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Abstract

This paper provides an overview of various research e�orts that aim at designing adaptive

animats� i�e� synthetic animals able to survive in synthetic worlds� The control architectures

of these animats are either programmed by a human designer or� more or less� automatically

determined by means of nature�mimicking processes such as learning� evolution and develop�

ment� The paper concludes with a brief discussion of the directions in which future animat

research should be oriented�
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� Introduction

Synthetic worlds are inhabited by synthetic animals � or animats � which live� feed� reproduce
and die in these worlds� Animats are equipped with sensors� with actuators and with control
architectures that endow them with more or less sophisticated adaptive abilities� They are at
the heart of a signi�cant number of research programs �CLIF��� MEYE�	a� MEYE�
� in both
fundamental and applied perspectives� On the one hand� indeed� the synthesis of animats can
be expected to help in understanding how real animals manage to survive in real worlds� On
the other hand� the corresponding mechanisms and working principles may prove to be e�ective
in devising truly autonomous and adaptive robots�

The literature on animats falls into four broad categories �GUIL��� MEYE�	b� MEYE����
according to whether it concerns animats whose control architectures have been programmed by
a human designer� or animats whose behavioral plasticity is due to biologically�inspired auto�
matic processes � like the processes of learning� evolution or development�

In order to illustrate the diversity and the originality of the animat approach� this paper
will describe several research e�orts drawn from the corresponding literature� It will conclude
with a brief discussion of the directions in which future work should be oriented�

� Preprogrammed Behaviors

Many animats exhibit adaptive behaviors because they have been purposely preprogrammed
by a human designer� The work of Beer �BEER�
�� for instance� belongs to the �eld of �neu�
roethology�� which aims at reproducing as faithfully as possible available knowledge about the

	



nervous systems of actual animals� Beer has elaborated a model enabling an arti�cial cockroach
to display sequences of behaviors that ensure its survival in a simple simulated environment � a
rectangular area with obstacles� walls and food patches� The whole control architecture of the
insect consists of four interconnected neural networks that control locomotion� edge�following
and both appetitive and consummatory behaviors involved in feeding �Figure 	��
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Figure �� Global control architecture of Beer�s arti�cial insect� After �BEER���

Neurons correspond to sensory units� motor units� motivation units or interneurons� The
network depicted on Figure �a� for instance� ensures the insect�s locomotion and governs the
rhythmic motion of its legs� This network calls upon three motor neurons� the neurons involved
with stance and swing determine how forcefully the leg is propelled forward or backward� while
the foot motor neuron determines whether or not the foot is set down� Motion�s periodicity is
due to a pacemaker neuron P� and the force applied in each stance phase� together with the
periodicity of P discharges� depends on a general level of excitation controlled by the command

neuron C� The sensors essential to the operation of such a network are two neurons that emit
a signal whenever a leg reaches an extreme angle� Lastly� a central connection between the
pacemakers �Figure �b� synchronizes the movements of the insect�s legs� thus guaranteeing its
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stability� In addition� other neurons not described here allow the insect to make use of its motor
equipment for speci�c purposes� such as avoiding obstacles�

Another neural network enables the insect to reach food patches when it is hungry �Figure

a�� The odors detected by the chemical sensors located on each antenna �ACS� are compared by
two neurons� LOS and ROS� The di�erence detected is used to generate a rotation towards the
strongest odor caused by the excitation of an appropriate interneuron �LT or RT� governing the
lateral extension of the front legs� When the energy rate of the insect decreases� the activity of
an energy sensor neuron �ES� also diminishes� thus disinhibiting a feeding arousal neuron �FA�
that otherwise would be spontaneously active� This neuron then excites a search command

neuron �SC�� that will decide whether or not to head for food�
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Figure �� Beer�s arti�cial insect circuits� a	 leg controller� b	 central coupling between
pacemakers� After �BEER���

A third network �Figure 
b� governs food ingestion� When the chemical �MCS� and tactile
�MTS� sensors in the mouth indicate that food is present �FP�� and when the insect is motivated
enough to feed �FA�� the consummatory command neuron �CC� is activated and forces the
pacemaker neuron �BP� to produce rhythmic signals that make the motor neuron �MO� open
and shut the mouth� When the energy rate increases� the activation level ES inhibits FA� which
in turn ends up by suppressing the activity of BP and causes the feeding to stop� Moreover� a
positive feedback loop between FA� PB and MO modulates realistically the frequency of chewing
during a meal�
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Considering that the same neurons are involved in the initiation and control of these be�
haviors� a speci�c organization must preclude the simultaneous occurrence of incompatible acts
� i�e�� those calling upon the same motor units� The solution retained is a hierarchical organi�

zation� where the consummatory part of feeding takes precedence over the orientation towards
food� which in turn is dominant with respect to the obstacle avoidance �Figure 	�� According
to such an organization� exploration is the behavior engaged in by default� while locomotion is
activated in the course of every behavior entering into this hierarchy�

This architecture allows an arti�cial insect to perform realistic successions of behaviors
such as those illustrated in Figure �� at point A� the insect detects food� but cannot reach it�
instead of staying there� it edge�follows the obstacle �point B�� at point C� it looses the food
odor� wanders and edge�follows the wall �point D�� at point E� it detects food again and �nally
reaches it �point F��
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Figure �� An adaptive behavioral sequence of Beer�s arti�cial insect� After �BEER���

This work demonstrates that adaptive behavioral sequences can emerge in an animat en�
dowed with a very simple nervous system connected in a clever way by its designer� The insect
architecture is totally distributed� but not uniformly� it must be structured so as to ensure an
adapted alternation between behaviors in response to changes in the animat�s internal state or
in the external environment�

� Learned Behaviors

To reduce the role of a human designer to a minimum� many studies address the way animats
can autonomously improve the adaptiveness of their behaviors while experiencing new situa�
tions in their environment� In particular� in the situation of reinforcement learning� the animat
has to discover� by trial and error� how to coordinate its actions in order to maximize a cumu�
lative reward over time� Such a reward is either a positive or a negative signal coming from the
environment�
The Barto and Sutton model �BART�	� allows an animat to learn to orient itself in a two�
dimensional environment� using odorous landmarks � This environment contains one central
landmark �C� surrounded by four others �N�S�W�E�� Each landmark emits an odor the gradient
of which decreases with distance� The task of the animat is to learn how the four peripheral
landmarks are associated to the central one� and to navigate toward this goal even if it ceases to
emit its odorous signal� The architecture of the animat is a neural network with special neurons
inspired from Klopf�s �hedonistic� neuron concept �KLOP�
�� As an input� this network re�
ceives a combination of four odorous signals �XN� XS� XW� XE� associated with the peripheral
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landmarks �N� S� W� E�� and furnishes� as an output� a combination of motor signals �YN� YS�
YW� YE� associated with the four spatial directions� The reinforcement signal Z corresponds
to the odour of the central landmark C� a signal that the animat seeks to maximize �Figure ���
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ment� After �BART���

Learning takes place as the animat moves in the environment� The neurons� synaptic
strengths are updated so that� when the activation of a motor neuron at a given spot brings
about a motion in a direction where Z increases� this neuron will have a better chance of being
activated on the same spot in the future� Conversely� a motion in a direction where Z decreases
will decrease the probability of activating the corresponding neuron�
After training� the animat gradually learns what direction it must move in from any given point
in order to reach the goal� It thus can �nd the goal from any starting point by selecting the
correct displacement at each intermediate point� This kind of adaptive ability is known as
route�navigation �GALL�
��
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Barto and Sutton�s animat illustrates a typical behaviorist architecture� it doesn�t need to
build an internal representation of the environment to be able to navigate adaptively� On the
contrary� the DYNA architecture proposed by Sutton �SUTT�	� includes a world model and
adds some planning abilities to a reinforcement learning process� DYNA is composed of four
modules �Figure ���
� the real environment� that changes state in relation with the animat�s movements and that
distributes a reward signal�
� the internal world model� that the animat elaborates for itself and that is intended to represent
the one�step input�output transitions of the real world�
� the policy function� relied on by the animat to determine what action to initiate in response
to each possible state of the real environment�
� a primitive reinforcement learner that improves the policy function over time�

The world model and the policy function are progressively modi�ed as the animat exper�
iments with the operational laws of its world� These modi�cations depend on two types of
experiments that the animat may alternate between� actual experiments� carried out on the
real environment and �ctitious � or hypothetical� experiments� that make use of the internal
world model� Such hypothetical experiments endow the animat with planning abilities and
make its behavior depend on its expected consequences�
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Dyna� The more hypothetical experiments 
k planning steps	 using the world model� the
faster the optimal path is found� After �SUTT���

Simulations e�ected on various DYNA architectures indicate that the corresponding animats
are able to learn the shortest path leading from the starting state S to the goal state G� in the
obstacle�encumbered environment on Figure �� Moreover� such trial�and�error learning is expe�
dited when animats avail themselves of the planning possibilities a�orded by their internal world
model and interleave one or more hypothetical experiments with actual experiments� What is
more� some of these architectures exhibit generalization capabilities in changing environments�

� Evolved Behaviors

Cli� et al� �CLIF�
� have simulated an evolving process during which the neural architecture
and the sensors� properties of each individual in a population of animats are improved over
successive generations� During this process� genotypes of o�spring are inherited from those of
their parents and altered under the in�uence of mutation and crossing�over operators� At each
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generation� the adaptive value of each phenotype �called its �tness� is evaluated by a test of the
aptitude of each animat to generate the behavior sought by the experimenter� thereby allowing
the genotypes that perform best to reproduce from one generation to the next� as well as elim�
inating those genotypes that perform most poorly�
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Figure 
� a	 An evolved neural controller� b	 The same network as on Figure a	� with
redundancies eliminated� After �CLIF����

Instead of generating explicit control programs� Cli� et al� �CLIF�
� make evolve the ar�
chitecture of neural networks that directly link the sensors and actuators of an animat� The
animat is equipped with various sensors� two forward and two backward whiskers� a front and
a back bumper� and two photoreceptors� It is also equipped with actuators� two wheels and a
trailing rear castor� The wheels have independent drives allowing turning on the spot and fairly
unrestricted motion across a �at �oor�

The architecture of the nervous system is general� the neurons are noisy linear threshold
units� variable in number� If eight of them are input neurons �one neuron per sensor� and four
of them output neurons �two neurons per motor� the number of interneurons is variable and is
determined genetically� Likewise� if certain connections may interconnect two neurons� other
connections result in temporarily preventing any transfer of information along speci�c direct
connections� The number and nature of these various connections are genetically determined�
the genotype of each animat consists of two chromosomes� one coding for the neural architec�
ture� and the other coding for the properties of the visual sensors� i�e� the angle of acceptance
and the eccentricity of the two photoreceptors�

The results show that it is possible to cause an animat�s nervous system to evolve in such a
way as to enable it to use its visual perception capabilities to avoid collisions with the wall of
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an empty cylindrical room prior to making physical contact with the wall via one of its tactile
sensors� Thus an animat can evolve in such a way as to be able to predict� from visual data
alone� that a collision is likely in a near future� and to initiate appropriate evasive action� Ex�
amination of the evolved networks that generate such behavior reveals a complex connectivity
with numerous redundancies� In earlier generations� the tactile sensors are widely used� Later�
vision becomes progressively more dominant� and the tactile sensor input units are essentially
used as internal neurons which process visual information �Figure ���

� Behavioral Development

If learning and evolution have already often been used for the automatic design of control
architectures of animats� such is not the case with development� a point stressed by Meyer and
Guillot �MEYE���� However� a few applications combining development� evolution and learning
have recently been published �KODJ����
The work of Nol� and Parisi �NOLF�	�� for instance� is concerned with the evolution of animats
that consume food randomly distributed within a simple ��D environment� Each animat is
equipped with a sensory system that allows it to perceive the direction and the distance of the
nearest food element and with a motor system that provides the possibility of turning any angle
between �
 degrees left and �
 degrees right� and to move forward 
 to � steps� The nervous
system of each animat is a bidimensional network with up to �
 neurons� whose development is
coded in the animat�s genotype� This genotype is a �xed�length string of �
 blocks� each block
being made up of eight genes that describe the developmental fate of a given neuron� The �rst
�ve blocks in the string correspond to sensory neurons� the last �ve blocks to motor neurons
and the 

 intermediate blocks to internal neurons� which can be arranged in a maximum of �
layers�
Within a given block� the �rst gene is the temporal expression gene� and speci�es when� during
development� the corresponding neuron will be expressed� Neurons scheduled to appear after the
animat�s death are non�expressed neurons� Two physical�position genes represent respectively
the x and y spatial coordinates of the corresponding neuron� The branching�angle gene and the
segment�length gene respectively control the angle of each branching of the neuron�s axon and
the length of each branching segment� The synaptic�weight gene determines the synaptic weight
of each connection established by the corresponding neuron� In other words� in this model� all
connections originating in a given neuron have the same weight� The bias gene represents the
activation bias of the corresponding neuron� Lastly� the neuron�type gene speci�es� in the case
of a sensory neuron� whether this neuron reacts to the angle or the distance of food and� in the
case of a motor neuron� whether this neuron determines the angle of turn or the length of a
forward step�
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Figure �� Growth process resulting from a randomly generated genotype� The lowest layer
corresponds to sensory neurons� central layers to internal neurons and the upper layer to
motor neurons� a	 Connections established during the developmental process� b	 Functional
network mapping sensory input into motor output obtained after elimination of redundancies
or unused neurons� After �NOLF���

While� in approaches like that of Cli� et al� evocated above� there is a direct mapping
between genotype and phenotype� in the work of Nol� and Parisi� the nervous system of each
animat changes during the animat�s lifetime� according to the developmental instructions coded
in the genotype� Thus� some neurons are created at birth� others appear later� and connections
are established between two neurons when the growing axonal branch of a particular neuron
reaches the soma of another neuron �Figure ���

The results obtained by Nol� and Parisi suggest that pairing an evolutionary with a devel�
opmental process is an e�cient means for providing adaptive behavior in animats� The results
also suggest that the architectures evolved tend to be structured into functional sub�networks�

� Discussion and Conclusion

The various examples described above demonstrate that complex functionalities can arise out
of simple models� In particular� it is now accepted that a few hundred neurons can be su�cient
to control the motivational system and the behavioral sequences of a simple animat� These
examples also demonstrate the fact that it is possible to analyze situations that are inaccessible
to traditional observational and experimental methods� particularly when these implement an
evolutionary process� They also suggest that the animat approach should help in assessing the

		



adaptive value of learning� evolution and development processes and in specifying how these
processes interact with and complement each other� Finally� because research on animats seems
to be an e�ective tool for studying how the highest intellectual abilities of man might derive
from the simplest adaptive behaviors of animals� there is hope that this research will ultimately
contribute to our understanding of the adaptive value and working principles of human cogni�
tion �MEYE��a� MEYE��b��

Nevertheless� the animat approach does present some limitations� For instance� the proof
of principles that it yields are rarely used to best avail� Virtually never has research been
conducted to ascertain whether a given simple solution to a problem is actually the simplest
possible� Nor has it been demonstrated that any given adaptive capacity can be expressly
ascribed to a speci�c global architecture rather than to a particular operational detail� Only
a systematic comparison of several di�erent versions of the same problem with as varied as
possible a range of solutions can allow the respective advantages and the degree of originality
of these solutions to be e�ectively evaluated�

More generally� it can be seen that� as of today� the animat approach is essentially empirical
in nature and that it would gain from a broadening of its theoretical perspective� Fortunately�
several research e�orts have recently been initiated in such a direction �MEYE���� For instance�
the work of Wilson �WILS�	� or Horswill �HORS��� on the characterization of environments
and the adaptational problems to which they give rise� and that of Agre �AGRE�	� or Chap�
man �CHAP��� on the theory of interactions between organisms and environments� constitute
a valuable groundwork�
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