Incremental Evolution of Neural Controllers for Navigation in a 6-legged Robot

D. Filliat

J. Kodjabachian

J.-A. Meyer

AnimatLab / OASIS - LIP6
Paris. France.

Abstract

This paper describes how the SGOCE paradigm has
been used within the context of a ”minimal simula-
tion” strategy to evolve neural networks controlling
locomotion and obstacle-avoidance in a 6-legged robot.
Such controllers have been first evolved through sim-
ulation and then successfully downloaded on the real
robot.

1 Introduction

In two previous articles (Kodjabachian and Meyer
[5], Kodjabachian and Meyer [6]), it has been shown
how the so-called SGOCE evolutionary paradigm
could be used to generate neural networks capa-
ble of controlling the navigation of an artificial in-
sect. More specifically, developmental programs gen-
erating controllers for locomotion, obstacle-avoidance
and gradient-following have been automatically gener-
ated, thus endowing the insect with navigation abili-
ties through a simple guidance strategy (Trullier and
Meyer [10], Trullier et al. [11]). In this paper, we
show how the SGOCE paradigm has been used to gen-
erate neural controllers for locomotion and obstacle-
avoidance in a real 6-legged SECT robot manufactured
by Applied AI Systems (figure 1). Results obtained on
gradient-following will be published elsewhere. A re-
view of similar approaches involving a variety of neural
controllers and robots is available in Meyer [8].

2 The SGOCE evolutionary paradigm

The SGOCE evolutionary paradigm is character-
ized by an encoding scheme, by an evolutionary algo-
rithm, by an incremental strategy, and by a fitness
evaluation procedure that will be sketched in turn.
More detailed descriptions can be found in Chavas et
al. [1], Filliat [2], Kodjabachian and Meyer [5], Kod-
jabachian and Meyer [6].

Figure 1: The SECT robot. It is equipped with in-
frared sensors that can be used to detect obstacles, and
with light sensors that can be used for light-following.
Each leg is controlled by two servo-motors that react
to angular-position commands, e.g., one for horizontal
moves and one for vertical moves.

2.1 Encoding scheme

The encoding scheme of SGOCE (figure 2) is a
geometry-oriented variation of Gruau’s cellular encod-
ing (Gruau [3]). The developmental programs that are
evolved have a tree-like structure and call upon de-
velopmental instructions that cause a set of precursor
cells positioned by the experimenter in a 2D metric
substrate to divide, die, or grow efferent or afferent
connections. In particular, such cells can get con-
nected to each other, or to sensory cells or motoneu-
rons that have also been positioned in the substrate.
Thus, a possibly short and compact genotype may ul-
timately produce a complex phenotype, i.e., a fully
recurrent neural network made of individual leaky-
integrator neurons and able to control the behavior
of the robot through its sensors and actuators.

2.2 Evolutionary algorithm
The evolutionary algorithm of SGOCE is a steady-

state genetic algorithm that involves a population of
well-formed developmental programs whose structure

Environment

Organism Lol
VvV
Genotype Developmental
Substrate
—————— - —mm oo oo -
| | | sensory cell |
| Gl | !
I ol
| DRAW(5102) oo !
, ‘ | , - precursor cell |
| DIVIDE(85) : | Y :
| |
| |
: DIE GROW(9,10.) | : ! I
i | | i motoneurons |
, sETTAU(S) | Mg :
o ____ o ____
RN AN
VvV VvV
GROW(.1,10,-1) GROW(.1,10,-1)
[oRAW(S109)]~<--- .. DRAW(5,102) ?
DIVIDE(8.5) O 4
DIE GROW(9.0) 1 DIE Gnowwun)
SETTAU(5) Mg SETTAU(5) @
Step 1
GROW(.1,10,-1) GROW‘(MO 1)
\ 2
DRAW(:5102) > DRAW(:5102)
DIVIDE(.B,S)V_.—""“., L D\V\DE(SS)
DY
DIE GROW(9101) L
SETTAU(S) md SETTAU(. 5)
Step3 Step4 Final phenotym

Figure 2: The developmental encoding scheme of
SGOCE.The genotype that specifies the robot’s ner-
vous system is encoded as a program whose nodes are
specific developmental instructions. This developmen-
tal program is read at a different position by each cell
in the substrate. The precursor cell first makes con-
nections with the motoneuron M0 and the sensory cell
SO (Steps 1 and 2). Then it divides, giving birth to
a new cell that gets the same connections than those
of the mother cell (Step 3). Finally, the mother cell
dies, while the daughter cell makes a connection with
the motoneuron M1 and changes the value of its time
constant (Step 4).

is constrained by a grammar provided by the experi-
menter (figure 3). The use of such a grammar makes
it possible to reduce the size of the genotypic space
explored by the algorithm and to limit the complexity
of the neural networks that are evolved.

2.3 Incremental strategy

Finally, the SGOCE paradigm resorts to an incre-
mental strategy that takes advantage of the geomet-
rical nature of the developmental process. In particu-
lar, it makes it possible to automatically generate ap-
propriate controllers and behaviors through successive
stages, in which good solutions to a simpler version of
a given problem are iteratively used to seed the initial

Terminal symbols

DIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,
NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.
Variables

Startl, Levell, Level2, Neuron, Bias, Tau, Connex, Link.
Production rules

Start] —— DIVIDE(Levell, Levell)

Levell —— DIVIDE(Level2, Level2)

Level2—— DIVIDE(Neuron, Neuron)
Neuron——SIMULT3(Bias, Tau, Connex) | DIE
Bias—— SETBIAS | DEFBIAS

Tau——SETTAU | DEFTAU
Connex——SIMULT4(Link, Link, Link, Link)

Link—— GROW | DRAW | NOLINK

Starting symbol

Startl.

Figure 3: This grammar defines a set of developmen-
tal programs, i.e., those that can be generated from it,
starting with the Startl symbol. When this grammar
is used, a cell that executes such a program undergoes
two division cycles, yielding four daughter cells, which
can either die or modify internal parameters (e.g., time
constant or bias) that will influence their behavior
within the final neural controller. Finally, each sur-
viving cell establishes a number of connections, either
with another cell, or with the sensory cells or motoneu-
rons that have been positioned by the experimenter in
the developmental substrate. According to this gram-
mar, no more than three successive divisions can occur
and the number of connections created by any cell is
limited to four. Thus, the final number of interneurons
and connections created by a program well-formed ac-
cording to this grammar cannot be greater than 8 and
32, respectively.

population of solutions likely to solve a harder version
of the same problem.

Thus, in a first stage of the present work, the
SGOCE paradigm was used to generate a recurrent
neural network controlling straight locomotion in the
SECT robot. At the end of this stage, this network
was frozen, in the sense that the number of its neurons,
their individual parameters, and their intra-modular
connections were not allowed to evolve anymore. How-
ever, during a second evolutionary stage, an additional
recurrent neural network was evolved and its neurons
were allowed to grow, not only intra-modular connec-
tions between themselves, but also inter-modular con-
nections to neurons in the locomotion controller. This
additional controller was expected to modulate the leg
movements secured by the first controller, so as to
make it possible for the robot to turn in the presence
of an obstacle in order to avoid it.

Figure 4 describes the two substrates that have been
used to generate the two modules of the present ap-
plication.

Right IR sensor Right motors

7)

P A SSS
e -9

Module 2 w Module 1

4\¢/x 444
| N I

Left IR sensor Left motors

@ Motoneuron @ Precursor cell O Sensory cell

Figure 4: The substrates and the modular approach
that have been used in the present work. Module 1
produces straight walking, while Module 2 modifies
the behavior of Module 1 in order to avoid obstacles.

2.4 Fitness evaluation

Fitness evaluation is one of the main difficulties of
the evolutionary design of controllers in real robots
(Meyer et al. [9], Mataric and Cliff [7]). Such difficul-
ties are enhanced in the case of legged robots, because
they tend to be more brittle than their wheeled coun-
terparts, and because fitness evaluations require a lot
of time and cannot be easily automated. We there-
fore chose to use simulations to assess the fitness of
our controllers, taking advantage of an argument put
forth by Jakobi (Jakobi [4]), namely that what really
matters is to accurately simulate the efficient behav-
iors that will be used by the real robot. Less efficient
behaviors, which an efficient robot won’t exhibit in re-
ality, do not need to be minutely simulated, as long as
we are sure that their fitnesses will be lower than the
fitnesses of the behaviors that are sought. Pushing
such reasoning to the extreme, Jakobi evolved neu-
ral controllers for an octopod robot capable of walk-
ing, of avoiding obstacles using its infra-red sensors,
and backing away from objects that were hit with its
bumpers. Jakobi’s approach didn’t resort to any sim-
ulation of the robot’s behavior in its environment, and
only relied on the specification that legs on the floor
should move backwards as fast as possible, and that
legs in the air should move forward as fast as possi-
ble. Given such specification, the simulation only re-
warded controllers that did generate these movements.
However, despite the practical success of Jakobi’s ap-
proach, our aim was to provide less constraints on the
target behavior. Therefore, we only specified that the
robot should go ahead as far as possible while avoiding
obstacles, and we didn’t provide any hints about leg
movments. To this end, we had to design a simulation
of the behavior of the robot in its environment.

As Jakobi points out, the difficulty in devising a
legged robot simulation is to manage the cases when
some leg slippage occurs. However, because such
events are only involved in poorly efficient behaviors,
they are not expected to occur with a fast-walking
gait. As a consequence, controllers producing leg slip-
page will never be used by an efficient real robot, and
therefore leg slippage does not need to be accurately
simulated, thus tremendously simplifying the simula-
tion problem.

According to such considerations, our simulation
assumed that all the legs were characterized by the
same constant slippage factor, and simply calculated
the movement of the robot body that minimized the
slippage of any leg touching the floor between two time
steps. As a consequence, if the real movement did not
involve any slippage, the calculated movement was ex-
act and, conversely, if the real movement did involve
slippage, the calculated movement was a good approx-
imation of the real one. This computation entailed the
zeroing of the partial derivatives, with respect to trans-
lation and rotation, of the sum of the squared distances
covered by each leg touching the floor. Technically, it
only required a linear system inversion, which could
be performed very efficiently (Filliat [2])

;@ﬂ

Developmental Program Xi l

/ Xi\) 07

Fitness Evaluation Behavior

Neural Controller

Figure 5: The three stages of the fitness evaluation
procedure. An evolved developmental program is exe-
cuted to yield an artificial neural network. Then, the
neural network is used to control the behavior of a
simulated robot. Finally, the fitness of the program is
assessed according to the result of the simulation.

Such simulations have been used to assess the fit-
ness of each developmental program produced by the
evolutionary process (figure 5). Once an efficient con-

troller was thus obtained, it was downloaded on the
SECT robot, where its ability to generate the target
behaviors in reality was assessed again.

3 Experimental results
3.1 Locomotion

The 2D substrate that was used in this experiment
is the Module 1 shown in figure 4. It contained 12
motoneurons that were connected to the 12 motors
of the robot, in the sense that the activity level of a
given motoneuron determined the target angular po-
sition that was sent to the corresponding servo-motor.
The six precursor cells executed the same evolved de-
velopmental program in order to impose symmetri-
cal constraints to the growing neural network. The
corresponding fitness was the distance covered in an
obstacle-free environment during a fixed amount of
time, increased by a slight bonus encouraging any leg
motion (Kodjabachian and Meyer [5], Kodjabachian
and Meyer [6]). Finally, the size of the population was
of 100 individuals that evolved during 500 generations
(taking 24 hours on a SUN Ultra 1).

V NSNS TSNS

w | AWAWAYAYAWANEA
we | v\ VEAVEVYEvYE
we | AVEAVERVERVERVERY,
ot L ERYawAYAYaAYavws

| VAWAVAVANVAWAN

Simulated robot.

o [T Y TN N N Y
! RN \/ NSNS N

AVERWAWAWAWAWA
| A //_\\ /ﬂ\ /ﬁ\ //ﬁ\\ [
AVEVAVIRVARVERY
Legs N /\ /h\ /7\\ //7\\ /'ﬁ\\ //7
N ERVAVAYAYAYA

J / /

Real robot.

Figure 6: Comparison of leg movments in the sim-
ulated and the real robot. Both graphs show com-
mands sent to leg swing motors. Althought the con-
troller’s outputs might have been altered by the pro-
cedure preventing over currents in the real robot, the
commands actually sent to the motors, and hence the
robot’s overall behaviors, are qualitatively the same in
simulation and in reality.

All the evolved controllers could be classified into

two categories: those generating tripod gaits and those
generating symmetrical gaits (i.e., moving the corre-
sponding legs on both sides of the robot simultane-
ously). Such controllers were as efficient in reality as
they were in simulation (figure 6). The main differ-
ences between both situations were due to the fact
that, on the real robot, a continuous monitoring of
the motor currents might entail modifying the motor
commands independently of the neural network when
such current were too high. This security procedure,
which was implemented to avoid motor breaks in leg-
blocking situations, was triggered in a few occasions
when symmetric gaits were used, because such gaits
occasionally provoked jumps producing very high mo-
tor currents.

Lags
ruing

T [

Figure 7: An example of an evolved controller. Black
neurons belongs to the module controlling locomotion,
gray neurons belong to the module controlling obsta-
cle avoidance. The first controller contains 48 neurons
and 82 connections; the second one contains 14 neu-
rons and 36 connections.

Figure 7 shows the best tripod-gait controller that
has been obtained. We analyzed its behavior in or-
der to understand how this gait was generated. The
mechanism responsible for leg lift is straightforward.
It calls upon 6 pattern generators, one for each leg,
made up of only 3 neurons. These pattern generators
are synchronized by two connections between the legs
of the same side of the body, and by two connections
linking 2 symmetric legs on each side of the body. The

mechanism producing leg swing is far more intricate.
In fact, the activation of a given leg’s swing neuron
depends on neurons involved in the control of all the
other legs, and it cannot be decomposed in six similar
units as is the case for the lift neurons.

3.2 Obstacle-avoidance

Obstacle-avoidance was sought using a second mod-
ule whose neurons could be connected to those of the
tripod-gait controller of figure 7. The substrate of this
second module is shown on figure 4. It contained two
input neurons linked to the IR sensors of the robot,
and six precursor cells as in the first module. These
six cells have forced connections to the input neurons.
Each IR sensor was binary, i.e., it returned 0 when it
detected no obstacle, and it returned 1 when an ob-
stacle was detected within a 30 cm-range. The robot
evolved in a closed environment containing some ob-
stacles (figure 8). Instead of specifying what leg mov-
ments should be favored in each possible sensory cir-
cumstance, as Jakobi [4] did, the fitness was the dis-
tance covered by the robot until it touched an obstacle
or until the simulation time was over. The population
was made of 100 individuals and evolution lasted 200
generations.

Figure 8: Examples of the behavior of the simulated
robot in different environments.

As shown in figure 9, the robot’s simulated and
actual behaviors were very similar and quite simple:
legs on the opposite side of a detected obstacle were
blocked, thus causing the robot to change its direc-
tion and to avoid the obstacle. Analyzing the inner
workings of the corresponding controller (figure 7), it
turned out that such behavior was possible due to a
strong inhibitory connection between a given sensor
and the swing neurons of the legs on the opposite side
of the robot.

S AYAY A S VA VAVAY
o r\ /f*\ //—\\ [/F\\ I\ /_\\ [
,w}/ NS\ MERVERYRYaY
S VARVARVARVARVERV S VARVAR VAN
AVAVAVAVAVAVAVAVA!
AV AYAVYAYAYAYAYAYS

= ANV

Simulated robot.

~ ~ ~
_J \ \ /F\\ / \\ /

N AN

U /

[\ NEVAYAV

2 / N
L3 T// —\ %\\‘ /b\ o /ﬁ\\ /—\/’k\d/—
YAV AYAY Y AYAYAYE

Lags /m\\ ﬁ ‘\ /—\\ /h\n /ﬁ\\‘ F\ ’j\ /h\\ ﬁ

Rt R [} f
) |

Real robot.

Figure 9: Leg swings in the simulated and the real
robot during obstacle avoidance. When an obstacle
is detected at the right (Right IR) of the robot, the
three legs on its left (Leg0, Legl, Leg2) are temporarily
blocked.

4 Discussion

Results that have been shown here demonstrate
that the "mimimal simulation” methodology advo-
cated by Jakobi (Jakobi [4]) may be effectively used
to evolve non trivial behaviors in a real robot. How-
ever, our implementation of this methodology makes
it possible to avoid specifying as many details about
the dynamics of each effector involved in the produc-
tion of the sought behavior as Jakobi was commit-
ted to do. Actually, we succeeded to evolve locomo-
tion and obstacle-avoidance in a legged robot simply
rewarding movement and punishing obstacle-hitting,
and such high-level specification is more in the spirit
of the automatic generation of behavioral controllers
that evolutionary approaches afford than Jakobi’s so-
lution is. Nevertheless, it must be emphasized that
a cost is associated to such a benefit, namely that
of entailing a more detailed simulation than that of
Jakobi. In other words, what is gained at the level of
the simulation, may be lost at the level of the fitness
evaluation and, for obvious lack of hindsight reasons,
it is definitely unclear where it is worth devoting more
resources in order to evolve any given behavior on a
real robot.

Results that have been shown here also demon-
strate the effectiveness of the SGOCE evolutionary
paradigm. Its potentialities to evolve guidance nav-
igation capacities in a simulated insect have already
been exemplified elsewhere (Kodjabachian and Meyer
[5], Kodjabachian and Meyer [6]). In the present work
such potentialities have been extended to a real robot,
although evolving a light-following behavior is still
a matter of current research. For the same lack of
hindsight reasons as above, it is however still unclear
whether each aspect of this paradigm is mandatory,
useful, or without any effect at all. One may wonder,
for instance, if another evolutionary procedure than a
genetic algorithm wouldn’t lead to better results, if the
developmental instructions or the constraining gram-
mars that have been used here might not have been
replaced by others, and if freezing one controller and
letting a second one evolve is a better strategy than
evolving both controllers at the same time. Concern-
ing the latter point, however, it has been shown on a
specific application involving obstacle-avoidance in a
Khepera robot that this was not the case (Chavas et
al. [1]) but, again, any generalization to other behav-
iors and other robots would be definitely premature.

5 Conclusions

Assuming that an on-board evolution of neural con-
trollers wouldn’t have been feasible on a SECT robot
because of the excessively high demands that would
have been placed on its motors, we called upon a ”min-
imal simulation” approach and upon the SGOCE evo-
lutionary paradigm to evolve tripod-gait locomotion
and obstacle-avoidance. Successful neural controllers
have been obtained, both in simulation and in reality,
and their inner workings have been deciphered. How-
ever, it is yet unclear whether every implementation
detail that has been used here was mandatory to the
present success, nor whether it would be useful in any
other application.

Acknowledgements
The authors express their gratitude to Dr. Takashi

Gomi and to Applied AI Systems for having kindly
lent us the SECT robot.

References

[1] Chavas, J., Corne, C., Horvai, P., Kodjabachian,
J. and Meyer, J.A. ”Incremental Evolution of Neu-

ral Controllers for Robust Obstacle-Avoidance in
Khepera.” In Husbands, P. and Meyer, J.A. (Eds.).
Proceedings of The First European Workshop on
Evolutionary Robotics - FEvoRobot’98, Springer
Verlag, 1998.

[2] Filliat, D. ”Evolution de réseaux de neurones pour
le contréle d’un robot hexapode.” Lip6 Technical
Report, 1998.

[3] Gruau, F.” Automatic definition of modular neural
networks.”, Adaptive Behavior, 3, 1994.

[4] Jakobi, N. ”Running across the reality gap : octo-
pod locomotion evolved in minimal simulation.” In
Husbands, P. and Meyer, J.A. (Eds.). Proceedings
of The First European Workshop on Evolutionary
Robotics - EvoRobot’98, Springer Verlag, 1998.

[5] Kodjabachian, J. and Meyer, J.A. ”Evolution and
Development of Modular Control Architectures for
1-D Locomotion in Six-legged Animats.” Connec-
tion Science, 10, 1998.

[6] Kodjabachian, J. and Meyer, J.A. ”Evolution and
Development, of Neural Controllers for Locomo-
tion, Gradient-Following, and Obstacle-Avoidance
in Artificial Insects.” IEEE Transactions on Neu-
ral Networks, 9:5, 1998.

[7] Mataric, M. and Cliff, D. ”Challenges in evolving
controllers for physical robots.”, Robotics and Au-
tonomous Systems, 19(1) , 1996.

[8] Meyer, J.A. ”Evolutionary approaches to neural
control in mobile robots.” In Proceedings of the
IEEE International Conference on Systems, and
Cybernetics, San Diego, 1998.

[9] Meyer, J.A., Husbands, P. and Harvey, I. ”Evolu-
tionary Robotics: a Survey of Applications and
Problems.” In Husbands, P. and Meyer, J.A.
(Eds.).Proceedings of The First Furopean Work-
shop on FEvolutionary Robotics - EvoRobot’98,
Springer Verlag, 1998.

[10] Trullier, O. and Meyer, J.A. ”Biomimetic Naviga-
tion Models and Strategies in Animats.” AI Com-
munications, 10, 1997.

[11] Trullier, O., Wiener, S., Berthoz, A. and Meyer,
J.A. ”Biologically- based artificial navigation sys-
tems: Review and Prospects.” Progress in Neuro-
biology, 51, 1997.

