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Abstract— This article is centered on the application of
evolutionary techniques to the automatic design of neural
controllers for mobile robots. About 30 papers are reviewed
and classified in a framework that takes into account the
specific robots involved, the behaviors that are evolved, the
characteristics of the corresponding neural controllers, how
these controllers are genetically encoded, and whether or
not an individual learning process complements evolution.
Related research efforts in evolutionary robotics are occa-
sionally cited. If it is yet unclear whether such approaches
will scale up with increasing complexity, foreseeable bottle-
necks and prospects of improvement are discussed in the
text.
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I. INTRODUCTION

HE design of the control architecture of a robot able

to fulfil its mission in changing and possibly unpre-
dictable environments is a highly challenging task for a
human. This is due to the virtual impossibility of fore-
seeing each difficulty the robot will be confronted with
and to the lack - as of today at least - of basic princi-
ples upon which such design might rely. For these reasons,
drawing inspiration from the process of natural selection,
many researchers resort to so-called evolutionary robotics,
i.e., to the automatic design of the control architectures,
and occasionally the morphology, of successive generations
of robots that progressively adapt to the various challenges
afforded by their environment. These research efforts call
upon the definition of a fitness function - that assesses how
well the behavior of a given robot fits its assigned mission
- and upon an encoding scheme that relates the robot’s
genotype - 1.e., the information that evolves from gener-
ation to generation - to its phenotype - i.e., the robot’s
control architecture or morphology. These research efforts
also call upon some evolutionary procedure - like a genetic
algorithm ([13]), an evolution strategy ([60]), or a genetic
programming ([32]) approach - that eliminates poorly fit
individuals and favors the propagation of genotypes cod-
ing for well-adapted behaviors. Usually, such an artificial
selection process is performed through simulation and gen-
erates controllers with ever-increasing fitness, until it con-
verges to some local or global optimum. Then, the best
controller is downloaded into a real robot and its ability to
generate the desired behavior is checked. With the simple
behaviors evolved so far, results obtained in reality turn
out to be similar enough to those obtained in simulation
for practical purposes. However, if needed, additional evo-
lutionary steps can be performed with the real robot, to
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fine-tune the controller. In some applications, evolution 1s
performed directly on the robot from scratch.

This paper reviews specific applications of evolutionary
robotics, which involve real robots, on the one hand, and
control architectures implemented as neural networks, on
the other hand. More general reviews are to be found in
[18], [4], [22], [52], [14], [37] and [20]. Examples of evo-
lutionary robotics applications involving non-neural con-

trollers are [5], [56], [15] or [26].

II. THE REVIEW

Since 1994, about 30 papers have been published that de-
scribe results obtained when the neural controllers of real
robots have been automatically designed through an evolu-
tionary process. These papers are classified in Table I be-
low, according to a general 5-dimensional framework that
takes into account the specific robots involved, the behav-
iors that are evolved, the characteristics of the correspond-
ing neural controllers, how these controllers are genetically
encoded, and whether or not an individual learning process
complements evolution.

Evolutionary robotics experiments usually involve simple
mobile robots equipped with wheels and with sensors that
detect obstacles or light targets. Accordingly, the behaviors
that are evolved are mere exploration, obstacle-avoidance,
wall-following or target-finding, under the selective pres-
sure that dedicated fitness functions afford. For instance,
to evolve the controller of a Khepera robot moving and
avoiding obstacles in a given environment, the following
fitness function with three components is used in [9], [44],

[36], [58]:

F=V.1-vD).(1-1) (1)

where V is the sum of the wheel speeds at each time step,
D is the signed sum of the absolute differences between the
speeds of the two wheels at each time step, and I is the
sum of the largest of the eight infra-red proximity sensor
values at each time step.

The same behaviors are evolved in [25] with a simplified
fitness function:

F=V.(1-VD) (2)

in which the third term of equation (1) has been found to
be implicit if the environment is cluttered enough, because
the robot is obliged to avoid obstacles if it has to go as fast
and as straight as possible. Also the D term in equation (1)
is changed to the absolute value of the sum of the signed
differences between wheel speeds.



In [11], [42], [43] similar behaviors are evolved endowing
the Khepera robot with a simulated metabolism such as,
when the robot moves away from its initial position, its en-
ergy level increases and, conversely, when it moves towards
the initial position, its energy level decreases. The robot is
assumed to die when it hits an obstacle or when its energy
level reaches zero. Its fitness value is the maximum dis-
tance it occurred to be from its initial position during its
life-time. Likewise, in other realizations, the robot is en-
dowed with a simulated motivational system and different
behaviors are sought depending upon which motivation is
currently the highest ([11], [40]).

When the robot 1s equipped with the proper actuators,
more elaborated behaviors - like area cleaning - can be
evolved ([54], [49], [50], [51]). Sometimes also, besides con-
trolling simple sensorimotor behaviors, neural controllers
integrate perceptions and actions over time into some form
of internal memory that is used to choose which action to
perform. This is, for example, the case in [66] where an
evolved controller is capable of identifying one of two land-
marks based on the time-varying sonar signals received as
the robot turns around the landmark. This is also the case
in [24] where a robot memorizes on which side of a corridor
it passed through a beam of light and, when it arrives at a
T-junction at the end of the corridor, it turns on the same
side and moves down the corresponding arm.

A couple of experiments have been made with legged
robots and dealt with locomotion only. In [17], the fit-
ness of each individual is determined interactively by the
experimenter who assigns fitness points to various behav-
ioral characteristics like the number of legs which oscil-
late, and the correctness of the corresponding frequencies,
phases and couplings. On the contrary, in [12], the fitness is
automatically evaluated by the forward distance the robot
travels in a fixed amount of time.

Typically, the individual neurons that are used in evolu-
tionary robotics are traditional threshold units ([39], [57]).
However, a few applications ([65], [66], [12], [17]) involve
neurons exhibiting an internal dynamics, according to the
leaky integrator model [61]. In this model, the mean mem-
brane potential m; of a neuron N; is governed by the equa-
tion:

T~dmi/dt2 —mi—l—Zwiijj—l—Ii (3)

where z; = (1 + e~ (m3+B3))=1 i5 the neuron’s short-term
average firing frequency, B; is a uniform random variable
whose mean b; is the neuron’s firing threshold, and 7 is a
time constant associated with the passive properties of the
neuron’s membrane. [; is the input that neuron N; may
receive from a given sensor, and w; ; is the synaptic weight
of a connection from neuron N; to neuron N;.

Within the so-called Sussex approach [20], neurons of
intermediate complexity are used, which propagate exci-
tatory and veto signals to other units after specific time-
delays associated with each connection.

The architectures of the neural controllers that have been
evolved to control robots range from simple perceptrons

(e.g., [44], [36], [58]), to partially recurrent Elman-like [8]
networks (e.g., [9], [45]), to fully recurrent continuous-time
(e.g., [66], [17]) or discrete-time (e.g., [4], [19]) networks.
The use of recurrent connections affords the possibility of
managing an internal memory, as mentioned above (e.g.,
[65], [24]. Recurrent connections also make it possible to
implement oscillators that are useful to control locomotion
((12], [17).

Most often, only the neural controller of a given robot
is evolved. However, in [4], [19], [23], [24], evolution also
adapts the visual morphology of a robot equipped with two
photoreceptors, setting their acceptance angles and their
positions relative to the longitudinal axis of the robot. De-
pending upon which variety of individual neurons is to be
included in which architecture, the genotypes used in evo-
lutionary robotics directly code synaptic weights (and neu-
ral biases) - as in [11] and [2] for example - or they also
code additional characteristics, like time delays or neuron
numbers - as in [25] and [66]. However, several research ef-
forts ([42], [7], [17]) call upon an indirect encoding scheme,
according to which the genotype is a developmental pro-
gram that usually acts upon a small set of initial neurons
provided by the experimenter and ultimately generates a
possibly complex neural network connected to the robot’s
sensors and actuators - thanks to various biomimetic pro-
cesses like cell division, cell death, axonal growth, etc.

Finally, it should be mentioned that, in some applica-
tions, an individual learning process is added to that of
evolution to improve the behavior of the robot while 1t ex-
periences its environment. In [38] a given unsupervised
Hebbian learning scheme involves specific connections that
are genetically determined. In [10], evolution determines
which Hebbian learning rule applies to each synapse in the
controller. Another variety of unsupervised learning pro-
cess, although calling upon a backpropagation algorithm,

is used in [55].

I11. DiscussioN

For obvious reasons of lack of hindsight, 1t is not yet pos-
sible to assess either the general potentialities of evolution-
ary robotics or the advantages of specific methodological
options.

On a general level, if it is clear that the current method-
ology makes it possible to evolve simple sensorimotor be-
haviors in simple robots equipped with simple sensors and
simple motors, it is difficult to foresee how this methodol-
ogy will scale up and apply to more complex behaviors and
more sophisticated robots. According to [36], ”sufficient
neurocontrollers can be surprisingly simple” and, accord-
ing to [17], the evolved locomotion controller of an octopod
robot is more efficient than the human-designed controller
to which it has been compared. Nevertheless, it 1s unclear
how long it will take to evolve controllers likely to com-
pete with clever human designs, like those that implement
elaborated neural architectures (e.g., [41], [28], [6]) or be-
havioral strategies (e.g., [1], [64]). In particular, if first
steps have been made towards evolving rudimentary mem-
ories ([23], [24], [30]) that could be used to implement the
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simplest navigation strategy - i.e., that of guidance - more
complex representations are required to implement higher-
level strategies - like place recognition-triggered response,
topological navigation or metric navigation ([64]). More-
over, to exploit topological or metric strategies to their best
avail, planning capacities are required, which are them-
selves almost certainly not trivial to implement through an
evolutionary approach.

As far as methodological options are concerned, much
more experience should be accumulated before the respec-
tive advantages and drawbacks of simulations versus on-
board evolution, of automatic versus interactive fitness
evaluation procedures, of direct versus indirect encoding
schemes, of learning versus evolution could be assessed.
At least one may foresee how difficult it will be to devise
fitness functions likely to automatically select complex be-
haviors, even if so-called incremental approaches - accord-
ing to which the overall behavior is decomposed into sim-
pler behavioral primitives that are successively evolved and
combined together (e.g., [30], [31], [34]) - seem to be help-
ful. Likewise, if indirect coding affords the evolutionary
process the possibility of exploring smaller search spaces
than direct coding does, it is likely that devising and ad-
justing the corresponding genetic operators - e.g., muta-
tions and crossovers - will prove to be much more intricate
when such operators influence dynamical processes like de-
velopmental programs than when they just change static
structures like the chromosomes of traditional genetic al-

gorithms [29]. Another pending issue is that of assessing
whether 1t is easier to evolve neural controllers than, for ex-
ample, explicit control programs (e.g., [56]) or production
rules systems (e.g., [5]), although it has been argued that
the former approach offers over the latter the advantages of
generating smoother fitness landscapes [4] and of facilitat-
ing realistic injections of noise in specific parts of the con-
troller [18]. Likewise, it is presently unclear whether or not
co-evolving controllers and robot bodies as in [4], [19], [33]
entails greater synergic effects than disadvantages caused
by the subsequent increase of the search space. Finally,
the technology of so-called evolvable hardware offers great
prospects of speeding up the evolutionary process because
evolved hardware controllers are not programmed to follow
a sequence of instructions, they are configured and then
allowed to behave in real time acording to semiconductor
physics ([59], [21]). If current use of such a technology to
robot control do not involve neural controllers ([62], [26],
[27], [47], [63]), its first application to neural network de-
sign is said to be two orders of magnitude faster than an
equivalent one on a Sun SS20 computer [46]. However, here
again, only accumulated experiences will make it possible
to fully assess the potentialities and limitations of such an
approach.

IV. CoNcCLUSIONS

Evolutionary approaches to neural control in mobile
robots is clearly a burgeoning research area that has al-



ready produced promising results. At present, such results
have been mostly limited to the evolution of simple sen-
sorimotor mechanisms, but some success at evolving more
cognitive architectures have been reported. It is yet unclear
whether such automatic approaches will scale up with in-
creasing complexity and whether they will ultimately com-
pete with human capacities for designing efficient robots.
Important steps in these directions will probably be accom-
plished should progress be made at adapting the fitness
functions to the problems to be solved or at exploiting the
synergies that interactions between development, learning
and evolution certainly afford.
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