
Walking animats 1

Evolutionary Approaches to Walking
and Higher-Level Behaviors in

6-Legged Animats

JEAN-ARCADY MEYER
AnimatLab
Ecole Normale Supérieure
46 rue d’Ulm
75230 Paris Cedex 05
France
meyer@wotan.ens.fr

1 Introduction

This article describes the main current research project in evolutionary robotics at
the AnimatLab, Paris. It aims at using an artificial selection process to automatically
generate neural networks that control walking animats, i.e., simulated insects or real
legged-robots. Essentially, it complements an underlying evolutionary process with
a developmental procedure - in order to reduce the size of the genotypic space that
is explored - and it calls upon an incremental approach - in order to capitalize upon
previously found solutions to simpler problems for solving problems of increasing
difficulties.

This article will successively outline the historical background of our research,
the evolutionary paradigm on which this research relies, and the physical model of
artificial insect that we’re using. Then it will summarize the main results we have
obtained so far and indicate directions for future work.

2 Background

Several research efforts have recently aimed at evolving locomotion controllers for
animats with two [9], four [9, 3, 22, 30] or eight [10, 13, 12, 14] legs. Such controllers



2 J-A. Meyer

are traditional programs [10], neural networks [9, 3, 22, 12], classifier systems [6] or
Lisp-like programs [30]. Likewise, some of these approaches [9, 3, 30, 6] call upon
simulations, while others are performed on real robots [22, 10, 12, 13]. However, all
these research efforts are targeted at evolving straight-line walking and problems like
direction control, speed control, or rough terrain locomotion remain largely unsolved
by the corresponding approaches, not mentioning higher-level tasks like obstacle-
avoidance, goal-seeking or pursuit-evasion.

At the AnimatLab, we are trying to extend current results in these directions by
drawing inspiration from biology [25] and exploiting the potentialities of a method-
ology that makes the evolutionary task easier, thus allowing more complex problems
to be tackled. Such a methodology employs an indirect genotype-to-phenotype map-
ping that inserts a developmental process between an animat’s genotype - i.e., the
information that evolves from generation to generation - and its phenotype - i.e., the
animat’s nervous system. Therefore, it avoids the main drawbacks incurred by di-
rect mappings, i.e., their lack of scalability - according to which the evolutionary
algorithm explores a genotypic space that grows bigger and bigger as the phenotypic
solutions sought get more and more complex - and their inaptitude to generate modu-
lar architectures - which allow for repeated substructures that help encoding complex
controller architectures in compact genotypes.

It has been shown in [17] that indirect encoding schemes currently rely on four
different paradigms for modeling development: rewriting rules [4, 11], axonal growth
processes [31, 26], genetic regulatory networks [8], and nested directed graphs [29].
Basically, our SGOCE1 methodology, which entails adding an axonal growth pro-
cess to the cellular encoding scheme described in [11], is a combination of the two
first above-mentioned approaches and is used to evolve developmental rules. Such
rules, in turn, are used to develop a neural network module that gets connected to an
animat’s sensors and actuators in order to control a given behavior and to provide for
a given competency. Additional behaviors or competencies can be successively dealt
with by evolving new developmental programs, which not only create new modules
with new sensori-motor connections, but also generate inter-modular connections
that secure an adapted and coherent overall functioning. Eventually, such an incre-
mental methodology generates control architectures that are strongly reminiscent of
Brook’s subsumption architectures [5].

1This name is the acronym of the expression Simple Geometry-Oriented variation of Cellular Encoding.



Walking animats 3

3 The SGOCE evolutionary paradigm

This paradigm is characterized by an encoding scheme that relates the animat’s geno-
type and phenotype, by syntactic constraints that limit the complexity of the develop-
mental programs generated, by an evolutionary algorithm that generates the develop-
mental programs, and by an incremental strategy that helps producing neural control
architectures likely to exhibit increasing adaptive competencies. The neural architec-
tures thus produced are general recurrent neural networks controlling the behavior of
the animat and grown from a few initial cells provided by the experimenter.

These neural networks are made of individual neurons each behaving as a leaky
integrator [28] - i.e., as a universal dynamics approximator, likely to approximate the
trajectory of any smooth dynamic system [2]. Thus, the mean membrane potential
mi of a neuron Ni evolves according to:

�i � dmi�dt � �mi �
X

wi�jxj � Ii

where xj � ���e��mj�Bj���� is the neuron’s short-term average firing frequency,
Bj is a uniform random variable whose mean bj is the neuron’s bias, and �i is the time
constant associated with the passive properties of Ni’s membrane. Ii is the input that
neuron Ni may receive from a given sensor, and wi�j is the synaptic weight of a
connection from neuron Nj to neuron Ni.

3.1 The developmental code

Our encoding scheme calls upon developmental rules that are encoded into artificial
tree-like chromosomes [20, 21] that contain two categories of instructions. Some
of them specify morphological transformations and apply to specific cells (Table 1),
while others are used to generate structured developmental programs.

This scheme also employs a physical two-dimensional substrate in which the ex-
perimenter initially arranges a set of sensory cells - that may be connected to the
animat’s sensors -, a set of motoneurons - that may be connected to the animat’s ac-
tuators -, and a set of precursor cells - from which the developmental process will be
initiated (Figure 1).

Each precursor cell is given a copy of the robot’s genotype and, as it executes the
corresponding program, divides, grows connections to other cells, differentiates into
a functional neuron, or dies (Figures 2 and 3).



4 J-A. Meyer

DIVIDE � r create a new cell
GROW � r w create a connection to another cell
DRAW � r w create a connection from another cell
SETBIAS b modify the bias parameter
SETTAU � modify the time constant parameter
DIE trigger cellular death

Table 1: The basic developmental instruction set. �, r, w, b and � are parameters
whose roles are described in the text. Additional developmental instruction will be
introduced later in the text.

the substrate:
Initial state of

?

GRAM1

���
���
���
���

��
��
��
��

���
���
���
���

����
����
����
����

��������������

A: angle sensor

PC: precursor cell
P: PS-motoneuron

U: UP-motoneuron
R: RS-motoneuron

P2R2

P3R3

R0 P0 R4 P4

R1 P1 R5 P5

JP6

0

JP6

1

JP6

2

JP6

3

JP6

4

JP6

5 6

A0 U0 A2 U2 A4 U4

A1 U1 A3 U3 A5 U5

PC0 PC2 PC4

PC1 PC3 PC5

Developmental Program

Sensory cell

Motoneuron

Precursor cell

Figure 1: Setup for the evolution of a straight locomotion controller for a six-legged
animat. The figure shows the initial positions of the sensory cells, motoneurons and
precursor cells provided by the experimenter. Sensory cells and motoneurons are
connected to the proprioceptors and muscles that are associated to each leg in the
physical model of Figure 8. The figure also specifies the structure of the develop-
mental programs, each calling upon seven subprograms. JP is a call instruction that
forces a cell to start reading a new subprogram. Only subprogram 6 needs to be
evolved. It’s organization is constrained by the GRAM1 grammar, as explained later
in the text.



Walking animats 5

GROW(.9,10, 1)DIE

SETTAU(.5)

DIE

SETTAU(.5)

GROW(.9,10, 1)

GROW(.9,10, 1)

SETTAU(.5)

Substrate

DIE

�����
�����
�����
�����Developmental

2

�����
�����
�����
������

�
�
�
�
�

�
�
�
�
�
�

2

�����
�����
�����

�����
�����
�����

SETTAU(.5)

GROW(.9,10, 1)DIE

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

GROW(.1, 10, -1)

DRAW(.5, 10, 2)

-1

GROW(.1, 10, -1)

DRAW(.5, 10, 2) 2

-1

Step 4
Final phenotype

Step 3

DIVIDE(.8, 5) DIVIDE(.8, 5)

-1

2

1

GROW(.1, 10, -1)

DRAW(.5, 10, 2)

-1

Step 1

DIVIDE(.8, 5)

GROW(.1, 10, -1)

DRAW(.5, 10, 2)

-1

Step 2

DIVIDE(.8, 5)

Environment
Organism

y

x

precursor cell

motoneurons

sensory cell

S0

M0

GROW(.1, 10, -1)

DIVIDE(.8, 5)

DRAW(.5, 10, 2)

DIE GROW(.9,10, 1)

SETTAU(.5)

M1

Program
Developmental

Figure 2: While reading the genotype, a precursor cell generates a neural network
after several developmental steps. This network may involve the sensory cells and the
motoneurons made available by the experimenter. Each precursor cell is associated
with a frame of reference that is inherited by its daughter cell when division occurs.

developping cell neuron

α

r

DIVIDE α r

GROW xγ

β

γ

s

t

GROW β w

DIVIDE α r

GROW xγGROW β w

DIVIDE α r

GROW xγGROW β ws t s tts

w

x

B) C)A)

Figure 3: A) When a mother cell divides, a daughter cell is created in a given direc-
tion and at a given distance specified by the parameters of the DIVIDE instruction.
B) Depending on the values of the arguments of GROW instructions, targets for con-
nections are sought in a given direction and at a given distance in the local framework
associated with the acting cell. C) These connections link two different neurons or
correspond to self-connections. They can also regress and die when their targets lie
outside the developmental substrate.



6 J-A. Meyer

At the end of such process, a complete neural controller is obtained, whose archi-
tecture reflects the geometry and symmetries initially imposed by the experimenter,
to a degree that depends on the side-effects of the developmental instructions that
have been executed. This controller is connected to the animat’s proprioceptive and
exteroceptive sensors, as well as to the animat’s muscles, through connections to the
sensory cells and motoneurons that have been incorporated in its architecture. This,
together with the use of an appropriate fitness function, makes it possible to assess
the controller’s capacity to generate the specific behavior sought by the experimenter.

3.2 Syntactic constraints

In order to reduce the size of the genotypic search-space and the complexity of the
generated networks, we constrain the structure of the corresponding developmental
programs by requiring that all evolving subprograms be well-formed trees according
to given context-free tree-grammars like the GRAM1 grammar of Figure 4.

Additionally, such grammars make it possible to control the nature and size of the
program modifications that occur between two successive generations, through the
use of genetic operators like mutation or crossing-over. The effect of mutation is to
change an instruction, or one of its arguments, into another instruction or argument.
The effect of crossing-over is to exchange a sub-tree in a developmental program
with a sub-tree in another developmental program.

3.3 Evolutionary algorithm

To slow down convergence by favoring the creation of ecological niches, we use a
steady-state evolutionary algorithm that involves a population of N randomly gener-
ated well-formed programs distributed over a circle and whose mode of operation is
outlined in Figure 5.

The following procedure is repeated until a given number of individuals have been
generated and tested:

1. A position P is chosen on the circle.

2. A two-tournament selection scheme is applied in which the better of two pro-
grams randomly selected from the neighborhood of P is retained2.

2A program’s probability ps of being selected decreases with the distance d to P : ps � max�R� d� ���R�, with R=4.
Programs for which d is greater than or equal to R cannot be selected (p s � �).



Walking animats 7

Terminal symbols

DIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start1, Level1, Level2, Neuron, Bias, Tau, Connex, Link.

Production rules

Start1��DIVIDE(Level1, Level1)

Level1��DIVIDE(Level2, Level2)

Level2��DIVIDE(Neuron, Neuron)

Neuron��SIMULT3(Bias, Tau, Connex) j DIE

Bias��SETBIAS j DEFBIAS

Tau��SETTAU j DEFTAU

Connex��SIMULT4(Link, Link, Link, Link)

Link��GROW j DRAW j NOLINK

Starting symbol

Start1.

Figure 4: The GRAM1 grammar. The set of terminal symbols consists of the de-
velopmental instructions listed in Table 1 and of additional structural instructions
that have no side-effect on the developmental process. NOLINK is a “no-operation”
instruction. DEFBIAS and DEFTAU leave the default values of parameters b and
� unchanged. SIMULT3 and SIMULT4 are branching instructions that allow the
sub-nodes of their corresponding nodes to be executed simultaneously. The intro-
duction of such instructions makes it possible for the recombination operator to act
upon whole interneuron descriptions, or upon sets of grouped connections, and thus
hopefully to exchange meaningful building blocks.

3. The program selected is allowed to reproduce, and three genetic operators may
modify it. The recombination operator is applied with probability pc. It ex-
changes two compatible 3 sub-trees between the program to be modified and
another program selected from the neighborhood of P . Two types of mutation
are used. The first mutation operator is applied with probability pm. It changes
one randomly selected sub-tree into another compatible, randomly generated

3Two sub-trees are compatible if they are derived from the same grammatical variable, like Start1, Level1, etc. in Figure 4.



8 J-A. Meyer

ReplacementSelection

Evaluation

Random Initialization

Mate

Genetic operators

Local
Neighborhood

Population of Programs

Figure 5: The evolutionary algorithm (See text for explanation).

f(Xi)
fitness

Xi

BehaviorProgram Xi Neural controller

Figure 6: The three stages of the fitness evaluation procedure of an evolved devel-
opmental program (Xi). First, the program is executed to yield an artificial neural
network. Then the neural network is used to control the behavior of a simulated ani-
mat that has to solve a given task in an environment. Finally, the fitness of Program
Xi is assessed, according to how well the task has been solved.



Walking animats 9

one. The second mutation operator is applied with a probability of � and modi-
fies the values of a random number of parameters, implementing what Spencer
called a constant perturbation strategy [30]. The number of parameters to be
modified is drawn from a binomial distribution B�n� p�.

4. The fitness of the new program is assessed by collecting statistics while the
behavior of the animat controlled by the corresponding artificial neural network
is simulated over a given period of time (Figure 6).

5. A two-tournament anti-selection scheme, in which the worst of two randomly
chosen programs is selected, is used to decide which individual (in the neigh-
borhood of P ) will be replaced by the modified program.

Typical values for the above mentioned parameters are pc � ���, pm � ���, n � �

and p � ��	.

3.4 Incremental approach

The SGOCE paradigm resorts to an incremental approach that takes advantage of the
geometrical nature of the developmental substrate to generate and connect successive
neural modules implementing different competencies.

As an example, such a paradigm makes it possible to first evolve a neural network
that controls mere locomotion in a 6-legged animat and then to evolve other neural
modules that control higher-level behaviors. These modules may influence the loco-
motion module by creating inter-modular connections. For instance, Figure 7 shows
how the successive connection of two additional modules with a locomotion con-
troller was used to first generate a goal-seeking behavior (Subsection 5.4) and then
to generate additional obstacle-avoidance capacities (Subsection 5.5).

4 The insect’s physical model

The experimental results to be described herein made use of the so-called SWAN4

model of a simulated insect [15], which is strongly inspired by the work of Beer
[1, 3]. According to this model, each of the 6 legs of the animat is equipped with two
pairs of muscles that allow both its angular position and the height of its foot to be
controlled (Figure 8).

4This name is the acronym of the expression Simulated Walking ANimat.



10 J-A. Meyer

Module 3 Module 2 Module 1

precursor cellsensory cellmotoneuron

Figure 7: An instantiation of the SGOCE incremental approach. During a first evolu-
tionary stage, Module 1 is evolved. This module receives proprioceptive information
through sensory cells and influences actuators through motoneurons. In a second
evolutionary stage, Module 2 is evolved. This module receives specific exterocep-
tive information through dedicated sensory cells and can influence the behavior of
the animat by making connections with the neurons of the first module. Finally,
in a third evolutionary stage, Module 3 is evolved. Like Module 2, it receives spe-
cific exteroceptive informations and it influences Module 1 through inter-incremental
connections. In the application to be described later, no connections between Mod-
ule 2 and Module 3 are allowed but such a constraint could easily be relaxed in other
applications.

For three of those muscles, a corresponding motoneuron specifies the value of
the resting length parameter in a simple muscle model. Furthermore, each leg is
equipped with a sensor that returns the leg’s angular position �. Thus the available
motors and sensors correspond to those of Beer and Gallagher’s simulated insect
[3]. However, a difference to these authors’s scheme is that the foot status (up or



Walking animats 11

u

l(u)
k

k, l

tunable muscle:

non-tunable muscle:

A

x

y

F

PS

UP

θ

DOWN

RS

ϕx
Return force

Figure 8: The SWAN model. Left: Each leg has three degrees of freedom. Thanks to
the antagonistic PS- (Power Strike) and RS- (Return Strike) muscles the leg can rotate
around an axis �Ay� orthogonal to the plane of the figure. The instantaneous value
of the � angle, which measures how far the leg is positioned forward or backward,
determines the activity level of the angle sensor in Figure 1. The UP- and DOWN-
muscles allow the position of the foot F to be translated along the �Ax� axis. The
resting lengths of the tunable PS-, RS- and UP-muscles depend on the activity levels
u of the motoneurons of Figure 1. The resting length of the DOWN-muscle is sup-
posed to be non-tunable. Middle: A muscle is modeled as a spring of fixed stiffness
k and of (possibly variable) resting length. Right: If a leg deviates from the vertical
plane parallel to the body axis, a return force proportional to the deviation tends to
bring it back to the vertical plane.

down) is not determined by the state of the corresponding UP-motoneurons only.
More realistically, these positions are also influenced by the dynamics of the physical
model of the animat.

Additionally, depending upon the activity level of the PS-motoneurons, forces
acting on the animat’s body can be greater on one side than on the other. This entails
leg displacements from the vertical axis and the triggering of return forces that are
responsible for rotations.

Finally, the SWAN model allows for monitoring the animat’s overall equilibrium.
When the animat sets upright after having fallen, the weight of its body opposes the
force exerted by the UP-muscles, thus lengthening the return to stability.



12 J-A. Meyer

5 Experimental results

5.1 Straight-line locomotion

In order to evolve neural controllers for straight-line locomotion and to reduce the
size of the search space, we looked for controllers made of six sub-networks grown
according to the instructions of a unique developmental subprogram as described
in Figure 1. Within the given two-dimensional substrate, six precursor cells called
six associated subprograms that, in turn, each called the developmental subprogram.
The positions and the local frames of the different precursor cells reflected the bilat-
eral symmetry of the animat’s morphology. The motoneurons and sensory cells of
each leg had specific coordinates in the local frame associated to the corresponding
precursor cell. The execution of the whole developmental program resulted in the
creation of a neuro-controller made of six interconnected sub-networks. According
to such a logic, only the developmental subprogram had to be evolved.

The fitness function was the distance covered during the evaluation augmented by
a term encouraging any leg motion:

f � x�Tmax �
Z Tmax

t��

X
p

j
d�p
dt

�t�j�
X
p

j
dhp
dt

�t�j�dt

where x�t� is the position of the animat’s center of mass at time t, Tmax is the evalu-
ation time, and �p�t� and hp�t� are the angular position and the height of leg p at time
t [15]. We did not apply an explicit selection pressure for not falling. However, falls
were implicitly penalized because they slowed down locomotion.

We made a series of 5 experiments. In each experiment, 100.000 offspring events
were made in a population of 200 programs with different randomly generated de-
velopmental subprograms well-formed according to GRAM1 (Figure 4).

Several kinds of walking strategies were obtained. In four experiments, symmet-
ric gaits — in which both sides were moved synchronously — were generated. The
corresponding behaviors consisted in making a succession of leaps, using groups of
2, 4 or 6 legs together. None of those gaits was stable because of the high mass of
the modeled body. However, in the course of Experiment 2, a stable, non-symmetric
tripod gait was obtained (Figure 9). This solution covered the longest distance during
the given evaluation time. External feedback provided by the sensors was used only
by the controllers that evolved during Experiment 5.



Walking animats 13

Exp. 1

Exp. 2

Exp. 3

Exp. 4

Exp. 5

Figure 9: Best gait in the final population for each of the five experiments. The
horizontal axis represents time. A dot is plotted when the corresponding leg is raised.
Legs are numbered as in Figure 1. Only the results of Experiment 2 correspond to
a stable, tripod gait. All other experiments in the series led to unstable, leaping
behaviors.

Figure 10 shows the developmental subprogram and the architecture of the cor-
responding network for the best individual found in Experiment 2. As described in
[16], this network implements four central pattern generators that are responsible for
the rhythmic movements of the middle and back legs. Suitable connections are re-
sponsible for the synchronization of each tripod, according to which the front and
back legs on each side of the animat are moved in synchrony with the middle leg of
the opposite side. Likewise, other connections are making for phase opposition in
the rhythms of the two opposite tripods.

5.2 Rough-terrain locomotion

Similar experiments are actually performed with animats that are committed to walk
on rough terrain (Figure 11). Preliminary results indicate that the evolved controllers
have a strong tendency to use external feedback to avoid too many falls.



14 J-A. Meyer

GROW

GROW

GROW

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

DIVIDE

GROW

SETBIAS
GROW

GROW

GROWSETTAU

SETBIAS
GROW

GROW

SETTAU GROW

SETBIAS
GROW

GROW

SETTAU GROW

SETBIAS
GROW

GROW

GROWSETTAU

SETBIAS

SETTAU

SETBIAS

SETTAU

SETBIAS

DRAW

NOLINK

DIE

DRAW

NOLINK

NOLINK

DRAW

DRAW

DRAW

NOLINK

DEFTAU DRAW

DRAW

NOLINK

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT3

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

SIMULT4

Develomental time

Figure 10: Top: The best developmental subprogram found in Experiment 2 (param-
eter values are not shown). This subprogram fits the GRAM1 grammar of Figure 4
and generates a tripod gait. It will be called LOCO1 thereafter. Bottom: The cor-
responding artificial neural network after useless interneurons and connections have
been pruned. Solid lines are excitatory connections, dotted lines are inhibitory con-
nections. Fan-in connection arrive at the top and fan-out connections depart from the
bottom of each neuron. The network contains 38 interneurons and 100 connections.



Walking animats 15

Figure 11: Rough-terrain locomotion.

5.3 Speed control

Having secured mere locomotion by the LOCO1 module described in Figure 10,
two experiments were performed that sought to generate a second module capable of
activating or stopping walking, and even of controlling the animat’s speed.

5.3.1 Boolean stimulus

In the first experiment, a two-module neural network that was able to generate walk-
ing or resting according to the value of a boolean command input was obtained.
The input value was fixed by the experimenter and was communicated to the sys-
tem through a specific sensory cell called a control unit. Figure 12 shows the initial
conditions for the developmental process and the general structure of the programs.

Assuming that a simple architecture would solve the task, the precursor cells of
the second module were connected by default to the control unit at the beginning
of the developmental process by ad hoc DRAW instructions. These cells were not
allowed to divide, to create other intra-modular connections or to modify their bias
parameters. Thus, only inter-modular connections toward the first module were al-
lowed. In such conditions, the only task of the evolutionary process was to find
a set of connections able to inhibit the locomotion behavior when the value of the
command input was maximal (True). Whenever the command input value was zero
(False), the neurons of the second module were not activated — because of the spe-
cific default value of their bias parameter — and the first module generated the default
locomotion behavior.

A new developmental instruction (GROW2) was used to create an afferent con-
nection from a cell in the second module to a cell in the locomotion module. This
instruction worked like instruction GROW except that the geometric parameters were



16 J-A. Meyer

GRAMT

?JP13
WAIT
DRAW

JP13

DRAW

����

���� ������

������

������

������

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

DRAW
WAIT
JP13

DRAW
WAIT
JP13

DRAW
WAIT
JP13

11109870 1 2 3 4 5

Precursor cell

JP12 JP12 JP12 JP12 JP12 JP12

12

PC6

PC7

PC8

PC9

PC10

PC11

Initial state of
the substrate:

JP13
WAIT
DRAW

LOCO1

Control unit

Developmental program

13

WAIT

6

Figure 12: Setup for the evolution of a command network. The figure shows the
initial positions of the control unit and the precursor cells, as well as the structure
of the developmental programs that call upon 14 subprograms. DRAW instructions
(followed by appropriate parameters) are added to create connections (dashed lines)
from the control unit to the precursor cells 6 to 11. WAIT is a no-operation instruction
used to delay the call of subprogram 13 in order to let time for the three successive
divisions of the precursor cells 0 to 5 to occur before instruction GROW2 can be
executed by the precursor cells 6 to 11. Subprogram 12 has been evolved in the
previous experiments. Only subprogram 13 needs to be evolved.

interpreted in the local frame’s projection into the locomotion module. The grammar
GRAMT (Figure 13) defined a set of well- formed subprograms liable to create up
to 8 connections from a precursor cell of the second module into the locomotion
module.

During an evaluation, the value of the command input was successively set to
False, True, False, True and False. The fitness function rewarded individuals for not
moving and for standing when the command was True:

f �
Z Tmax

t��
r�t� � dt

r�t� � �k � s�t�� jv�t�j� if True and r�t� � � otherwise;

where v�t� is the speed of the animat’s center of mass at time t, k is a weighting
coefficient set to 0.01 in the experiments described herein, and s�t� is � if the animat



Walking animats 17

Terminal symbols

GROW2, NOLINK, SIMULT8.

Variables

Start2, Link2.

Production rules

Start2��SIMULT8(Link2, Link2, Link2, Link2, Link2, Link2, Link2, Link2)

Link2��GROW2 j NOLINK

Starting symbol

Start2.

Figure 13: The grammar GRAMT that is used to evolve a locomotion command
module reacting to a boolean stimulus.

-5

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

di
st

an
ce

 c
ov

er
ed

time

GO

STOP

GO

STOP

GO

Figure 14: Distance covered as a function of time by the best controllers in the
final population for five different experiments. The boolean command input is True
between cycles 200 and 400 and between cycles 600 and 800.



18 J-A. Meyer

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 c
ov

er
ed

command input

GO STOP

Figure 15: Distance covered during 1000 cycles when a fixed continuous command
value is applied. Each curve represents the mean distance covered in ten runs.

is stable at time t and � otherwise. No reward was granted while the command was
False.

We ran five experiments in which 20.000 offspring events were performed with
a population of 200 individuals. In each experiment highly rated controllers were
found. Figure 14 illustrates the corresponding behaviors.

To check whether such controllers could generate variable speeds, we submitted
them to intermediate command values. Results shown in Figure 15 indicate that,
when the control unit is clamped to a value comprised between (about) 0.2 and 0.5,
the animat walks at a reduced speed. Beyond 0.5, walking is inhibited. Closer in-
spection of the inner workings of the controller reveals that this result is due to a
decrease in the animat’s step size, and not to a change in the rhythm of its basic
oscillators, as described in [16].

5.3.2 Transient stimuli

In a second experiment, a two-module neural network able to generate walking or
resting according to the values of two transient stimuli, S� and S�, has been obtained.



Walking animats 19

GRAMP

?JP9
WAIT WAIT

JP9 LOCO1

������

������ ����

����

����

��
��
��
��

����
����
����

����
����
����

��
��
��
��

����

0 1 2 3 4 5

Precursor cell

Initial state of
the substrate:

6 7

JP8 JP8 JP8 JP8 JP8 JP8

PC6

PC7

Control unit

Developmental program

8 9

Figure 16: Setup for the evolution of a switching mechanism. The figure shows the
initial positions of the control units and the precursor cells, as well as the structure of
the developmental programs that call upon 10 subprograms. Subprogram 8 has been
evolved in the previous experiments. Only subprogram 9 needs to be evolved.

These stimuli were delivered by the experimenter through two specific control units.

For this task, intra-modular divisions and connections inside the second module
were allowed. No connections were grown by default and all the bias were allowed to
evolve. A new developmental instruction called DRAW2 was introduced. It caused
the creation of an afferent connection from a cell of the first module to the executing
cell, and worked like the DRAW instruction, except that it was interpreted within
the projection of the local frame into the second module. Furthermore only two
precursor cells were placed in the second module. In such conditions, the walking
behavior generated by the first module was liable to be perturbed even in the absence
of control signals. Figure 16 displays the initial setup for the developmental process.

A new grammar, GRAMP, defined the set of valid subprograms that described the
developmental process of a precursor cell of the second module. Such subprograms
can create up to 4 neurons and 8 connections (Figure 17).

In order to evolve a switching mechanism, we had to design a conditional eval-
uation procedure, in which each individual could be evaluated up to three times in
different conditions and with different fitness functions. This was necessary to avoid
the networks learning to predict the time of occurrence of the stimuli.

In the first evaluation, we checked that the individual had not lost its walking



20 J-A. Meyer

Terminal symbols

DIVIDE, GROW, DRAW, GROW2, DRAW2, SETBIAS, SETTAU, DIE,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start3, Levelb, Neuronb, Biasb, Taub, Connexb, Linkb.

Production rules

Start3��DIVIDE(Levelb, Levelb)

Levelb��DIVIDE(Neuronb, Neuronb)

Neuronb��SIMULT3(Biasb, Taub, Connexb) j DIE

Biasb��SETBIAS j DEFBIAS

Taub��SETTAU j DEFTAU

Connexb��SIMULT4(Linkb, Linkb, Linkb, Linkb)

Linkb��GROW j DRAW j GROW2 j DRAW2 j NOLINK

Starting symbol

Start3.

Figure 17: The grammar GRAMP that is used to evolve a locomotion command
module reacting to two transient stimuli.

ability:

f �
Z Tmax

t��
v�t� � dt � x�Tmax�

In case the corresponding individual walked along a minimum distance, he was
allowed to go through the next evaluations. In the second evaluation, stimulus S�
was presented on the first control unit and the animat had to stop its progression. It
was rewarded according to the previously used fitness function:

f �
Z Tmax

t�TS�
�k � s�t�� jv�t�j� � dt

Finally, if the individual received a high enough rate, it was allowed to undergo
the third evaluation. During this last evaluation, stimulus S� was presented on the
second control unit some time after stimulus S� had been presented on the first one
and the animat was thereafter rewarded for resuming walking:

f �
Z Tmax

t�TS�
v�t� � dt



Walking animats 21

Time:
500 600 7000 100 200 300 400 800

Eval. 1:

Eval. 2: S1

Eval. 3: S2S1

Figure 18: Behavior of a good individual in the three phases of the evaluation. That
individual responds correctly to both stimuli. The conditional protocol (described
in the text) prevents the animats from just predicting the time of occurence of the
stimuli.

At the end of experiments during which 60.000 offspring events were performed
in a population of 200 individuals, highly rated controllers have been obtained. The
behavior of one such controller is illustrated on Figure 18. As explained in [16], it
involves a switching mechanism that implements a rudimentary memory.

5.4 Goal-seeking

In these series of experiments again, a second neural module was used to control
an already evolved locomotion module, but the objective was now to solve a goal-
seeking task.

To this end, the second module received information from two sensors each re-
turning the intensity of an odor signal perceived at the tip of an antenna. This inten-
sity decreased with proportion to the square of the distance from an odorous source.
The goal-seeking module stemmed from two precursor cells that read the same devel-
opmental subprogram and executed its instruction in a symmetric way (Figure 19).
A new grammar, GRAM2, defined the set of developmental subprograms used for
Module 2 and specified that each such subprogram could create at most 4 neurons



22 J-A. Meyer

GRAM-2

?LOCO1

P2R2

P3R3

R0 P0 R4 P4

R1 P1 R5 P5

A0 U0 A2 U2 A4 U4

A1 U1 A3 U3 A5 U5

PC0 PC2 PC4

PC1 PC3 PC5

PC7

PC6

0 1 2 3 4

Developmental Program

5

JP10 JP10 JP10 JP10 JP10 JP10

6 7 98

JP9 JP9
WAIT1 WAIT1

Module 2Module 1

DRAWDRAW

O1

O0

O: odor sensor

Figure 19: Setup for the evolution of the goal-seeking behavior. DRAW instructions
in Subprogram 6 and Subprogram 7 create a default connection between a precursor
cell of Module 2 and the associated sensory cell. These connections are copied to
any daughter cell the precursor cells may have. WAIT instructions are necessary to
synchronize the developments of the two modules because Module 1 goes through
3 division cycles while Module 2 goes through only 2 such cycles. Subprogram 9
is evolved according to the tree-grammar GRAM2 (Figure 20). It will be called
GRAD2 hereafter.

and 16 connections. Because the corresponding subprogram was executed by both
precursor cells, this resulted in a maximum of 8 neurons and 16 connections in Mod-
ule 2 (Figure 20).

To evaluate the fitness of each program, a set of N � 	 environments envi with
different source positions was used. In each environment, the animat’s task was to
reach the source of odor, considered as a goal. The animat always started from the
same position and was allowed to walk for a given time tmax, or until it reached the
goal. This event was considered to have occured if the point X situated between the
tips of the animat’s two antennae came close enough to the source S. The corre-



Walking animats 23

Terminal symbols

DIVIDE, GROW, DRAW, GROW2, SETBIAS, SETTAU, DIE,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start1, Level1, Neuron, Bias, Tau, Connex, Link.

Production rules

Start1��DIVIDE(Level1, Level1)

Level1��DIVIDE(Neuron, Neuron)

Neuron��SIMULT3(Bias, Tau, Connex) j DIE

Bias��SETBIAS j DEFBIAS

Tau��SETTAU j DEFTAU

Connex��SIMULT4(Link, Link, Link, Link)

Link��GROW j DRAW j GROW2 j NOLINK

Starting symbol

Start1.

Figure 20: The GRAM2 grammar that is used to evolve a goal-seeking module.

sponding fitness function was:

f�envi� � t�i�max �min
n
d�X�t�� S�t��� t � 
�� t�i�max�

o

fitness �

P
i f�envi�

N

This function rewarded animats that quickly approached the source during the
evaluation.

Five different experiments have been done, each starting with a different initial
population. In each experiment, individuals able to reach the source in each of the
five positions of the learning set were obtained after 20.000 selection-replacement
events. Such abilities proved to be general enough for allowing the animat to reach
the goal in almost any other positions (Figure 21), which sometimes required length-
ening the evaluation time tmax or changing parameter values in the animat’s physical
model.

A close inspection of the inner workings of the corresponding controller reveals
that the second module’s neural circuitry basically serves to compare the activity
levels of the two odor sensors. Whenever the odor signal is substantially higher on



24 J-A. Meyer

a) b) c)

d) e) f)

g) h) i)

Figure 21: Generalization experiments for the goal-seeking task. An animat, which
has been selected to reach a goal in 5 different test positions, is tested against 9 other
goal positions. When the animat occasionally misses the goal, it may nevertheless
reach it later (as in case h) if the evaluation time is lengthened. Likewise, problems
examplified by cases f and g may be solved by simply changing the stiffness of the
muscles that bring the legs back to the vertical plane, thus diminishing the animat’s
turning angle.

one side of the animat, a signal is sent to the hind leg on this side, which prevents
that leg from rising. This, in turn, triggers a rotation towards the goal [16].

5.5 Obstacle-avoidance

In order to implement a minimal reactive navigation system, we wanted to combine
in the same animat the abilities of seeking a goal and of avoiding obstacles. To this
end, we used the two modules that already secured locomotion and goal-seeking,
and sought to evolve a third module, Module 3, capable of affording the animat an
additional obstacle-avoidance competency.



Walking animats 25

Module 3Module 2Module 1

GRAM-3

LOCO1 GRAD2 ?

���� ����������

P2R2

R3

P0 R4 P4

R1 R5 P5

A0 U0 A2 U2 A4 U4

A1 U1 A3 U3 A5 U5

PC0 PC2 PC4

PC1 PC3 PC5

P3

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

R0

P1

PC7

PC6 PC8

PC9

0 1 2 3 4

Developmental Program

5

JP10 JP10 JP10 JP10 JP10 JP10

6 7 8 9 10 11 12

C1

C0O0

O1

JP11 JP11 JP12JP12
WAIT1 WAIT1 WAIT3 WAIT3

������������

DRAW DRAW DRAW DRAW

C: contact sensor

����

Figure 22: Setup for the evolution of an obstacle-avoidance controller. DRAW in-
structions in subprograms 6 to 9 create a default connection between a precursor cell
of Modules 2 or 3 and the associated sensory cell. These connections are copied to
any daughter cell the precursor cells may have. WAIT instructions are added to syn-
chronize the developments of the different modules because Module 1 goes through
3 division cycles, while Module 2 goes through only 2 such cycles, and Module 3
does not lead to any division. Sub-program 12 is evolved according to the GRAM3
tree-grammar specified in Figure 23.

Like Module 2, this module stemmed from two precursor cells that read the same
developmental subprogram and executed its instruction in a symmetric way (Fig-
ure 22). It was assumed that sensory information would be received from two sen-
sors, each indicating if an antenna got into contact with an obstacle. Although it
could influence the behavior of the locomotion module through inter-modular con-
nections created during the evolutionary process, no inter-modular connections were
allowed from Module 3 to Module 2 in order to avoid parasitic interferences. A new
grammar, GRAM3, defined the set of developmental subprograms used for Module 3
and specified that each precursor cell could grow at most 4 connections to neurons
of Module 1 (Figure 23).

To evaluate the fitness of each program, a set of N � 	 different environments
envi, each containing an odorous goal and several obstacles, has been used. In each
environment, the behavior of the animat was simulated until a final time tmax was
reached or until the animat reached the goal or hit an obstacle. The corresponding



26 J-A. Meyer

Terminal symbols

GROW2, SETBIAS, SETTAU,

NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.

Variables

Start1, Bias, Tau, Connex, Link.

Production rules

Start1��SIMULT3(Bias, Tau, Connex)

Bias��SETBIAS j DEFBIAS

Tau��SETTAU j DEFTAU

Connex��SIMULT4(Link, Link, Link, Link)

Link��GROW2 j NOLINK

Starting symbol

Start1.

Figure 23: The GRAM3 grammar that is used to evolve an obstacle-avoidance mod-
ule.

fitness function was:

f�envi� �
�

t
�i�
max

�
�
d�X���� S���� � d�X�t�i�max� S�t

�i�
max�

�

�
Z t

�i�
max

�
s�t� � dt

fitness �

P
i f�envi�

N

where s�t� was set to � if the animat was stable at time t and to � otherwise. The
first term in the function rewarded an individual according to the rate of decrease of
its distance to the goal during the evaluation. The second term explicitely favored
individuals that did not fall, a tendency often exhibited by animats of the first gener-
ations.

Again, five different experiments were done, each starting with a different initial
population. In each experiment, individuals able to reach the source and to avoid ob-
stacles in each of the five environments of the learning set were obtained after 20.000
offspring events. Besides being surrounded or not by a rectangular wall, these test
environments only contained circular obstacles. Generalization experiments, where



Walking animats 27

a) b) c)

d) e) f)

g) h) i)

Figure 24: Experimental results obtained when goal-seeking and obstacle-avoidance
behaviors are evolved. Cases (a-c) show the animat’s trajectory within 3 out of the 5
test environments. Cases (d-i) show results of generalization experiments, in 6 new
environments. The animat can deal with obstacle shapes never met during evolution
(f-i). However, it cannot always avoid hitting sharp corners (h).

individuals were tested in new environments, were often successfull, although some
difficulties avoiding collisions with obstacles exhibiting sharp corners have been no-
ticed (Figure 24).

It appears that the neural circuitry of the third module basically serves to detect
the contact of an antenna with an obstacle. Whenever this occurs, a signal is sent
to the front leg on the obstacle’s opposite side, which prevents that leg from rising.
This, in turn, triggers a rotation away from the obstacle [16].



28 J-A. Meyer

5.6 Real robot application

The SGOCE evolutionary paradigm is currently being used to evolve neural con-
trollers for SECT, a real 6-legged robot manufactured by Applied AI Systems, Inc.
(Figure 25).

Figure 25: The SECT robot.

Locomotion and obstacle-avoidance controllers are first selected through simula-
tions and then downloaded on the robot. The inputs to the evolved controllers are
provided by the robot’s infra-red and tactile sensors, while the motoneurons of the
controllers set the end positions of vertical and horizontal swings of each leg, as
well as its vertical and horizontal speeds. Preliminary encouraging results have been
obtained.



Walking animats 29

6 Conclusions

The results that have been described here and elsewhere [7, 18, 19, 16] inbed the
animat approach to cognitive science [27] and artificial life [24] into an evolutionary
perspective. They prove that the SGOCE paradigm provides a convenient means of
generating neural networks that control animat behavior through simple stimulus-
response pathways. They also suggest that this paradigm might help automatically
discover more cognitive mechanisms that would endow animats with increased adap-
tive capacities. The animats that we have evolved significantly further previous at-
tempts at automatically designing walking creatures: they are not only capable of
straight-line locomotion according to a tripod gait, but also of slowing-down, of stop-
ping or resuming walking, of turning right or left, of aiming towards specific goals,
and of avoiding obstacles. Future research will aim at generating higher behavioral
competencies in the corresponding controllers, for example through the inclusion of
mechanisms that might implement cognitive capacities for memory-based computa-
tion, motivation management, and internal simulation [23].

From a general point of view, the efficiency of the SGOCE paradigm is probably
due to the compact encoding it affords, which tremendously reduces the size of the
genotype space to be explored by the evolutionary algorithm, while offering oppor-
tunities for the generation of complex phenotypes. However, it is true that, as far as
specific implementation details are concerned, it is presently not possible to assess
which are really useful and which are not. The evolved organization of the controllers
described above was certainly highly dependent upon several arbitrary choices made
by the experimenter concerning, for instance, the developmental instructions, the
setup of the initial substrates, the constraining grammars, the fitness functions, the
parameters of the evolutionary algorithm, etc. Although such implementation set-
tings were chosen after preliminary trials and errors, it is definitely unclear - in the
absence of systematic comparisons that we haven’t yet had the opportunity to per-
form - whether better choices couldn’t have been made. It is true, for example, that
recourse to grammars constraining the structure of the developmental programs is
not mandatory, although it helps to reduce the complexity of the evolved controllers
and, thus, to reduce simulation time. In [25] a locomotion controller is presented
that evolved in the absence of syntactic constraints, and that generates a tripod gait:
it exhibits 192 neurons and 2222 connections. Be that as it may, it is clear that a
potentially fruitful direction of future research consists in letting evolve several of



30 J-A. Meyer

the characteristics that have been arbitrarily set by the experimenter up to now, and
by devising new developmental instructions that would afford the animats individual
learning capacities complementing those of evolution and development.

References

[1] R. D. Beer, Intelligence as Adaptive Behavior. An Experiment in Computational
Neuroethology. Academic Press. 1990.

[2] R. D. Beer, “On the dynamics of small continuous-time recurrent neural net-
works,” Adaptive Behavior, vol. 3, no. 4, pp. 469–510, 1995.

[3] R. D. Beer and J. Gallagher, “Evolving dynamical neural networks for adaptive
behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91–122, 1992.

[4] E. Boers and H. Kuiper, “Biological metaphors and the design of modular ar-
tificial neural networks,” Master’s thesis, Dept. of CS and Exp. and The. Psy.,
Leiden University, 1992.

[5] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot.” IEEE
Journal of Robotics and Automation, 2, pp. 14–23, 1986.

[6] L. Bull, T. C. Fogarty and M. Snaith, “Evolution in multi-agent systems: Evolv-
ing communicating classifier systems for gait in a quadrupedal robot,” in Pro-
ceedings of the Sixth International Conference on Genetic Algorithms (L. J. Es-
helman, ed.), pp. 382–388, Morgan Kaufmann, San Mateo, CA, 1995.

[7] J. Chavas, C. Corne, P. Horvai, J. Kodjabachian and J.A. Meyer, “Incremen-
tal Evolution of Neural Controllers for Robust Obstacle-Avoidance in Khep-
era,” Proceedings of The First European Workshop on Evolutionary Robotics
- EvoRobot’98 (P. Husbands and J.A. Meyer, eds.). 1998.

[8] F. Dellaert and R. D. Beer, “Toward an evolvable model of development for au-
tonomous agent synthesis,” in Proceedings of the Fourth International Workshop
on Artificial Life (R. A. Brooks and P. Maes, eds.), The MIT Press/Bradford
Books. 1994.

[9] H. de Garis, Genetic Programming: GenNets, Artificial Nervous Systems, Artifi-
cial Embryos. PhD thesis, Université Libre de Bruxelles. Belgium. 1991.



Walking animats 31

[10] S. Galt, B. L. Luk and A. A. Collie.“Evolution of Smooth and Efficient Walking
Motions for an 8-Legged Robot” in Proceedings of the Sixth European Workshop
on Learning Robots, (Brighton, England), 1997.

[11] F. Gruau, “Automatic definition of modular neural networks,” Adaptive Behav-
ior, vol. 3, no. 2, pp. 151–184, 1994.

[12] F. Gruau and K. Quatramaran, “Cellular Encoding for Interactive Evolution-
ary Robotics,” Proceedings of the Fourth European Conference on Artificial Life
(P. Husbands and I. Harvey, eds.). The MIT Press / Bradford Books, Cambridge,
MA, 1997.

[13] T. Gomi and K. Ide, “Emergence of Gaits for a Legged Robot by Collabora-
tion through Evolution” Proceedings of the International Symposium on Artifi-
cial Life and Robotics, (Oita, Japan), 1997.

[14] N. Jakobi, “Running Across the Reality Gap: Octopod Locomotion Evolved in
a Minimal Simulation,” Proceedings of The First European Workshop on Evolu-
tionary Robotics - EvoRobot’98 (P. Husbands and J.A. Meyer, eds.). 1998.

[15] J. Kodjabachian, “Simulating the dynamics of a six-legged animat,” Tech. Rep.,
AnimatLab, ENS, Paris, 1996.

[16] J. Kodjabachian, “Développement et évolution de réseaux de neurones artifi-
ciels. Application au contrôle d’un animat hexapode.” PhD thesis. Université
Paris 6. France. 1998.

[17] J. Kodjabachian and J.-A. Meyer, “Evolution and development of control archi-
tectures in animats,” Robotics and Autonomous Systems, vol. 16, pp. 161–182,
1995.

[18] J. Kodjabachian and J.-A. Meyer, “Evolution and Development of Modular
Control Architectures for 1-D locomotion in Six-Legged Animats.” Connection
Science. In press.

[19] J. Kodjabachian and J.-A. Meyer, “Evolution and Development of Neural Con-
trollers for Locomotion, Gradient-Following, and Obstacle-Avoidance in Artifi-
cial Insects.” IEEE Trans. Neural Networks. In press.



32 J-A. Meyer

[20] J.R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, 1992.

[21] J.R. Koza. Genetic Programming II: Automatic Discovery of Reusable Subpro-
grams. The MIT Press, 1994.

[22] M. A. Lewis, A. H. Fagg, and A. Solidum, “Genetic programming approach
to the construction of a neural network for control of a walking robot,” in IEEE
International Conference on Robotics and Automation, (Nice, France), 1992.

[23] B. W. Mel, “Animal Behavior in Four Components,” Comparative Approaches
to Cognitive Science (H.L. Roitblat and J.A. Meyer, eds.). The MIT Press / Brad-
ford Books, Cambridge, MA, 1995.

[24] J.-A. Meyer, “Artificial life and the animat approach to artificial intelligence,”
Artificial Intelligence, (M. Boden, ed.). Academic Press. 1996.

[25] J.-A. Meyer, “From natural to artificial life: Biomimetic mechanisms in animat
design,” Robotics and Autonomous Systems, vol. 22, pp. 3–21, 1995.

[26] S. Nolfi, O. Miglino and D. Parisi. “Phenotypic Plasticity in Evolving Neural
Networks,” From Perception to Action (P. Gaussier and J.D. Nicoud, eds.). IEEE
Computer Society Press. 1994.

[27] H.L. Roitblat and J.-A. Meyer (eds.) Comparative Approaches to Cognitive Sci-
ence. The MIT Press / Bradford Books, Cambridge, MA, 1995.

[28] I. Segev, “Simple neuron models: Oversimple, complex and reduced.” Trends
in Neurosciences, vol. 15, pp. 414–421, 1992.

[29] K. Sims, “Evolving 3D morphology and behavior by competition,” in Proceed-
ings of the Fourth International Workshop on Artificial Life (R. A. Brooks and
P. Maes, eds.), The MIT Press/Bradford Books. 1994.

[30] G. Spencer, “Automatic generation of programs for crawling and walking,” in
Advances in Genetic Programming (K. E. Kinnear, ed.), The MIT Press / Brad-
ford Books, Cambridge, MA, 1994.

[31] J. Vaario, An Emergent Modeling Method for Artificial Neurol Networks. PhD
thesis, University of Tokyo, 1993.


