
Evolutionary Approaches to Neural Control inMobile RobotsJean-Arcady MeyerAbstract| This article is centered on the application ofevolutionary techniques to the automatic design of neuralcontrollers for mobile robots. About 30 papers are reviewedand classi�ed in a framework that takes into account thespeci�c robots involved, the behaviors that are evolved, thecharacteristics of the corresponding neural controllers, howthese controllers are genetically encoded, and whether ornot an individual learning process complements evolution.Related research e�orts in evolutionary robotics are occa-sionally cited. If it is yet unclear whether such approacheswill scale up with increasing complexity, foreseeable bottle-necks and prospects of improvement are discussed in thetext.Keywords| Evolutionary Robotics, Neural Networks,Control Architectures, Behavior.I. IntroductionTHE design of the control architecture of a robot ableto ful�l its mission in changing and possibly unpre-dictable environments is a highly challenging task for ahuman. This is due to the virtual impossibility of fore-seeing each di�culty the robot will be confronted withand to the lack - as of today at least - of basic princi-ples upon which such design might rely. For these reasons,drawing inspiration from the process of natural selection,many researchers resort to so-called evolutionary robotics,i.e., to the automatic design of the control architectures,and occasionally the morphology, of successive generationsof robots that progressively adapt to the various challengesa�orded by their environment. These research e�orts callupon the de�nition of a �tness function - that assesses howwell the behavior of a given robot �ts its assigned mission- and upon an encoding scheme that relates the robot'sgenotype - i.e., the information that evolves from gener-ation to generation - to its phenotype - i.e., the robot'scontrol architecture or morphology. These research e�ortsalso call upon some evolutionary procedure - like a geneticalgorithm ([13]), an evolution strategy ([60]), or a geneticprogramming ([32]) approach - that eliminates poorly �tindividuals and favors the propagation of genotypes cod-ing for well-adapted behaviors. Usually, such an arti�cialselection process is performed through simulation and gen-erates controllers with ever-increasing �tness, until it con-verges to some local or global optimum. Then, the bestcontroller is downloaded into a real robot and its ability togenerate the desired behavior is checked. With the simplebehaviors evolved so far, results obtained in reality turnout to be similar enough to those obtained in simulationfor practical purposes. However, if needed, additional evo-lutionary steps can be performed with the real robot, toJ.A. Meyer is with the AnimatLab, Ecole Normale Sup�erieure,Paris, France. E-mail: meyer@wotan.ens.fr .

�ne-tune the controller. In some applications, evolution isperformed directly on the robot from scratch.This paper reviews speci�c applications of evolutionaryrobotics, which involve real robots, on the one hand, andcontrol architectures implemented as neural networks, onthe other hand. More general reviews are to be found in[18], [4], [22], [52], [14], [37] and [20]. Examples of evo-lutionary robotics applications involving non-neural con-trollers are [5], [56], [15] or [26].II. The reviewSince 1994, about 30 papers have been published that de-scribe results obtained when the neural controllers of realrobots have been automatically designed through an evolu-tionary process. These papers are classi�ed in Table I be-low, according to a general 5-dimensional framework thattakes into account the speci�c robots involved, the behav-iors that are evolved, the characteristics of the correspond-ing neural controllers, how these controllers are geneticallyencoded, and whether or not an individual learning processcomplements evolution.Evolutionary robotics experiments usually involve simplemobile robots equipped with wheels and with sensors thatdetect obstacles or light targets. Accordingly, the behaviorsthat are evolved are mere exploration, obstacle-avoidance,wall-following or target-�nding, under the selective pres-sure that dedicated �tness functions a�ord. For instance,to evolve the controller of a Khepera robot moving andavoiding obstacles in a given environment, the following�tness function with three components is used in [9], [44],[36], [58]: F = V:(1�pD):(1� I) (1)where V is the sum of the wheel speeds at each time step,D is the signed sum of the absolute di�erences between thespeeds of the two wheels at each time step, and I is thesum of the largest of the eight infra-red proximity sensorvalues at each time step.The same behaviors are evolved in [25] with a simpli�ed�tness function: F = V:(1�pD) (2)in which the third term of equation (1) has been found tobe implicit if the environment is cluttered enough, becausethe robot is obliged to avoid obstacles if it has to go as fastand as straight as possible. Also the D term in equation (1)is changed to the absolute value of the sum of the signeddi�erences between wheel speeds.



In [11], [42], [43] similar behaviors are evolved endowingthe Khepera robot with a simulated metabolism such as,when the robot moves away from its initial position, its en-ergy level increases and, conversely, when it moves towardsthe initial position, its energy level decreases. The robot isassumed to die when it hits an obstacle or when its energylevel reaches zero. Its �tness value is the maximum dis-tance it occurred to be from its initial position during itslife-time. Likewise, in other realizations, the robot is en-dowed with a simulated motivational system and di�erentbehaviors are sought depending upon which motivation iscurrently the highest ([11], [40]).When the robot is equipped with the proper actuators,more elaborated behaviors - like area cleaning - can beevolved ([54], [49], [50], [51]). Sometimes also, besides con-trolling simple sensorimotor behaviors, neural controllersintegrate perceptions and actions over time into some formof internal memory that is used to choose which action toperform. This is, for example, the case in [66] where anevolved controller is capable of identifying one of two land-marks based on the time-varying sonar signals received asthe robot turns around the landmark. This is also the casein [24] where a robot memorizes on which side of a corridorit passed through a beam of light and, when it arrives at aT-junction at the end of the corridor, it turns on the sameside and moves down the corresponding arm.A couple of experiments have been made with leggedrobots and dealt with locomotion only. In [17], the �t-ness of each individual is determined interactively by theexperimenter who assigns �tness points to various behav-ioral characteristics like the number of legs which oscil-late, and the correctness of the corresponding frequencies,phases and couplings. On the contrary, in [12], the �tness isautomatically evaluated by the forward distance the robottravels in a �xed amount of time.Typically, the individual neurons that are used in evolu-tionary robotics are traditional threshold units ([39], [57]).However, a few applications ([65], [66], [12], [17]) involveneurons exhibiting an internal dynamics, according to theleaky integrator model [61]. In this model, the mean mem-brane potential mi of a neuron Ni is governed by the equa-tion: � � dmi=dt = �mi +Xwi;jxj + Ii (3)where xj = (1+e�(mj+Bj ))�1 is the neuron's short-termaverage �ring frequency, Bj is a uniform random variablewhose mean bj is the neuron's �ring threshold, and � is atime constant associated with the passive properties of theneuron's membrane. Ii is the input that neuron Ni mayreceive from a given sensor, and wi;j is the synaptic weightof a connection from neuron Nj to neuron Ni.Within the so-called Sussex approach [20], neurons ofintermediate complexity are used, which propagate exci-tatory and veto signals to other units after speci�c time-delays associated with each connection.The architectures of the neural controllers that have beenevolved to control robots range from simple perceptrons

(e.g., [44], [36], [58]), to partially recurrent Elman-like [8]networks (e.g., [9], [45]), to fully recurrent continuous-time(e.g., [66], [17]) or discrete-time (e.g., [4], [19]) networks.The use of recurrent connections a�ords the possibility ofmanaging an internal memory, as mentioned above (e.g.,[65], [24]. Recurrent connections also make it possible toimplement oscillators that are useful to control locomotion([12], [17]).Most often, only the neural controller of a given robotis evolved. However, in [4], [19], [23], [24], evolution alsoadapts the visual morphology of a robot equipped with twophotoreceptors, setting their acceptance angles and theirpositions relative to the longitudinal axis of the robot. De-pending upon which variety of individual neurons is to beincluded in which architecture, the genotypes used in evo-lutionary robotics directly code synaptic weights (and neu-ral biases) - as in [11] and [2] for example - or they alsocode additional characteristics, like time delays or neuronnumbers - as in [25] and [66]. However, several research ef-forts ([42], [7], [17]) call upon an indirect encoding scheme,according to which the genotype is a developmental pro-gram that usually acts upon a small set of initial neuronsprovided by the experimenter and ultimately generates apossibly complex neural network connected to the robot'ssensors and actuators - thanks to various biomimetic pro-cesses like cell division, cell death, axonal growth, etc.Finally, it should be mentioned that, in some applica-tions, an individual learning process is added to that ofevolution to improve the behavior of the robot while it ex-periences its environment. In [38] a given unsupervisedHebbian learning scheme involves speci�c connections thatare genetically determined. In [10], evolution determineswhich Hebbian learning rule applies to each synapse in thecontroller. Another variety of unsupervised learning pro-cess, although calling upon a backpropagation algorithm,is used in [55]. III. DiscussionFor obvious reasons of lack of hindsight, it is not yet pos-sible to assess either the general potentialities of evolution-ary robotics or the advantages of speci�c methodologicaloptions.On a general level, if it is clear that the current method-ology makes it possible to evolve simple sensorimotor be-haviors in simple robots equipped with simple sensors andsimple motors, it is di�cult to foresee how this methodol-ogy will scale up and apply to more complex behaviors andmore sophisticated robots. According to [36], "su�cientneurocontrollers can be surprisingly simple" and, accord-ing to [17], the evolved locomotion controller of an octopodrobot is more e�cient than the human-designed controllerto which it has been compared. Nevertheless, it is unclearhow long it will take to evolve controllers likely to com-pete with clever human designs, like those that implementelaborated neural architectures (e.g., [41], [28], [6]) or be-havioral strategies (e.g., [1], [64]). In particular, if �rststeps have been made towards evolving rudimentary mem-ories ([23], [24], [30]) that could be used to implement the



TABLE IAuthors Robot Behaviors NeuralController Genotype LearningFloreano andMondada(1994) Khepera Obstacle-avoidance Two-layerElman Weights NoMiglino etal.(1995a);Lund andMiglino (1996);Salomon (1996) Khepera Obstacle-avoidance Two-layerPerceptron Weights NoMichel (1996);Michel andCollard (1996) Khepera Obstacle-avoidance Recurrentnetwork ofthreshold units Developmentalprogram NoJakobi et al.(1995) Khepera Obstacle-avoidance orLight-seeking Recurrentnetwork ofthreshold units Weights; timedelays; numberof units NoEggenberger(1996) Khepera Obstacle-avoidance andLight-seeking Recurrentnetwork ofthreshold units Developmentalprogram NoMayley (1996) Khepera Wall- following Two-layerPerceptron Weights;learnableconnections YesFloreano andMondada(1996a) Khepera Obstacle-avoidance Three-layerElman Weights;learning rules YesFloreano andMondada(1996b) Khepera withsimulatedbattery andinternal energysensor Obstacle-avoidance andMotivatedBattery-recharge Three-layerElman Weights NoNol� (1996) Khepera Wall-avoidanceand Target-detection Two-layerPerceptron Weights NoNol� and Parisi(1997) Khepera Wall-avoidanceand Target-�nding Two-layerPerceptron withauto- teachingunits Weights YesNol� and Parisi(1995); Nol�(1997a,b,c) Khepera withgripper Area Cleaning Two-layerPerceptron Weights NoJakobi(1997a,b) Khepera Memory-basedAction-selection Recurrentnetwork ofthreshold units Weights NoCli� et al.(1993); Harveyet al. (1994) Gantry Robotwith CCDcamera Target-seeking/avoidance Discrete-timeDynamicalRecurrentNeural Network Visualmorphology;weights; timedelays; numberof units NoJakobi(1997a,b) Gantry Robotwith CCDcamera Target-seeking/avoidance Recurrentnetwork ofthreshold units Developmentalprogram NoMiglino et al.(1995b) Two-wheeledLego robot Exploration Four- layerElman Weights Nocontinued on next page



TABLE Icontinued from previous pageAuthors Robot Behaviors NeuralController Genotype LearningYamauchi(1993) Nomad 200 ObstacleAvoidance;MobilePredatorAvoidance Continuous-time DynamicalRecurrentNetwork Weights; timeconstants NoYamauchi andBeer (1994) Nomad 200 Landmarkidenti�cation Continuous-time DynamicalRecurrentNetwork Weights; timeconstants NoBaluja (1996) Navlab Steering control Three-layerPerceptron Weights NoMeeden (1996) Modi�ed toycar Wall- avoidanceand MotivatedLight- seeking Three-layerElman Weights NoGallagher et al.(1996) Six-legged robot Locomotion Continuous-time DynamicalRecurrentNeural Network Weights; timeconstants NoGruau andQuatramaran(1997) Eight-leggedrobot Locomotion Discrete-timeDynamicalRecurrentNetwork Developmentalprogram Nosimplest navigation strategy - i.e., that of guidance - morecomplex representations are required to implement higher-level strategies - like place recognition-triggered response,topological navigation or metric navigation ([64]). More-over, to exploit topological or metric strategies to their bestavail, planning capacities are required, which are them-selves almost certainly not trivial to implement through anevolutionary approach.As far as methodological options are concerned, muchmore experience should be accumulated before the respec-tive advantages and drawbacks of simulations versus on-board evolution, of automatic versus interactive �tnessevaluation procedures, of direct versus indirect encodingschemes, of learning versus evolution could be assessed.At least one may foresee how di�cult it will be to devise�tness functions likely to automatically select complex be-haviors, even if so-called incremental approaches - accord-ing to which the overall behavior is decomposed into sim-pler behavioral primitives that are successively evolved andcombined together (e.g., [30], [31], [34]) - seem to be help-ful. Likewise, if indirect coding a�ords the evolutionaryprocess the possibility of exploring smaller search spacesthan direct coding does, it is likely that devising and ad-justing the corresponding genetic operators - e.g., muta-tions and crossovers - will prove to be much more intricatewhen such operators inuence dynamical processes like de-velopmental programs than when they just change staticstructures like the chromosomes of traditional genetic al-

gorithms [29]. Another pending issue is that of assessingwhether it is easier to evolve neural controllers than, for ex-ample, explicit control programs (e.g., [56]) or productionrules systems (e.g., [5]), although it has been argued thatthe former approach o�ers over the latter the advantages ofgenerating smoother �tness landscapes [4] and of facilitat-ing realistic injections of noise in speci�c parts of the con-troller [18]. Likewise, it is presently unclear whether or notco-evolving controllers and robot bodies as in [4], [19], [33]entails greater synergic e�ects than disadvantages causedby the subsequent increase of the search space. Finally,the technology of so-called evolvable hardware o�ers greatprospects of speeding up the evolutionary process becauseevolved hardware controllers are not programmed to followa sequence of instructions, they are con�gured and thenallowed to behave in real time acording to semiconductorphysics ([59], [21]). If current use of such a technology torobot control do not involve neural controllers ([62], [26],[27], [47], [63]), its �rst application to neural network de-sign is said to be two orders of magnitude faster than anequivalent one on a Sun SS20 computer [46]. However, hereagain, only accumulated experiences will make it possibleto fully assess the potentialities and limitations of such anapproach. IV. ConclusionsEvolutionary approaches to neural control in mobilerobots is clearly a burgeoning research area that has al-



ready produced promising results. At present, such resultshave been mostly limited to the evolution of simple sen-sorimotor mechanisms, but some success at evolving morecognitive architectures have been reported. It is yet unclearwhether such automatic approaches will scale up with in-creasing complexity and whether they will ultimately com-pete with human capacities for designing e�cient robots.Important steps in these directions will probably be accom-plished should progress be made at adapting the �tnessfunctions to the problems to be solved or at exploiting thesynergies that interactions between development, learningand evolution certainly a�ord.References[1] Aloimonos, Y. Active Perception. Lawrence Erlbaum. 1993.[2] Baluja, S. Evolution of an Arti�cial Neural Network Based Au-tonomous Land Vehicle Controller. IEEE Transactions on Sys-tems, Man, and Cybernetics - Part B: Cybernetics. 26, 3, 450-463, 1996.[3] Beer, R.D. and Gallagher, J.C. Evolving Dynamical Neural Net-works for Adaptive Behavior. Adaptive Behavior. 1, 1, 91-122,1992.[4] Cli�, D., Harvey, I. and Husbands, P. Explorations in Evolution-ary Robotics. Adaptive Behavior. 2,1, 73-110, 1993.[5] Colombetti, M. and Dorigo, M. Training agents to perform se-quential behavior. Adaptive Behavior. 2, 3, 247-276, 1994.[6] Corbacho, F.J. and Arbib, M.A. Learning to Detour. AdaptiveBehavior. 3,4, 419-468. 1995.[7] Eggenberger, P. Cell Interactions as a Control Tool of Develop-mental Processes for Evolutionary Robotics. In Maes, Mataric,Meyer, Pollack and Wilson (Eds.). Proceedings of the FourthInternational Conference on Simulation of Adaptive behavior:From Animals to Animats 4. The MIT Press/Bradford Book.1996.[8] Elman, J.L. Finding structure in time. Cognitive Science. 2,179-211. 1990.[9] Floreano, D. and Mondada, F. Automatic Creation of an Au-tonomous Agent: Genetic Evolution of a Neural-Network DrivenRobot. 1994. In Cli�, Husbands, Meyer and Wilson (Eds.). Pro-ceedings of the Third International Conference on Simulationof Adaptive behavior: From Animals to Animats 3. The MITPress/Bradford Book. 1994.[10] Floreano, D. and Mondada, F. Evolution of plastic neurocon-trollers for situated agents. In Maes, Mataric, Meyer, Pollackand Wilson (Eds.). Proceedings of the Fourth International Con-ference on Simulation of Adaptive behavior: From Animals toAnimats 4. The MIT Press/Bradford Book. 1996.[11] Floreano, D. and Mondada, F. Evolution of Homing Navigationin a Real Mobile Robot. IEEE Transactions on Systems, Man,and Cybernetics - Part B: Cybernetics. 26, 3, 396-407. 1996.[12] Gallagher, J.C., Beer, R.D., Espenschield, K.S. and Quinn, R.D.Application of evolved locomotion controllers to a hexapod robot.Robotics and Autonomous Systems. 19, 95-103. 1996.[13] Goldberg, D. E. Genetic Algorithms in Search, Optimizationand Machine Learning. Addison-Wesley. 1989.[14] Gomi, T. and Gri�th, A. EvolutionaryRobotics - An Overview.Proceedings of the IEEE 3rd International Conference on Evolu-tionary Computation. IEEE Society Press. 1996.[15] Gomi, T. and Ide, K. Emergence of gaits of a legged Robotby Collaboration through Evolution. Proceedings of the Inter-national Symposium on Arti�cial Life and Robotics. SpringerVerlag. 1997.[16] Gruau, F. Automatic de�nition of modular neural networks.Adaptive Behavior. 3, 2, 151-183. 1995.[17] Gruau, F. and Quatramaran, K. Cellular Encoding for Inter-active Evolutionary Robotics. In Husbands and Harvey (Eds.).Fourth European Conference on Arti�cial Life. The MITPress/Bradford Books. 1997.[18] Harvey, I., Husbands, P. and Cli�, D. Issues in EvolutionaryRobotics. In Roitblat, Meyer and Wilson (Eds.). Proceedings ofthe Second International Conference on Simulation of Adaptivebehavior: From Animals to Animats 2. The MIT Press/BradfordBook. 1992.
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