistially higher (Mann-Whitney test, signi�any level = 0.05) thanthe orresponding means obtained at the end of the ontrol runs. Moreover, aqualitative omparison of the behaviors generated by these ontrollers indiatethat the behaviors of the ontrol runs are far less satisfatory than those oftheir inremental ompetitors. In fat, in every ontrol run, but Run 4, therobot alternated moving forward and bakward and never turned. As for theontroller of Run 4, its �tness in medium-light onditions suddenly inreased inthe last generations and led to an obstale-avoidane behavior as good as those9



of the best ontrollers evolved in the inremental runs, but at the detriment ofits abilities to deal with strong-light onditions, whih were severely impaired.To understand how the ontrollers obtained during the inremental runs su-eeded to generate satisfatory behaviors, the internal organization of the neuralnetworks obtained at the end of Stage 1 (Figure 10) and Stage 2 (Figure 11) inone of these runs has been srutinized. The orresponding simulated behaviorsare respetively shown in Figures 12A-D. It thus appears that the single-moduleontroller uses the four front sensors only. It drives the robot at maximal speedin open areas, and makes it possible to avoid obstales in two di�erent ways. Ifthe obstale is deteted on one given side, then the opposite wheel slows down,allowing for diret avoidane. When the detetion is as strong on both sides,then the robot slows down, reverses its diretion, and turn slightly while reoil-ing. After a short period of time, forward loomotion resumes. However, whenplaed in strong-light onditions, this ontroller is unable to detet obstalesand thus keeps bumping into walls. The two-module ontroller orrets this de-fault by avoiding strongly lighted regions in the following way. In medium-lightonditions, all L-sensors return high m values. Exitatory links onnet eahof the two frontal L-sensors | L0 and L1 | to one interneuron of module 1apiee. Eah of these interneurons, in turn, sends a forward motion ommandto the motor on the opposite side. As a onsequene, whenever the value mreturned by one of these two sensors dereases | an event that orrespondsto the detetion of a high light intensity | the orresponding interneuron inModule 1 beomes less ativated and the wheel on the opposite side slows down.This results in a light avoidane behavior.[Figure 10 omes about here℄[Figure 11 omes about here℄[Figure 12 omes about here℄[Figure 13 omes about here℄Figures 13A-D show the behavior exhibited by Khepera when the networksdesribed above are downloaded onto the robot and are allowed to ontrol itfor 50 seonds in a square arena of size 60x60 m designed to sale the sim-ulated environment. Suh �gures were obtained through the on-line reord ofthe suessive orders sent to the robot's motors and through the o�-line reon-strution of the orresponding trajetories. They demonstrate that the behavior10



atually exhibited by Khepera is qualitatively similar to the behavior obtainedthrough simulation | in terms of the robot's ability to avoid obstales and toquikly move along straight trajetories | and that it �ts the experimenter'sspei�ations. The main behavioral di�erene ours when, at the end of themedium-light stage, ontrollers are tested in the presene of the additional lamp:the atual behavior of Khepera is more disrupted than the simulated behavior,probably beause light that is reeted by the ground in the experimental arenais not adequately taken into aount by the simulator (Figures 12.B and 13.B).Suh disrepanies do not our at the end of the strong-light stage beausethe robot then avoids the region where the lamp is situated and where suhdisturbing light reetions are the strongest.4 DisussionAlthough obstale-avoidane would appear a behavior easy to evolve in Khep-era, as demonstrated by the suessful results already obtained by numerousresearhers [6, 9, 8, 17, 24, 28, 29, 30, 34℄, results presented herein indiate thatsuh a behavior is easily disrupted when the ambient light is high. These re-sults also indiate that evolving a robust obstale-avoidane behavior, althoughnot trivial, is nevertheless possible. The solution that has been automatiallydisovered here onsists in avoiding situations were the sensory apaities ofthe robot beome too limited to seure a still adapted behavior. Finally, theseresults do not ontradit the intuition that suh non trivial behaviors are easierto evolve using a divide-and-onquer inremental approah. This intuition isfurther supported by the observation that nature itself seems to resort to suhan inremental approah, if one admits that, in an ever hanging environment,seletion pressures never remain onstant, and if one observes that, sine theappearane of life on Earth, the adaptive apaities of man learly originate inthe simpler adaptive apaities of numerous intermediate speies.Be that as it may, the results obtained herein are preliminary, and numer-ous additional experiments should be performed to assess the usefulness of avariety of implementation details. It seems a priori possible, for example, thatindividual neurons, behaving as traditional threshold units [25, 33℄, (MClel-land and Rumelhart, 1986; Rumelhart and MClelland, 1986), might be used toprodue similar results to those obtained here with leaky integrators, althoughthe reoiling behavior reported in Setion 3 might have been harder to produewith non dynami neurons. We nevertheless used suh neurons beause theirdynami properties might prove to be mandatory in future extensions of thiswork.Likewise, it is presently unlear whether the loal interations and the ge-neti operators that were used in our evolutionary algorithm are truly relevantand whether they might have been replaed by other options. Finally, one maywonder how integral eah detail of the initial setup hosen by the experimenter| e.g., the grammars, the substrate's layout, the �tness funtions | was forevolutionary suess. However, it is interesting to note that the evolutionary11



parameters used were the same here and in all other appliations of the SGOCEparadigm [19, 20, 14, 7℄. The di�erent developmental substrates and gram-mars used in all appliations were also hosen to be as similar as possible andsatisfatory results were always found without tuning.To further assess the potentialities of inremental evolution, future researhe�orts will aim at arrying on the evolutionary proess one step further, resort-ing to a third evolutionary stage and a third �tness funtion. This might entailinorporating into Khepera's ontrol arhiteture a rudimentary motivationalsystem, aording to whih the robot | while still being able to avoid enoun-tered obstales | would seek the light when a simulated internal energy sensordeteted low energy onditions, and would avoid light in normal or high energyonditions. Comparisons with a similar, but simpler, experiment arried on by[8℄ are likely to be enlightening beause, in the latter approah, evolution wasdiretly performed on the physial robot, i.e., without human intervention, andwith a diret enoding sheme.5 ConlusionPreliminary results presented herein support the hypothesis that omplex be-haviors in real robots are more likely to be generated through an inrementalevolutionary proess than through diret evolution. They also suggest that re-alisti simulators may be devised, whih permit neural ontrollers evolved insimulation to be suessfully downloaded onto the orresponding robot, at leastfor simple robots. A two-stage inremental strategy made it possible to evolve arobust obstale-avoidane behavior in a Khepera robot, although additional ex-periments are required to assess the relevane of eah detail of the orrespondingimplementation. Future researh will aim at elaborating the behavior thus farobtained through additional evolutionary stages that will manage a rudimentarymotivational system.Referenes[1℄ R. D. Beer, On the dynamis of small ontinuous-time reurrent neuralnetworks, Adaptive Behavior 3(4) (1995) 469{510.[2℄ E. Boers and H. Kuiper, Biologial Metaphors and the Design of ModularArti�ial Neural Networks , Master's thesis, Dept. of Computer Sieneand Experimental and Theoritial Psyhology, Leiden University, (August1992)[3℄ A. Cangelosi, D. Parisi and S. Nol�, Cell division and migration in a'genotype' for neural networks, Network 5 (1994) 497{515.[4℄ H. de Garis, Geneti Programming: GenNets, Arti�ial Nervous Systems,Arti�ial Embryos , Ph.D. thesis, Universit�e Libre de Bruxelles, Belgium,(1991) 12
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TablesTable 1/1: Stage 1 Stage 2 Controlrun medium-light strong-light medium-light strong-light medium-light strong-light1 323.253 097.104 345.746 359.786 245.934 258.7402 326.283 102.576 296.758 309.380 240.169 252.0953 339.701 159.331 171.105 224.239 241.174 252.1254 302.774 105.761 280.408 314.011 397.838 183.0065 321.416 101.187 301.514 345.597 254.706 226.5496 396.320 107.621 258.273 239.041 228.097 230.3997 204.426 230.999 193.847 235.449 245.495 246.5348 312.598 185.041 296.922 262.145 203.891 232.9499 310.051 219.790 255.324 304.069 170.998 224.54910 398.471 181.863 346.630 409.280 221.416 231.129
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Figure 2/13:
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Figure 4/13:
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Figure 5/13:Terminal symbolsDIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.VariablesStart1, Level1, Neuron, Bias, Tau, Connex, Link.Prodution rulesStart1�!DIVIDE(Level1, Level1)Level1�!DIVIDE(Neuron, Neuron)Neuron�!SIMULT3(Bias, Tau, Connex) j DIEBias�!SETBIAS j DEFBIASTau�!SETTAU j DEFTAUConnex�!SIMULT4(Link, Link, Link, Link)Link�!GROW j DRAW j NOLINKStarting symbolStart1.
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Figure 6/13:
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Figure 7/13:

(a) Medium-light environment. (b) Strong-light environment.
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Figure 8/13:
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Figure 9/13:Terminal symbolsDIVIDE, GROW, DRAW, GROW2, SETBIAS, SETTAU, DIE,NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.VariablesStart1, Level1, Neuron, Bias, Tau, Connex, Link.Prodution rulesStart1�!DIVIDE(Level1, Level1)Level1�!DIVIDE(Neuron, Neuron)Neuron�!SIMULT3(Bias, Tau, Connex) j DIEBias�!SETBIAS j DEFBIASTau�!SETTAU j DEFTAUConnex�!SIMULT4(Link, Link, Link, Link)Link�!GROW j DRAW j GROW2 j NOLINKStarting symbolStart1.
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Figure 10/13:
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Figure 11/13:
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Figure 12/13:

(A) Best of Stage 1, medium-light (sim.) (B) Best of Stage 1, strong-light (sim.)

(C) Best of Stage 2, medium-light (sim.) (D) Best of Stage 2, strong-light (sim.)
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Figure 13/13:

(A) Best of Stage 1, medium-light (real) (B) Best of Stage 1, strong-light (real)

(C) Best of Stage 2, medium-light (real) (D) Best of Stage 2, strong-light (real)
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Table and Figure aptionsTable 1/1:The performane of the best individuals of eah run, when evaluated either inmedium-light or in strong-light onditions. The inremental approah results inthe performane values shown in olumns 3 and 4 (Stage 2), while the ontrolexperiments results are shown in olumns 5 and 6 (Control). The �rst twoolumns (Stage 1) provide results obtained after Stage 1 during the inrementalapproah.Figure 1/13:(Left) This part of the �gure shows the di�erent soures that ontribute tothe intensity reeived by a sensor. The geometrial on�guration onsideredis the same in all four situations. The ambient light ontributes an intensityI . When the lamp is lighted, the sensor reeives an additional ontribution J ,through diret and/or reeted rays. Finally, in ative mode, the reeted IR-ray yields an intensity dI at the level of the sensor. The value of dI depends onlyon the geometrial on�guration onsidered. Intensities are summed, but thesensor response is non-linear. (Right) In strong-light onditions, the responseof a sensor an saturate. In suh a ase, where I 0 = I + J , the same inrease inintensity dI aused by the reetion of an IR-ray emitted by the robot auses asmaller derease of the value measured than it does in the linear region of theresponse urve (medium-light onditions). In other words, although dI intensityinreases an be sensed in medium-light onditions | and the orrespondingobstale on�gurations an thus be deteted |, suh is not the ase in strong-light onditions.Figure 2/13:An example of the initial state of the developmental substrate and of thestruture of the developmental program. This struture is determined by theexperimenter. Here, eah of the two preursor ells arries out a developmentalprogram that starts by a jump instrution to the evolving sub-program SP2.To solve other ontrol problems, additional preursor ells might have beeninluded in the substrate, eah of whih would exeute a di�erent sub-programbefore, oasionally, jumping to SP2 or to other evolving sub-programs. Duringevolution the omposition of sub-program SP2 an be modi�ed within the limitsde�ned by the onstraints enoded in grammar GRAM-A (see explanations onsyntati onstraints in the text). D0 to D7 are sensory ells andM0 toM3 aremotoneurons, whih have been plaed by the experimenter in spei� positionswithin the substrate.
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Figure 3/13:While reading the genotype, a preursor ell generates a neural networkafter several developmental steps. This network may involve the sensory ellsand the motoneurons made available by the experimenter. Eah preursor ellis assoiated with a frame of referene that is inherited by its daughter ell whendivision ours.Figure 4/13:Depending on the values of the arguments of some developmental instru-tions, targets for onnetions are sought in a given diretion and at a givendistane, in the loal framework assoiated with the ating ell. These onne-tions link two di�erent neurons or orrespond to self-onnetions. They an alsoregress and die when their targets lie outside the developmental substrate.Figure 5/13:The GRAM-A grammar. This grammar de�nes a set of sub-programs |those that an be generated from it, starting with the Start1 symbol. WhenGRAM-A is used, a ell that exeutes suh a sub-program undergoes two divi-sion yles, yielding four daughter ells, whih an either die or modify internalparameters (time-onstant and bias) that will inuene their future behavioras neurons. Finally, eah surviving ell establishes a limited number of onne-tions, either with another ell, or with the sensory ells and motoneurons thathave been positioned by the experimenter in the developmental substrate.Figure 6/13:The evolutionary algorithm (See text for explanation).Figure 7/13:The environment that was used to evaluate the �tness of eah ontroller.(a) Medium-light onditions of Stage 1. The star indiates the starting positionof eah run. (b) Strong-light onditions of Stage 2. A lighted lamp is posi-tioned in the lower-left orner of the environment. Conentri ars illustratethe orresponding intensity gradient.Figure 8/13:The initial on�guration of the developmental substrate and the programstruture used for Stage 2. The same substrate is used for ontrol experiments,in whih both modules are evolved simultaneously. In these latter experiments,both SP4 and SP5 are initialized randomly and are submitted to evolution underonstraints given by GRAM-A and GRAM-B, respetively.Figure 9/13:The GRAM-B grammar. It is idential to GRAM-A exept for the additionof one instrution (GROW2) that makes it possible to reate a onnetion fromthe seond to the �rst module.Figure 10/13:The best ontroller obtained after Stage 1 for the partiular run that re-sulted in the ontroller of Figure 11. The outputs of the motoneurons M2 andM3 are interpreted as forward motion ommands for the right and left wheels,respetively, while the output of the motoneurons M0 and M1 orrespond tobakward motion ommands. Solid lines orrespond to exitatory onnetions,31



while dotted lines indiate inhibitory links. This network ontains four interneu-rons.Figure 11/13:The best ontroller obtained after Stage 2. This networks ontains fourinterneurons in Module 1 and eight interneurons in Module 2.Figure 12/13:(Top) The simulated behavior of the single-module ontroller of Figure 10.When starting in front of the lamp, the orresponding robot gets stuk in the or-ner with the lamp. (Bottom) Simulated behavior of the two-module ontrollerof Figure 11. Now, the robot avoids the lighted region of the environment.Figure 13/13:The paths atually travelled by the Khepera robot, whih have been re-onstruted o�-line using motor orders reorded during the trial. (Top) Realbehavior of the single-module ontroller of Figure 10. Due to reetions presentin the real world, but not in the simulation, the behavior under strong-lightonditions is di�erent from that of Figure 12. (Bottom) Real behavior of thetwo-module ontroller of Figure 11. Now, the real behavior is qualitativelysimilar to the simulated behavior shown in Figure 12.

32


