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ABSTRACT

In this article, physiological and pathological forms of excitability are studied in a two-
dimensional electrical model of excitable cell endowed with a generic inward persistent
conductance. Bifurcation analysis of the model is performed as a function of the maximal
inward persistent conductance, the input current, or the voltage dependency of the activation
function. Several discharge modes are exhibited, including: (1) a basic mode that corresponds to
a resting potential and production of action potential; (2} bistability between resting potential
and self-sustained spiking; (3) a pacemaker mode of discharge; and (4) bistability between
resting potential and plateau potential. These behaviours can be compared to experimentally
described physiological and pathological forms of excitability that depend upon inward
persistent conductances. In the results obtained, attractors allow for a qualitative description of
physiological and pathological states. However, it is not possible to obtain an unambiguous
identification of particular ‘physiological attractors' or ‘pathological attractors'. In the
perspective of the theory of dynamical systems, we suggest that pathological states can be
modelled in two different ways, i.e. by bifurcation {as in the present model) or by perturbation,
We also highlight some other theoretical concepts that may be relevant to a theoretical
description of pathology.

1. INTRODUCTION

Physiolegical and pathological states are sometimes considered, from a theoretical
point of view, as particular attractors of living organisms. While being seductive, this
general assumption remains highly speculative and may possibly be irrelevant.
Moreover, other theoretical concepts could be useful in describing these states. In
well-delimited systems (e.g. cells, organs), it is possible to evaluate to which extent
attractors allow for a satisfactory description of physiological and pathological states.
In that perspective, the case of excitable cells represents a good working example.
Indeed, excitable cells can display pathological forms of excitability that affect the
physiological functioning of the organism they are part of. Moreover, they have been
widely studied as dynamical systems, notably using the qualitative theory of
differential equations. In this article, we therefore examine, in the case of excitable
cells, the way physiological and pathological states can be described theoretically.

Excitable cells are endowed with numerous types of ionic conductances that
determine their intrinsic firing properties (Llinas, 1988), and quite naturally, the
possible origin of abnormal excitability has been searched at that level. Indeed,
accumulating evidences suggest that inappropriate regulation of ionic conductances
can be responsible for dysfunctional forms of excitability related to various
pathological states, especially inward persistent (IP) conductances carrying sodium or
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calecium ions. IP conductances have been suggested to be implicated in several human
diseases, including myotonia and periodic paralysis (Cannon, 1996), a congenital form
of long-QT syndrome (Bennet ef al., 1995), spasticity (Nielsen and Hultborn, 1993},
epilepsy (Tunnicliff, 1996}, and schizophrenia (Yang et Seamans, 1996; Goldman-
Rakic and Selemon, 1997). This should not be surprising, as these conductances are
ubiquitous in excitable cells, including muscular cells, cardiac cells and neurons.
Moreover, as inward non-inactivating conductances, they provide long-lasting positive
feedback to depolarisation and often dominate the electrical properties of excitable
cells in which they are present (Bargas and Galaraga, 1995). Hence, they participate in
numerous intrinsic properties, such as amplification of synaptic inputs (Lipowsky ef
al., 1996), subthreshold oscillations (Klink and Alonso, 1993), spike threshold (Yang
and Seamans, 1996), firing frequency (Lampl et al, 1998), self-sustained spiking
(Hounsgaard et ai., 1984) and plateau potential (Yuen ef al., 1995).

In this article, we build a two-dimensional model of an excitable cell endowed with
a generic IP conductance. In line with previous works (FitzHugh, 1961; Nagumo ez
al., 1962; Rinzel, 1985), we take advantage of geometrical representation in two-
dimensional phase-space to characterise the bifurcation behaviour of the model as a
function of the IP conductance. We then compare the different behaviour modes of the
mode! to experimental physiological and pathological forms of excitability. Finally,
we discuss the interest and limitations of the theoretical description of pathology
obtained in the present model of excitable cells.

2. MATERIALS AND METHODS

The two-dimensional model studied in this paper was derived from an excitable
cell model of the Hodgkin-Huxley type used to describe the electrical behaviour of
neocortical pyramidal cells (Delord et af., 1997). The original model was isopotential
and endowed with four conductances: the fast sodium and potassium conductances, a
persistent inward conductance and a leak conductance. The membrane potential
followed:

dv
C?=_(1Na+1k+11}’+lleak)+1 n

where the membrane capacitance C was l,ul““'.cm'2 and / was an injected current
(pA.cm’z). The leakage, fast sodium and fast potassium currents were respectively
given by Jip = 8reak (V — Epeur)s Ina = -g-Namjh(V —Ey)and I, = §K”4(V = Eg). The
persistent inward current was described as I;p = gpmp(V — Ejp). The conductance
comprised an activation gate (m;p} but was non-inactivating. The gating particles m, A,
n and mye obeyed Hodgkin-Huxley first-order kinetics, the details of which are given
in Delord et al, (1997).

Following the method of Rinzel (1985), the original model was reduced to a two-
dimensional system. The following approximations were made. Firstly, the fast
sodium activation variable was substituted by its steady state activation function m =
m«(V). This was reasonable because m evolves much faster than all other gating
variables. Fast sodium steady-state activation function was fitted from Delord et al.

(1997) by a sigmoidal function: m_({V)=1/(} + exp(—(V - V"f“lf)/ k.)). Secondly, h
and # were replaced by 1-W and Wis, with W =(sn+s°(1-h))}/(1+5°) being a linear
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combination of 1-/4 and »n (see Av-Ron ef al. (1991) for a description of that point).
This was made possible because simulations of the whole model showed that 4 and »
varied almost linearly both during single action potentials and repetitive firing. In line
with these 'reduction rules', further reduction of the model to two dimensions was
achieved by substituting my» by W. This choice was possible since: (1) mp increased
with W=1 - A, and (2) it evolved with a time constant in the same order as those of 4
and »n. The reduced model was written as:

v _ _
c—-= Enaa (VY1 = WY Ey, = V)+ B (W) (Ey - V)
+8pW(Ep —V+ Broap (Ejoar =V +1 2)
aw W, (V) -Ww
a7, ®)
Tw

The steady-state function W_(V)}=(sn.(V)}+ 52(1 - h (VIN/(1 +sz) Wwas approx-
imated by a simple sigmoidal function W, (V)= 1/(1+exp(~(V - Vy* )/ ky)). The
time constant of W was voltage independent. Simulations ran with a voltage-
dependent time constant, using classical Hodgkin-Huxley-like functions, did not
change the resulits appreciably.

The qualitative behaviour of the reduced model was studied in order to characterise
the role of IP conductances on the firing properties of excitable cells. g, was chosen
as the bifurcation parameter, as maximal conductance represents density of ionic
channels, a privileged target for physiclogical regulation (Turrigiano et al., 1994).
Moreover, in the present model, g;p is the only conductance parameter that affects the
IS current without affecting directly the fast Na and K currents. Note that 7 was zero in
most cases (Figures 1-5). However, in simulations, it was taken non-null for brief
periods of time, to trigger transitions of one basin of attraction to another. In Figure 6,
the behaviour of the model was studied with different constant values of 7, i.e. in that
case the system was different. Stationary solutions (F., W) of the system were
found numerically (note that W, = W_(V,;)). Nullcline curves, corresponding to
dV/di=0 and dW/dt=0, were obtained using equations (2) and (3), respectively
giving A(‘I/’)W4 +BVYW+C(V)=0and W=W_(V). The jacobian matrix of the
systemn was computed at stationary solutions and eigenvalues determined the stability.
The existence and stability of limit cycles was studied numerically.

Reversal potentials were Ej, =-71.5mV, Ey, =45mV, Ep =-85mV. We chose

E;p =45mV, sothat [ip represented a sodium current, Qualitatively similar results (not
shown) were obtained using a low-threshold persistent calcium current, with
Ip =gpmip(V —=Ep)and Ejp =115mV.  Maximal conductances were g, =

0.05mS.cm™ (passive membrane time constant: 20 ms), gy, =20 mScm™, and

x =2mSem . Activation function parameters were V;,i"’f =-335mV, k=65,
VL’I}"‘V =—d4mV, ky =5.2, Ty =1ms. The value of s was evaluated 1.32 by linear

regression from the original model.



242 DELORD

o0 | 0.8
0 0.6

W 0.4

< —~3<—

0 0.2

09l

0.7+ :;
0.6

04+¢

0.3+

02t regenerative

0.1

80 | 60 -40 -20 0 20 40

Figure 1. Basic mode of excitability for g;p below # =0.0219 mSem™ (g, =0). A single

action potential is triggered by a transient depolarising input. A. Time domain representation of
membrane potential (V). B. Time domain representation of #. C. Phase-space representation of
action potential trajectory. After the end of repolarising current (cross), the celi depolarises
during the regenerative stage and repolarises to the resting solution during active and refractory
stages. V and W nullclines (dotted and dashed lines) cross at the stable resting solution (open
circle), the saddle and the unstable upper solution (stars).
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3. RESULTS

Bifurcation behaviour of the model

We first studied the reduced model without inward persistent conductance
(g;p =0). The cell displayed a single stable stationary solution corresponding to the
resting potential (V ~-71.5 m)). When deyolarised beyond threshold (¥, ~ -48m}) by
a transient step of current (=30 pd.cm™ for 1 ms), the cell fired a single action
potential (Figure 1A), and membrane potential repolarised to the resting potential after
the variable W had peaked (Figure 1B). This behaviour was observed at all g;» below
a critical value gy, and is referred to as the 'basic mode’ of discharge hereafter. The
action potential trajectory is represented in the phase plane together with ¥ and W
nullclines (Figure 1C). Contrary to the W nullcline that was the classical sigmoidal
(dashed line), the ¥ nullcline had two distinct branches (dotted lines). The V and W
nullclines cross at three stationary solutions, a stable solution (the resting solution), a
saddle (the middle solution) and an unstable solution (the upper solution). The left,
bottom part of the right branch of the ¥ nullcline can be viewed as a threshold curve
for action potential. The action potential could be divided, in a classical way, in three
stages. In the regenerative stage, V depolarised fast and W increased. As the V
nullcline was crossed, the active stage was entered, and V' repolarised while W was
still increasing. In the refractory stage (after the W nullcline was crossed) both V and
W decreased back to the resting solution.

For values of g;p comprised between g, and g;, the cell displayed the stable
resting solution, the saddle and the unstable upper solution. It also showed stable self-
sustained firing, and it was possible to switch back and forth between the two stable
states with transient injected currents. This region of 5, therefore, displays a bistable
behaviour since a stable stationary solution and a stable limit cycle coexisted
(Figure 2). This behaviour is referred to as the ‘spiking bistability' mode. Oscillations
arose at g;» = g as self-sustained spiking with non-zero amplitude (full spikes) and
with apparent null frequency (although numerical resolution did not permit obtaining
arbitrarily small frequencies). Note that with increasing values of g,p , left and right
branches of the ¥ nullcline approached until they fused, resulting into two top and
bottom branches at g, ~0.032mS.cm >, From that point, the stable resting solution

and the saddle were both situated on the bottom branch of the } nullcline.
At g =g, the stable resting solution and the saddle merged and disappeared

together. For values of F, comprised between g, and g;, the cell only displayed the

unstable upper solution around which oscillations occurred (Figure 3). This behaviour
was termed the '‘pacemaker’ mode. As g, was increased, oscillations frequency

increased and amplitude diminished. At g;» = g5, oscillations disappeared with zero
amplitude and non-null frequency (~300 Hz). For values of g;» above g; the upper
solution was stable (the plateau solution} and was, therefore, the only attractor.



244

9
08
0.7
08
0.5

w
04

0.3
62
01

-60

0 %0 100 150

PR

-80

-40

-20

0 20

40

DELGRD

Figure 2. Spiking bistability mode of excitability for g between g =0.0219 mS.em™ and
g, =0.1724 mS.cm™®. Transient depolarising inputs switch the cell between resting potential
and self-sustained discharge (inset, §;p =0.03 mS.cm ™). Inputs were 15 pA.cm™? and

-10 ;,lA.Ci"-*I"2 for 3 ms each (triangles). Phase-space representation of ¥ and # nullclines

(dotted and dashed lines), the stable resting solution (open circle), the saddle and the unstable
upper solution (stars), and the stable limit cycle (solid curve).
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Figure 3. Pacemaker mode of excitability for gjp between Z, =0.1724 mS.cm™

73 = 0252 mS.cm™.

g =0.18 mS.cm_z). V" and W nullclines {dotted and dashed lines) cross at the unstable upper
solution (star) situated inside the stable limit cycle (solid curve).

and

The cell only displays a self-sustained discharge (inset,
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Changing other conductance parameters than g;» could produce additional
interesting behaviour. For example, increasing the value of the half-activation
potential V,';""f of W., the steady-state function could give rise to a ‘plateau bistability’

mode. In that case, a stable resting solution and a stable plateau solution coexisted, and
it was possible to switch between them by transient injected currents (Figure 4).
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Figure 4. Plateau bistability mode of excitability. Transient depolarising inputs switch the cell
between a resting potential and a plateau potential (inset, g =0.26 mS.cm_z,

Vv}{,‘df =-38 mV). Inputs were 15 ,LLA.cm‘2 and —25 pA.cm™? for 3 ms each (triangles).
Phase-space representation of ¥ and ¥ nullclines (dotted and dashed lines), the stable resting
and plateau solutions {open circles) and the saddle (start).

The bifurcation diagram shown in Figure 5 summarises the behaviour modes
obtained when varying g,». Together, the results we obtained allowed identification

of different bifurcations of the excitable cell model (Ioos and Joseph, 1990; Wang and
Rinzel, 1995; Kuznetsov, 1995). The apparition of non-null amplitude, zero frequency
stable oscillations from a saddle at z,, = g, was classified as a homoclinic bifurcation

at regular saddle. At g,p = g, the stable resting solution and the saddle collapsed at a
saddle-node bifurcation (of stationary solutions). Finally, at g, =g;, the

disappearance of zero amplitude, non-null frequency oscillations as the upper solution
became stable corresponded to a supercritical Andronov-Hopf bifurcation.
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Figure 5. Bifurcation diagram of the excitable cell model as a function of g,p (see text).
Homoclinic at regular saddle, saddle-node, and supercritical Hopf bifurcations occur
respectively at g, g, and g3 values of g;p. Insert: firing frequency of stable oscillations.
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Figure 6. Domains of discharge of the excitable cell model in the (g;p, /) plane. RP: stable
resting potential. Plateau: stable upper solution (no resting potential). Repetitive firing cccurs
due to the presence of a constant depolarising injected current and/or the IP conductance. In the
domain of spiking bistability, it co-exists with resting potential. For /=0, repetitive firing

corresponds to a pacemaker mode of discharge.
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Finally, we systematically studied the discharge mode of the model as a function of
the injected current, because this parameter represents a major input control on
excitable cells. Figure 6 represents domains of excitability in the (g, I) plane.

Several behaviours are displayed: (1) the basic mode of discharge; (2) spiking
bistability; (3) self-sustained spiking alone; and (4) plateau potential alone. The
pacemaker mode of discharge described previously corresponded to self-sustained
spiking for 7=0. As can be seen, it was possible to switch between different
behaviours at a given value of g;», depending on the constant current injected.

Comparison with physiological and pathological forms of excitability

The different behavioural modes exhibited by our reduced model of excitable cell
can be compared with functional and pathological forms of excitability that have been
observed or hypothesised in normal and pathological states. The different examples
reviewed in this section are summarised in Table 1.

Table 1. Comparison betwen model discharge modes and physiological and pathological states
in several excitable cells endowed with IP conductances. See details in the text. References: (1)
Cannon and Corey, 1993; (2) Cannon ef al., 1993; (3) Hounsgaard ef al., 1984; (4) Nielsen and
Hultborn, 1993; (5) Connors ef af., 1982; (6) Tunnicliff, 1996; (7)Delord ef al., 1997; (8) Yang
and Seamans, 1996, (9) Laven and Grace, 1998; (10) Cowan and Wilson, 1994.

Discharge mode Basic Spiking Pacemaker Plateau
bistability bistability
Attractors Resting Resting solution Limit cycle Resting
solution and limit cycle and plateau
solutions |
Muscular cells |— Normal (1) Myotonia (2) / Periodic
paralysis
(2)
Motoneurons / Normal (3) Spasticity (4) /
Central Normal (5) / Epilepsy (6) /
mamimal.
neurons
Frontal cortex || Schizophrenia | Normal (9, 10) / /
neurons (7.8)

Myotonia and periodic paralysis

Muscular cells normally display a resting potential from which action potentials
can be fired by depolarisation (Cannon and Corey, 1993). However, an increased
persistent sodium conductance seems to be responsible for abnormal excitability in
myotonia and periodic paralysis (Cannon et af,, 1993). In myotonia, once excited
above threshold, the celt enters a self-sustained spiking mode that is responsible for
maintained muscular contractions that characterise this disease. In periodic paralysis,
depolarisation switches the muscular cell from the resting potential to a plateau
potential, which precludes spiking (through inactivation of the fast sodium




248 DELORD

conductance) and muscular contraction (Cannon and Corey, 1993). In the present
model, the 'basic’ mode reproduces normal excitability of muscular cells while
abnormal forms of excitability occurring in myetonia and periodic paralysis are well
described by 'spiking bistability’ and 'plateau bistability' modes, respectively.

Spasticity

In mammalian spinal motoneurons, excitability is governed by a low-threshold
persistent calcium conductance. The functional firing behaviour is a bistability
between resting potential and self-sustained spiking (Hounsgaard et a/., 1984). In
spasticity, patients display stretch reflexes that probably derive from an increased
excitability in motoneurons (Nielsen and Hultborn, 1993). During spasticity, the firing
of neurones is supposed to last longer than under normal circumstances {i.e. when
following bistable patterns). We suggest that during spasticity, an upward regulation
of persistent calcium channels could switch motoneurons from ‘'spiking bistability' to
the 'pacemaker’ mode of discharge displayed in the present model.

Epilepsy

Cortical pyramidal neurones normally fire spikes or bursts of spikes by
depolarisation from resting potential (Connors er al., 1982). During epileptic crises,
pyramidal neurones enter a state of high excitability and fire spontaneously at high
frequency. In vitro, the nen-inactivating sodium conductance of cortical neurones is a
primary target of widely used antiepileptic drugs, such as phenytoin (Tunnicliff,
1996). Moreover, it can be responsible for pacemaker activity in entorhinal cortical
neurcnes (Dickson et al., 1997). According to our model, an up-regulated sodium
conductance driving neurones from the 'basic' to the 'pacemaker' mode of firing could
take part to the cortical paroxystic activity encountered during epileptic crises.

Schizophrenia

Negative symptoms and working memory deficits in schizophrenia have been
related to a dysfunction of frontal cortex (Goldman-Rakic and Selemon, 1997) that is
probably linked to decreased dopamine stimulation of this structure (Okubo et al,,
1997). In vivo, frontal neurones display bistability between resting potential and
spiking (Lavin and Grace, 1998; Cowan and Wilson, 1994) which has been suggested
and to participate to sustained activities related to working memory (Guigon ez al.,
1995; Camperi and Wang, 1998). This bistability is probably subserved by a persistent
sodium conductance (Yang er al., 1996; Delord er al., 1997) that is up regulated by
dopamine (Yang and Seamans, 1996). Decreased dopamine stimulation in
schizophrenia may thus diminish persistent sodium conductances in frontal neurones,
resulting in a loss of spiking bistability. In turn, such a change in firing behavicur in
some frontal neurones could induce disorganised temporal patterns of activity
responsible for working memory deficits in schizophrenia. In the present model, the
'spiking bistability' and 'basic' modes would, therefore, represent the functional and
dysfunctional forms of excitability of certain frontal neurones in the case of
schizophrenia.
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4. DISCUSSION

The model studied in this article illustrates distinct modes of excitability that can
arise from the presence of a generic persistent inward conductance in an excitable cell.
Although many factors are not taken into account (e.g. interacting conductances and
spatial dimension), this simple model is capable of reproducing typical features of
physiological and pathological cellular excitability. In this section, we first examine
some specific aspects of bifurcation in the reduced model. We then discuss the way
physiological and pathological states can be described theoretically, in the case of
excitable cells, as well as more generally.

As already observed in a higher-dimensional model endowed with an IP
conductance (Delord et al, 1997), the present model of excitable cell can display a
bistable mode of discharge between resting potential and self-sustained spiking
{(spiking bistability). The corresponding limit cycle appears at a homoclinic bifurcation
at regular saddle, i.e. oscillations arise aside the resting potential, with zero frequency
and non-null amplitude (full spikes). This behaviour can be classified as type I
excitability according to experimental and theoretical criterions (Arvanitaki, 1939;
Hodgkin, 1948; Wang and Rinzel, 1995). Spiking bistability of type I has been shown
in the Morris-Lecar model, when the recovery variable time constant is decreased
(Rinzel and Ermentrout, 1989), and in the FitzHugh-Nagumo model, with increased
extracellular K* and injection of a constant hyperpolarising current (Rinzel, 1985).
Spiking bistability was also observed in type II excitability, where oscillations appear
through subcritical Andronov-Hopf bifurcations (Wang and Rinzel, 1995), as it is the
case in the Hodgkin-Huxley model {Rinzel, 1990). In the present model, spiking
bistability displays two interesting features: (1) it appears at physiological density
(French er al., 1990) of a widely distributed generic type of conductance for a large
domain of the (g, !} plane, rather than from particular parameter tuning (as in

homoclinic bifurcations cited above); (2) contrary to type II (Hopf bifurcation) spiking
bistability, resting potential and self-sustained spiking lie in disjoined potential ranges.
In principle, this should allow for a more robust segregation of the two regimes under
physiological noisy inputs, which might be important in a functional perspective
(Conway ef al., 1988; Wang and Ross, 1990).

As emphasised in Section 3, the qualitative behaviours displayed in the present
model can be compared to experimentally described physiological and pathological
forms of excitability in several excitable cells. Here, attractors allow for a qualitative
description of these states. However, they are not necessarily described by single
attractors, but can correspond to sets of attractors, as in the case of spiking and plateau
bistabilities. Moreover, in different cells, the same attractors or sets of attractors can
describe physiological or pathological states. Therefore, in this very simple model, the
direct identification between some particular attractors and physiological and
pathological states is not straightforward. Hence, in more complex systems (e.g. with
multiple levels of organisation), the situation might weil become definitely
ambiguous.

In the present model, physiological and pathological states are separated by
bifurcations (i.e. through changes in model parameters). Theoretically, apparition of
pathology by bifurcation can be viewed as accounting for a trauma leading to some
irreversible structural {parameter) changes in a system. However, many diseases are
reversible and display stereotyped temporal patterns in the transitions between
physiclogical and pathological states. In terms of dynamical systems, these evolutions
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correspond to trajectories in the phase-space between co-existing physiological and
pathological attractors {which is not the case in the present model). In such models,
pathology appears by (a pathogenic) perturbation in the phase-space. These models
present the advantage of possibly providing information on prophylactic and
therapeutic strategies. However, they typically require additional information, for
example constraints transforming previous bifurcation parameters into new dynamical
variables.

Finally, we would like to emphasise the importance of other theoretical concepts of
dynamic systems in the description of pathology. For example, the size of the basin of
attraction of a physiological attractor is relevant to pathology because it sets the
maximal size for perturbations that do not displace the system toward the pathological
attractor(s). Sometimes, attractors are simply not needed to describe pathology. For
example, long action potentials due to abnormal persistent sodium currents in cardiac
cells (Bennet ef af, 1995) participate in a congenital form of cardiac arrhythmia that
can lead to sudden-death. In that case, pathology comes from an abnormally slow
transitory behaviour rather than a qualitative change of the system's stability. More
generally, the time constant with which a perturbed system returns to its physiclogical
state can be important, because spending too long away from homeostatic conditions
may have pathological consequences.

In summary, the model studied in this article constitutes a good example because
attractors allow for a qualitative description of pathological states in several excitable
cells. However, a satisfactory description of pathology may require other concepts
from the theory of dynamical systems, or additional constraints, in order to obtain a
dynamic description of the relation between physiological and pathological states.
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