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Summary 

 

This paper reviews evolutionary approaches to the automatic design of real robots exhibiting a 

given behavior in a given environment. Such a methodology has been successfully applied to 

various wheeled or legged robots, and to numerous behaviors including wall-following, 

obstacle-avoidance, light-seeking, or arena cleaning. Its potentialities and limitations are 

discussed in the text and directions for future work are outlined. 

 

 

Introduction 

 

In the last few years, several researchers have attempted to bypass the difficulties of hand-

coding the control architectures of mobile robots that have to fulfil given missions in 

unknown, and possibly changing, environments.  Because such difficulties stem from the 

impossibility of foreseeing each problem the robot will have to solve, and from the lack of 

basic principles upon which human design might rely, these researchers advocate the so-

called evolutionary robotics approach, i.e., an automatic designing procedure. According to 

this approach, a robot’s controller, and possibly its overall body plan, is progressively adapted 

to the specific environment and the specific problems it is confronted with, through an 

artificial selection process that eliminates ill-behaving individuals in a population while 

favoring the reproduction of better-adapted competitors. 

 

Such a process calls upon some evolutionary procedure – like a genetic algorithm (Goldberg, 

1989), an evolution strategy (Schwefel, 1995), or a genetic programming (Koza, 1992) 

approach. It involves a genotype - i.e., an information that evolves through successive 

generations - and a phenotype - i.e., the robot’s control architecture, its body plan, and its 

behavior - that is encoded in the genotype. A dedicated fitness function is used to assess the 

behavior of each individual in the population and to direct the selection proper. Dedicated 

operators – such as mutation and crossing-over – give rise to new genotypes in the population 

and permit robots of ever-increasing fitness to be generated, until the process converges to 

some local or global optimum. In the majority of applications, the evolutionary procedure is 

performed in two stages: fitted phenotypes are first sought through simulation and are then 

downloaded in turn on a real robot to check their fitness with respect to real world constraints. 

However, in some other applications, the evolutionary procedure takes place within the 

robot’s processor and fitnesses are directly assessed through real world interactions. In both 

cases, software controllers are evolved. They may be implemented as control programs – in 

high level language or in machine code -, as a variety of production-rule systems, or as neural 

networks. Finally, within the so-called evolvable hardware approach (Sanchez and Tomassini, 

1996; Higuchi et al., 1997), genotypes code for the configuration of hardware controllers and 

body plans, and fitnesses are also assessed through real world interactions. 

 

Although numerous aspects of the methodology of evolutionary robotics have been tested in 

simulation, such research efforts won’t be cited in this review paper
1
, which is centered on 

                                                           
1
 See, for instance, Husbands et al. (1994), Gomi and Griffith (1996), or Mataric and Cliff (1996). 



real robot applications. The robot the most often used in the applications described herein is 

Khepera, but it will be shown that other robots, including walking robots, have been used as 

well. This paper will also provide a discussion of the current potentialities and limitations of 

evolutionary robotics and will end with suggestions for future work. 

 

 

 

Real robot applications 

 

A. Khepera 

 

Khepera (Mondada et al., 1993) is a circular-shaped miniature mobile robot -- with a diameter 

of 55mm, a height of 30mm, and a weight of 70g – that is supported by two wheels and two 

small Teflon balls. In its basic configuration, it is equipped with eight infra-red proximity 

sensors – six on the front, two on the back – that may also act as visible-light detectors. The 

wheels are controlled by two DC motors with incremental encoder that move in both 

directions. 

 

Using the Khepsim simulator, Jakobi et al. (1995) evolved both obstacle-avoidance and light-

seeking behaviors in Khepera. The simulation was based on a continuous two-dimensional 

model of the real world physics and allowed to calculate the dynamics of the robot’s sensory 

inputs in response to its motor signals. Recurrent networks of threshold units that were 

evolved in simulation evoked qualitatively similar behavior on the real robot, especially when 

the levels of noise present in the simulation had similar amplitudes to those observed in 

reality.  

 

To evolve the capacity of moving in the environment while avoiding obstacles, Miglino et al. 

(Miglino et al., 1995a; Lund and Miglino, 1996) used a two-layer feedforward neural network 

with no hidden units and a fitness function with three components, which were respectively 

maximized by speed, by straight direction, and by obstacle avoidance. With the help of a 

genetic algorithm, the synaptic connections and thresholds of the neural controllers were first 

evolved through simulation. Then, the corresponding networks were downloaded on Khepera 

and proved to be efficient. A similar two-staged approach has been followed by Salomon 

(1996), who used a (3,6)-Evolution Strategy with self adaptation of the step size (Bäck and 

Schwefel, 1993). Likewise, Naito et al. (1997) used a genetic algorithm to configure how a set 

of 8 logic elements could be connected to each other and to the sensors and motors of the 

robot. Within this approach, each controller was downloaded on Khepera and its fitness was 

directly assessed in the real world. On the contrary, in Floreano and Mondada (1994), the 

whole evolutionary process took place entirely on the robot without human intervention, and 

two-layer Elman neural networks (Elman, 1990) were used as controllers. This architecture 

consisted of a single layer of synaptic weights from eight sensor units to two motor units, with 

recurrent connections within the output layer. Using the same neuronal architecture and the 

same fitness function, Floreano and Mondada (1996a) let evolve the type of the Hebbian rule 

that was employed by each synapse in the network. Each synapse was thus genetically 

described by a set of four properties: whether it was driving or modulatory, whether it was 

excitatory or inhibitory, its Hebbian rule, and its learning rate. Four Hebbian rules could be 

used: pure Hebbian, postsynaptic, presynaptic, and covariance (Willshaw and Dayan, 1990). 

Under such conditions, each decoded neural network changed its own synaptic strength 

configuration according to its genotypic  specifications and without external supervision while 

Khepera interacted with its environment. Experimental results showed that the efficient 



controllers that evolved exhibited synapses that were continuously changing in a dynamically 

stable regime. In other words, knowledge in such networks is not expressed by a final stable 

state of the synaptic configuration, but by a dynamical equilibrium. There are also indications 

that such plastic neurocontrollers are more resistant to sensor damage than standard static 

controllers. 

 

Another study of the interactions between learning and evolution is that of Mayley who 

evolved simple feedforward neural controllers for wall-following in Khepera. In this work 

also, besides encoding the network’s weights, the genome determined whether each weight 

was plastic or not – i.e., whether it might be changed or not by an Hebbian learning process. 

Experimental results indicated that, as long as there are costs to be paid for the ability to learn, 

learning is first selected for and then against as evolution progresses, thus illustrating how a 

learned trait or behavior may become genetically assimilated. 

 

 

In Floreano and Mondada (1996b) the evolution of a set of behaviors that allowed a Khepera 

robot to locate a battery charger and periodically return to it so as to increase its chances of 

survival has been achieved. In this work, the Khepera robot was equipped with two additional 

sensors. One ambient light sensor was placed under the robot platform pointing downward, so 

as to detect a black painted area on the floor that was considered as place where its battery 

was recharged. Another simulated sensor was used to provide information about the current 

energy level of the robot’s battery.  Thus, the input layer of the neural network consisted of 

twelve receptors each clamped to one sensor: 8 for IR-emitted light, 2 for lateral ambient 

light, 1 for floor brightness, and 1 for battery charge. The controller architecture was 

completed with a hidden layer of 5 units with recurrent connections and an output layer of 

two units, one for each motor. To evaluate the fitness of each individual, each robot started its 

life with a fully charged battery that was discharged by a fixed amount at every time step and 

that was instantaneously recharged if the robot happened to pass over the black area. While a 

given maximum life time was allotted to each robot, a fully discharged battery entailed 

instantaneous death. The robot’s fitness was accumulated at each step during evaluation and 

called upon two components: the first one was maximized by speed and the second by 

obstacle avoidance. Although such a fitness function did not specify neither the location of the 

battery station, nor the fact that the robot should reach it, the right behavior evolved because 

the accumulated fitness of each individual depended both on the performance of  the robot 

and on the length of its life. 

 

In the work of Nolfi (1996b) the parameters of a feedforward neural network with no hidden 

units were evolved to control a Khepera robot that had to explore his environment, to avoid 

walls and to remain close to a cylindrical target when it found it. The fitness of each controller 

was assessed through simulation and depended upon the time spent close to the target. 

Experimental results showed that the evolved individuals were successful in the real world 

and that, by intensively using an active perception strategy, they could overcome the problem 

posed by the fact that the walls and the target were hard to distinguish in most cases. As an 

extension of this work, and in order to study the interactions of individual learning and 

evolution, Nolfi and Parisi (1997) added two output units to such feedforward controllers. 

These units served as auto-teaching units (Nolfi and Parisi, 1993) that set the desired values of 

the two motor-controlling units when, at the beginning of each individual’s test period, a 

backpropagation algorithm was activated. Because testing could be performed either in an 

environment with dark walls or in an environment with white walls, backpropagation made it 

possible for a given individual to learn in which environment it was placed and to accordingly 



adjust during its lifetime the synaptic weights it inherited from the previous generation. Thus, 

through successive generations, individuals capable of learning more and more rapidly how to 

find the target did evolve. 

 

Using simulations to evolve simple feedforward neurocontrollers that were later downloaded 

on a Khepera robot equipped with a gripper module, Nolfi (Nolfi and Parisi, 1995; 

Nolfi,1996a,1997a,b,c) evolved the task of keeping clear an arena surrounded by walls, in 

which small cylindrical trash objects were disposed at random. The best results were obtained 

when the neural controllers exhibited a so-called emergent modular architecture. Within such 

architecture, the number of available modules, their internal organization, and the 

mechanisms that determined their interaction were pre-designed and fixed. However, the way 

each of these modules was used at each time step depended upon the evolved values of each 

connection weight and bias within the overall architecture. Such values were directly binary 

encoded in individual genes. Fitnesses were evaluated by counting the number of objects 

correctly released outside the arena during a given evaluation time. During evolution, 

individuals capable of simply picking up targets were slightly favored. Likewise, experience 

showed that it was useful to artificially increase the number of times the robot encountered 

another target while carrying an object, in order to force the evolutionary process to select 

individuals able to avoid targets when the gripper was already holding something. 

 

Researchers at Dortmund University (Nordin and Banzhaf, 1996; Banzhaf et al., 1997) 

evolved obstacle-avoidance and object-following behaviors in Khepera with a Genetic 

Programming (Koza, 1992) variant that manipulates machine code directly. Their system uses 

linear genomes composed of variable length strings of 32 bit instructions for a SUN-4 

computer. Each instruction performs arithmetic or logic operations on a small set of registers 

and may also include a small integer constant of 13 bits at most. The genetic operators are 

tailored to manipulate genetic code directly. In particular, crossover occurs between 

instructions and thus changes the order and number of instructions in offspring programs; 

mutations are allowed to flip bits within instructions. To evolve obstacle avoidance, a fitness 

function with a negative and positive part was used. The former was the sum of all proximity 

sensors; the latter was dependent upon wheel speeds and assessed how straight and fast the 

robot was moving. For object following, the robot’s task was to follow moving objects 

without colliding with them. The corresponding fitness function used values returned by the 4 

sensors facing forward, and rewarded individuals capable of both moving towards objects far 

away and avoiding too close objects. Encouraging preliminary results have been obtained in 

experiments where the system is using a memory buffer that stores event vectors representing 

salient sensory-motor situations encountered in the past.  

 

Instead of directly evolving a complex behavior as a whole, Lee et al. (1997a,b) evolved 

behavior primitives and behavior arbitrators for a Khepera robot that had to push a box toward 

a goal position indicated by a light source. To accomplish this task, they used a genetic 

programming system that evolved the controller programs of two behavior primitives, box 

pushing – keep pushing a box forward - and box-side-following – move along the side of a 

box. In addition, they also evolved an arbitrator program that was used to arrange the 

executing sequence of the behavior primitives. Experimental results show that controllers 

evolved in simulation were transferred to the real robot without loss of performance. 

 

Several research efforts have aimed at evolving neural controllers for the Khepera robot 

through developmental approaches that call upon various biomimetic processes -- like cell 

division, cell differentiation, or cell adhesion -- to gradually build a neural control 



architecture. Controllers for obstacle-avoidance, light-seeking or light-avoiding behaviors 

have thus been evolved by Eggenberger (1996). Wall-following and obstacle-avoidance 

behaviors have also been evolved through such a developmental approach by Michel (Michel, 

1996; Michel and Collard, 1996). 

 

Finally, with the aim of evolving a behavior that was at least one step up from the simple 

reactive behaviors that have been sought so far, Jakobi (1997a,b) succeeded to evolve reliably 

fit recurrent neural network controllers that allowed a Khepera robot to memorize on which 

side of a corridor it passed through a beam of light. Then, when the robot arrived at a T-maze 

junction at the end of the corridor, its task was to turn on the same side and move down the 

corresponding arm. Controllers that have been evolved within around 1000 generations in 

simulation were downloaded onto Khepera and performed the task satisfactorily and 

efficiently. 

 

 

B. Other robots 

 

Several experiments have been performed at Sussex University  (Cliff et al., 1993; Harvey et 

al., 1994; Jakobi, 1997a,b) in which discrete-time dynamical recurrent neural networks and 

visual sampling morphologies are concurrently evolved to allow a gantry robot to perform 

various visually guided tasks. Such experiments called upon a CCD camera sensing its 

environment through a swiveling mirror. For instance, within an environment predominantly 

dark, the robot had to move toward fixed or mobile white targets. Likewise, it might had to 

approach a white triangle while ignoring a white rectangle. In such experiments, successful 

behaviors were evolved using a genetic algorithm acting on pairs of chromosomes encoding 

the visual morphology and the neural controller of the robot. One of the chromosomes was a 

fixed length bit string encoding the position and size of three visual receptive fields from 

which the visual signals processed by the neural controller were calculated. The other was a 

variable length character string encoding the number of hidden units and the number of 

excitatory and inhibitory connections between neurons. On the contrary, the number of input 

nodes was fixed to seven – one input for each of three visual receptive field and of for each of 

four tactile sensors – and the number of output nodes - whose signals were translated into 

gantry moves and mirror angular velocities -  was fixed to four .  

 

Work by Grefenstette and Schultz (1994) calls upon the use of the SAMUEL classifier system 

(Grefenstette and Cobb, 1991) for evolving collision-free navigation in a Nomad 200 mobile 

robot equipped with 20 tactile, 16 sonar, and 16 infra-red sensors. Within such an approach, 

besides from being possibly mutated, the condition part of each of SAMUEL’s rule - which 

was compared against the current sensor readings – was also submitted to dedicated 

generalization and specialization operators. The task consisted of learning to reach a fixed 

goal location in a predetermined time, starting from a fixed initial position within an 

environment that contained obstacles whose positions were changed at each trial. With a 

population size of 50 rules, rule sets evaluated through simulation over 50 generations were 

downloaded on the robot and proved to be efficient 86% of the time. A similar approach is 

that of Colombetti and Dorigo (1993) who used the ALECSYS software tool (Dorigo, 1993) 

to evolve the control architecture of the AutonoMouse, a mouse-shaped autonomous robot 

equipped with two on/off eyes positioned in front of the robot and sensing light within a cone 

of about 60 degrees. In this work, the robot’s control architecture was a set of interconnected 

classifier systems and the behavior to evolve was light-chasing. To succeed, the robot had to 

learn appropriate moves so as to cope with situations where the target light was on, but out of 



the robot’s sight. The robot’s fitness was evaluated through light intensity, detected by a 

dedicated central light sensor.  

 

 

Miglino et al. (1995b) evolved a four-layer Elman-like recurrent neural networks with 2 

sensory units, 2 output units, 2 hidden units, and 1 memory unit that allowed a mobile Lego 

robot to explore the greatest percentage of an open area within an allotted number of steps. 

Two optosensors were used to detect whether the areas ahead and behind the robot’s current 

location were black or white, thus allowing the robot to move within a central white surface 

surrounded by a black border. Such moves were determined by the values of the two output 

units. The architecture of the controllers was fixed and only the weights of the connections 

were encoded in the genotype, as a vector of 17 integer numbers. Although the fitness of each 

controller was assessed through simulations, experiments showed that evolved controllers 

were efficient in the real world, despite the fact that the real trajectories were significantly 

different from the simulated ones. 

 

 

Yamauchi and Beer (1994) used a Nomad 200 mobile robot to let evolve neural controllers 

capable of identifying one of two landmarks based on the time-varying sonar signals received 

as the robot turned around the landmark. The robot’s trajectory was controlled by a fixed 

behavior-based control system that allowed the robot to find a wall and follow it 

counterclockwise around the perimeter of the experimental room. A single sonar on the left 

side of the robot was used to detect a central landmark and its range signals were input to each 

of the eight neurons in a continuous-time fully-connected recurrent neural network. One of 

these neurons was designated the output unit and its firing rate after a fixed period of time – 

i.e., after the input signal sequence has been integrated over time - was used to classify the 

landmark. Network parameters - like time constants, thresholds, or connection weights - were 

genetically encoded as vectors of real numbers, of which each element was indivisible under 

crossover. The fitness function of each individual in a population of 100 networks was 

evaluated in simulation and assessed the average capacity of the network to correctly identify 

the landmarks over six test trials. After 15 generations, an individual capable of correctly  

recognizing the landmarks in simulation was generated. When transferred on the real robot, it 

correctly classified the landmarks in 17 out of 20 test trials.   

 

In Yamauchi (1993), other evolutionary robotic simulations are described that have been 

successfully applied to predator avoidance in a Nomad 200 robot. In this approach, dynamic 

neural networks were used to perform the task of evading a moving pursuer while avoiding 

collisions with stationary obstacles.  

 

Baluja (1996) presents an evolutionary method for designing a neural controller for the 

Carnegie Mellon’s NAVLAB autonomous land vehicle. To assess its steering abilities, the 

neural network is shown video images from the NAVLAB’s onboard camera as a person 

drives and its task is to output the direction in which the person is currently steering. A 

maximal network architecture is defined, which determines the structure and maximum 

connectivity of the controller to which, during evolution, connections may be removed but not 

added. In one series of experiments, this maximal network architecture was a fully-connected 

perceptron with a 15 x 16 pixels input retina, a five unit hidden layer, and a single unit layer 

whose activation determined how sharply the steering should be to the left or to the right of 

center. In a second series of experiments, the same architecture was used, but with 30 output 

units, each of which being considered as representing the network’s vote for a particular 



steering direction. In both cases, the so-called PBIL (Population-Based Incremental Learning) 

evolutionary algorithm was used, according to which a probability vector is evolved as a 

prototype from which potentially highly fit networks can be derived. This vector specifies the 

probabilities of having a 1 or a 0 in each bit position of a string encoding the topology and 

connection weights of a neural controller. During evolution, in a manner similar to the 

training of a competitive learning network, the values in the probability vector are 

progressively shifted toward the bit values that specify efficient network designs. This 

evolutionary approach performed better, on average, than standard backpropagation, 

especially in the one-output networks. 

 

Using a genetic algorithm acting on individuals represented as real-coded vectors of weights, 

Meeden (1996) evolved recurrent neural controllers for a four-wheeled robot that had to 

continually keep moving, to avoid contacts with walls, and either to seek or avoid light 

depending upon its current goal. This robot was equipped with three front and one back touch 

sensors, with two light sensors, and with one goal sensor that indicated that the robot should 

seek out (respectively avoid) the light until a maximum (respectively minimum) light reading 

was obtained. For movement, the robot had two servo-motors: one controlling forward and 

backward motion, the other controlling steering. Elman-like networks with a fixed 

architecture were used for that purpose - with 7 input units each connected to a given sensor, 

5 hidden units with recurrent self-connections, and 4 output units that determined how to set 

the motors for the next time step. During evaluation, the fitness of a given controller was 

incremented or decremented after each robot’s action, according to a reward scale that took 

into account whether or not the robot accomplished a light goal, kept moving, had any touch 

sensor triggered, and correctly followed the light gradient. Experimental results showed that 

the evolutionary update of weights out-performed a complementary reinforcement 

backpropagation learning algorithm (Ackley and Litman, 1990) under delayed reinforcement 

conditions, i.e., when no light gradient reinforcement was provided between two switching-

goal episodes.  

 

Jeong and Lee (1997) got promising results suggesting that a genetic algorithm could be used 

to automatically design the controllers and the control strategies for two-wheeled soccer 

playing robots. Such robots are assumed to be used within an experimental setup consisting of 

a host computer that processes the vision data acquired by a camera and sends to each robot 

information about the playground positions of the ball and of each robot. A two-stage 

evolutionary approach has been investigated. In a first stage, production rules have been 

evolved, whose condition parts take into account the positions of the relevant objects – i.e., 

the partners, the opponents, the goals, and the ball – and whose action parts trigger a relevant 

action – i.e., a move, a dribble or a kick. In a second stage, optimal on-off control signals to 

the motors were evolved that allowed a robot to reach a position with desired coordinates and 

orientation. 

 

Gallagher et al. (1996) describe experiments were neural networks controlling locomotion in 

an artificial insect were evolved in simulation and then successfully downloaded on a real 6-

legged robot. In this approach, each leg was controlled by a fully interconnected network of 5 

Hopfield-like continuous neurons (Hopfield, 1984), each receiving a weighted sensory input 

from that leg’s angle sensor. Three of these neurons were motor neurons that respectively 

governed the state of the forward and backward joint torques of the leg and the state of the 

corresponding foot. The remaining two neurons were interneurons with no pre-specified role.  

Thanks to various simplifying assumptions (Beer and Gallagher, 1992), a set of only 50 

parameters – which described neuronal physical constants, crossbody connection weights and 



intersegmental connection weights – needed to be encoded in the insect’s genotype as mere 

bit strings.  

 

A genetic algorithm has been used by Galt et al. (1997) to derive the optimal gait parameters 

for a Robug III robot – an 8-legged, pneumatically powered walking and climbing robot. The 

individual genotypes were encoded to represent the phase and duty factors – i.e., the 

coordinating parameters that represent each leg’s support period and the time relationships 

between the legs. Controllers were thus evolved that have been proved capable of deriving 

walking gaits that are suitably adapted to a wide range of terrains, damages or system failures. 

Future research will be targeted at using information on the terrain contours  provided by the 

robot’s legs. Such information can be used by neural networks to provide one step ahead 

forecast of the terrain conditions and hence improve the walking efficiency.  

 

Gomi and Ide (1997a,b) evolved the gaits of a 8-legged OCT-1 robot (AAI Systems, Inc.) by 

loading it with a set of 50 software invoked control processes that are each given in turn a 

fixed amount of time to actuate the robot’s legs. The corresponding genotypes are made of 8 

similarly organized sets of genes, each gene coding for legs motion characteristics like the 

amount of delay after which the leg begins to move, the direction of the leg’s motion, the end 

positions of both vertical and horizontal swings of the leg, the vertical and horizontal angular 

speed of the leg, etc. The fitness function is set in favor of a robot that stands up, evolves 

coordination among its legs motions, and has a tendency to move forward. Moreover, fitness 

scores are increased when internal sensors monitoring the servo motor electric currents 

indicate that a given leg is moved under proper loading conditions. Fitness scores are 

decreased when any of the sensors located on the belly of the robot detects a contact with the 

floor. Typically, after generation 10, most individuals succeed in standing and walking with a 

faint gait. Likewise, after a few dozen generations, a mixture of tetrapod and wave gaits is 

obtained. 

 

Gruau and Quatramaran (1997) also evolved controllers for walking in the OCT-1 robot. 

Using a developmental approach called Cellular Encoding (Gruau, 1995) – i.e., an approach 

that genetically encodes a grammar-tree program that controls the division of cells growing 

into a discrete-time dynamical recurrent neural network – they first evolved a single-leg 

neural controller with one input and two outputs. When commands for return stroke or power 

stroke were input to the controller, it succeeded to respectively  lift the foot up and propel the 

leg forward or to left the foot down and propel the leg backward. Then, they put together 8 

copies of the leg controller and evolved a neural network that called upon 8 oscillators with 

correct frequency, coupling, and synchronization, which generated  a smooth and fast 

quadripod locomotion gait. 

 

 

 

C. Evolvable Hardware 

 

Evolved Hardware controllers are not programmed to follow a sequence of instructions, they 

are configured and then allowed to behave in real time according to semiconductor physics. 

 

Thompson (1995,1997) used artificial evolution to design a FPGA (Field Programmable Gate 

Array) hardware circuit as an on-board controller for a two-wheeled autonomous mobile robot 

displaying simple wall-avoidance behavior in an empty arena. A FPGA is a Very Large Scale 

Integration (VLSI) silicon chip containing a large array of components and wires. Switches 



distributed throughout the chip can be set by an evolutionary algorithm and determine how 

each component behaves and how it connects to the wires. Thompson’s approach called upon 

a so-called DSM (Dynamic State Machine) equipped with genetic synchronizers and with a 

global clock whose frequency was also under genetic control. Thus evolution determined 

whether each signal was passed straight through asynchronously, or whether it was 

synchronized according to the global clock. This process took place within the robot in a kind 

of “virtual reality” in the sense that the real evolving hardware controlled the real motors, but 

the wheels were just spinning in the air. The movement that the robot would have actually 

performed if the wheels had been actually supporting it were then simulated and  the sonar 

echo signals that the robot was expected to receive were supplied in real time to the hardware 

DSM. Excellent performances were attained after 35 generations, with good transfer from the 

virtual environment to the real world. Similar results have been obtained with a Khepera robot 

equipped with an onboard Field-Programmable Gate Array (FPGA) (Thompson, 1997). 

 

Using a Boolean function approach implemented on gate-level evolvable hardware, 

Keymeulen et al. (1997a,b) evolved a navigation system for a mobile robot capable of 

reaching a colored ball while avoiding obstacles during its motion. The mobile robot was 

equipped with infra-red sensors and an active vision system furnishing the direction and the 

distance to the colored target. A programmable logic device (PLD) was used to implement a 

Boolean function in its disjunctive form, which has been proved to be sufficient to control 

tracking-avoiding tasks (Lund and Hallam, 1997). It appeared that such gate level evolvable 

hardware was able to take advantage of the correlations in the input states and to exhibit 

useful generalization abilities, thus allowing the simulated evolution  of a robust behavior in 

simple environments and a good transfer into the real world. Future work aims at accelerating 

on-line evolution by allowing the robot to do some experimentation in an internal model of its 

environment, to be implemented in an additional  special purpose evolvable system. 

 

 

Finally, Lund et al. (1997) advocate the use of so-called true evolvable hardware to evolve, 

not only a robot’s control circuit, but also its body plan, which might include the types, 

numbers and positions of the sensors, the body size, the wheel radius, the motor time 

constants, etc. These authors are currently developing a new piece of reconfigurable hardware 

that will make it possible to co-evolve the control mechanisms and the auditory morphology 

of a Khepera robot behaving like a female cricket which is able to use phonotaxis to locate a 

song emitting male.  

 

 

Discussion 

 

 

Conclusion 
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