
From SAB94 to SAB2000: What's New, Animat?Agn�es Guillot Jean-Arady MeyerAnimatLab-LIP68, rue du apitaine Sott75015 Paris, Franefagnes.guillot, jean-arady.meyerg�lip6.frAbstratThis paper is omplementary to a previous re-view of signi�ant researh on adaptive behav-ior in animats. It summarizes the urrent state-of-the art and outlines diretions for possibleprogress.1. IntrodutionIn the proeedings of SAB94, we published a reviewof signi�ant researh on adaptive behavior in animatssine the �rst SAB onferene, held in 1990 (MEYE94).This review summarized the state-of-the art, insofar asthe proeedings of three dediated onferenes ould helpdelineate it. Now that three other SAB onferenes havebeen held, we onsidered that it would be useful to up-date that earlier review, in order to assess the orre-sponding progress, to infer the diretions in whih in-teresting developments are likely to be expeted, and tostress needs for spei� additional researh e�orts.As in the preeding review, this one makes refereneonly to SAB onferene proeedings (SAB96, SAB98,SAB00), on the premise that this perspetive, althoughvoluntarily limited, does nevertheless a�ord a ompre-hensive view of the �eld of adaptive behavior in animats.It will �rst lassify the main results that have been ob-tained sine 1994 aording to the general organizationof the urrent book, an organization that seems to havealmost onverged in the ourse of six onferenes. Thenit will outline possible diretions for future work.2. Pereption and motor ontrolSine SAB94, new sensory modalities have been inor-porated into models of sensori-motor oordination andhave been oasionally used for atual robot ontrol.For instane, biomimeti models for odor-guided move-ments (BELA96, MALA96) have been desribed, someof whih have been implemented on a Lego robot thatdetets alohol (SHAR98), or on a robot-lobster thatmay use the temporal pattern of odors produed by tur-bulent dispersal proesses to loate a distal food soure(GRAS96). Likewise, a biomimeti model for phono-taxis has been desribed and implemented on a riket-

robot (WEBB96), while a biomimeti model of sounddi�ration and reetions in the human onha has beenapplied to bat pinna design for eholoating animals(CARM00). In CHAP00, a biologially-inspired windsensor is mounted on a Khepera robot to perform a re-ative maze solving task.Vision has been extensively studied in this perspe-tive and many researh e�orts have dealt with visio-motor oordination. For instane, a biomimeti model ofdepth pereption using peering in insets has been imple-mented on a Khepera robot (LEWI98). Visual loominghas been implemented on a Pioneer robot as a robust andinexpensive range sensor to be used as a omplement toa sonar (SAHI98; see also NEVE96 and DAHM98). Asystem for maze navigation using optial ow has beendemonstrated on a simulated robot (DUCH96). A sim-ple vision system has been used to modulate the type ofgait and the diretion of motion produed by a loomo-tor iruit in a simulated salamander, thereby onferringthe apaity to trak a randomly moving target both inwater and on dry land (IJSP00). Likewise, spei� on-tributions have dealt with ourse stabilization and �xa-tion behavior in ies (HUBE98), as well as with adaptiveimage stabilization, visually-guided pointing and orien-tation behavior in Cog and other robots with movingeyes (FERR96, MARJ96, PANE00).Motor ontrol for motion has also been extensivelystudied. For instane, Yokoi et al. designed a so-alledMorpho-Funtional Mahine, i.e., a deformable robotthat exhibits an amoeba-like motion (YOKO98). Like-wise, Kawai and Hara desribe a mahine that hangesits morphology in order to arry an objet toward agoal while passing through a narrow orridor (KAWA98).Walking ontrollers for four-legged robots are desribedin ILG98 and ITO98. Walking ontrollers for simu-lated six-legged insets are desribed in CRUS96. Moregenerally, a mathematial framework that helps designnetworks of neural osillators apable of ontrolling therhythmi motion of an animat is given in ARSE00.In ZIEM96 and ZIEM00, several reurrent onnetion-ist ontrol arhitetures likely to make possible eÆientoupling between sensory inputs and motor outputs aredesribed. The latter work introdues the distintion be-



tween synhronially and diahronially strutured on-trol mehanisms, and desribes how an animat an a-tively and seletively deide when to use feedbak to re-vise its sensorimotor mapping. Aording to the author,this mehanism allows the animat to exibly assign vary-ing meanings to environmental stimuli.Finally, two spei� aspets of the pereption-ationoordination problem are dealt with in SCHE96 andWILS00. Sheier and Lambrinos desribe how atego-rization must be treated as a sensori-motor oordinationproblem, not as a pereptual one. Their system learnsto reognize an objet with visual and hapti modali-ties and to disriminate it from other objets (SCHE96).Wilson and Neal, using a model of interations betweena shepherd, his dog and a sheep, study how the behav-ior repertoire of the dog robot impats on the numberof interations required from the shepherd to ontrol thesheep (WILS00).3. Ation seletion and behavioral se-quenesSeveral researh e�orts ontributed to delineating themethodologial issues underlying the ation-seletionproblem and the design of motivational systems. For in-stane, Spier and MFarland use a biologially-inspiredmotivational system to demonstrate that tradeo� be-tween opportunities in response to the environment isoften suÆient for generating behavioral sequenes thatan external observer might attribute to an underlyingplanning proess (SPIE96). Aube and Senteni suggestthat emotions are motivations that ensure managementand regulation of ressoures (AUBE96). Steinhage andBergener demonstrate how ation seletion an be imple-mented in a dynamial system as the result of nonlinearphase transitions (STEI98). Lastly, Seth desribes howation seletion and seletive attention an be exhibitedby a simple animat with diret sensori-motor links, thushallenging the onepts of ation, attention, and sele-tion (SETH98).Various arhitetures for ation seletion have beenompared within the ontext of reinforement learning(HUMP96) or from the point of view of hierarhialversus parallel organizations (BRYS00). In GONZ00,a biomimeti basal ganglia model of ation seletionhas been embedded within the ontrol arhiteture ofa Khepera robot, and shown to exhibit nie propertiesof lean swithing, lak of distortion and persistene. Inpartiular, interesting similarities to what is observedon animals have been obtained through the e�ets on arobot model of varying simulated dopamine levels. InCHAO00, Chao, Panangadan and Dyer desribe a on-netionist arhiteture that enables animats to navigateeÆiently and learn to build spei�ed strutures withinan arti�ial environment. This approah alls upon anexternal teaher to learn an ation-seletion arhiteture

that mediates between reative and planning behaviors,a problem also takled in REVE98.Witkowski (WITK00) desribes the role extintionmehanisms play in the ontext of ation seletion. Suhextintion mehanisms ontribute to the protetion ofthe animat against the potentially fatal onsequenesof unattainable high-priority goal-driven ativities. HisDynami Expetany Model is one of the ontempo-rary learning ation seletion models that are based onexpliit use of predition to drive the learning proess(TANI98, STOL00).4. Internal world models for navigationSimple internal world models are elaborated by animatsthat are able to ategorize their environment when mov-ing through it. This is exempli�ed by the work of Mars-land et al. (MARS00) in whih a novelty �lter usinga model of habituation allows a robot operating in anunstrutured environment to produe a self-organizedmodel of its surroundings, and to detet deviations fromthe learned model. Likewise, various systems for self-ategorization of sensori-motor patterns an be found inBERT98, SCHE98, TANI98 and LINA00. In the lat-ter ase, the tehnique failitates the understanding ofthe onepts abstrated from the animat's sensori-motorow, and an be used for automati map-building.Another extremely simple internal model of the en-vironment is desribed in PIAG00, where the border-line between behavior-based and representation-basednavigation is investigated. This approah alls upon aminimal internal representation to solve loal navigationproblems indued by loal minima in arti�ial poten-tial �elds. Likewise, in CORB96, an analogous potential�eld approah is desribed, where a biomimeti model ofdetour behavior in frogs alls upon generalized shema-based learning. An arhiteture that ombines fuzzy andreative tehniques for obstale-avoidane is desribed inGHAN96, where two oupled mobile robots have to movein an environment with obstales.Other internal models have been used in severalbiomimeti approahes to animal homing behavior. InDICK96, alternative modeling approahes to how in-sets learn about the sun's ourse are desribed. InNEHM00, a numerial simulation of Kramer's "Map andCompass" model of long-range pigeon navigation is per-formed. This model postulates that pigeons use natu-rally ourring gradients to determine the ourse to theloft, and ompass senses (sun and magneti) to establishand maintain this diretion. Likewise, to simulate hom-ing behavior in desert ants, Moller et al. implemented ona mobile robot a path-integration system using a polar-ized light ompass, in onjuntion with a visual pilotingsystem (MOLL98). In KIM00, a irular neuron ellstruture, in whih eah neuron aumulates distanetraveled in a partiular diretion, is suggested as a suit-



able omputational struture for �nding a proper homingvetor.The way rodents enode spatial representationsof their environment has been exploited in severallandmark-based navigation models. This is shown forinstane in GAUS98 and in TRUL98. In ARLE00, twobiomimeti models of the operation of head-diretionells and plae-ells are ombined and implemented ina Khepera robot for navigation. In FILL00, suh abiomimeti approah is ombined with a traditionalPOMDP (Partially Observable Markovian Deision Pro-ess) model that implements an ative pereption meh-anism for map learning and reliable loalization in a sim-ulated robot. Another engineering model of landmark-based navigation is given in OWEN98, whereas DONN96desribes how an animat that doesn't use vision to at-egorize landmarks, but alls on proprioeption only, isnevertheless apable of building a ognitive map of itsenvironment and of using it to aurately position itself.These navigation models ould bene�t from the workof Balkenius and Mor�en, who demonstrate that a stableontext representation an be learned from a dynamisequene of attentional shifts between various stimuli inthe environment. Suh a system an be used for noveltydetetion and, more spei�ally, an be used in modelswhere plae-ell �ring must be assoiated with spei�landmarks (BALK00). Likewise, interesting suggestionsare to be found in TOOM98, where a biomimeti modelof landmark learning in gerbils is used to demonstratethat omplex spatial navigation behavior does not needto be prediated on omplex and navigation spei� om-putations. Other interesting suggestions are also to befound in WIER98, where a method for olleting usefulexperienes through exploration in stohasti environ-ments is desribed (see also WILS96). Finally, an hy-brid model that learns ontinuously from ongoing expe-riene without preonstruted data-sets and that learnsboth proedural knowledge - through Q-learning - anddelarative knowledge - through propositional rules - isdesribed in SUN98. This model is implemented on asimulated robot required to navigate towards a targetthrough a mine�eld.5. LearningConditioning is a variety of impliit learning in animalsthat improves their pereptual or motor skills by repe-tition, without alling on awareness or higher ognitiveproesses. Classial onditioning allows an animal toreognize ues for biologially signi�ant events, whileoperant onditioning allows to hange its voluntary be-havior aording to the outome of its ations.A wide variety of models implement suh abilities inanimats. For instane, models of lassial onditioningare desribed in SALO98, BALK98 and HALL00. Amodel of operant onditioning has been used by Touret-

zky and Saksida (TOUR96) to implement haining a-paities in a robot, aording to whih omplex be-havioral routines are built up from smaller ation seg-ments, the response of the �rst one being the stimulusfor the next. Stolzmann et al. (STOL00) desribe an-other model of operant onditioning based upon Ho�-mann's learning theory of antiipatory behavioral on-trol. This model reprodues some of the experimentalresults that have been obtained on rats in a Skinner box:It is notably apable of distinguishing between di�erentreation-e�et relations and of relating them to di�erentstimuli. Lastly, models that ombine lassial and oper-ant onditioning are to be found in BALK96, GAUD96and BLUM96. The latter ase demonstrates how a vir-tual dog an aquire new behaviors like taste aversion,outome devaluation, habit formation, and superstitiousbehavior.In the �eld of reinforement learning, improvementsto the traditional Q-learning algorithm have beendemonstrated in ARAU96, DIGN96, DIGN98, MINA98,MORE98, NAKA98, IIJI00 and MOTO00. Several re-searh e�orts have been devoted to non-Markovian prob-lems: ARAU96, MCCA96, SUNa00, SUNb00. A uni�edapproah to pereptual aliasing is presented by Lanzi(LANZ00) who introdues the so-alled "on the payo�s"aliasing problem and suggests that, to ahieve properperformane, an animat does not need to learn the wholemapping sheme from pereption-ation pairs to payo�s.To this end, non-tabular reinforement learning shemes(e.g., LCS) may be more e�etive than tabular teh-niques inspired from Dynami Programming (e.g., Q-learning). An alternative to the usual state-ation eval-uation approah to reinforement learning is suggestedby Porta and Celaya in the ase of ategorizable envi-ronments, i.e., environments where the e�ets of a givenation an be foreseen through a limited number of theanimat's sensors. Here, the problem is to determine therelevane of the sensors with respet to eah ation andto the orresponding reward. The orresponding paper(PORT00) desribes an appliation to step oordinationin a simulated 6-legged robot walking either in at andrough terrain.Learning by being taught or by imitation has also re-eived speial emphasis, notably in RAO96, ANDR00and COLL00. In CRAB00, it is shown how observationand imitation of a teaher an be used by a learningagent to satisfy a sequene of goals. Learning of goalsequenes di�ers from usual ation-learning in that theorder of individual ations is left open, but the order ofthe goals that these ations ahieve is �xed. This ap-proah is applied to animats that an perform onstru-tion tasks while maintaining their survival in a omplexand hazardous environment.Finally, several artiles investigate how emotionsmight be involved in learning, inluding WRIG96,



GADA98 and MORE00.6. EvolutionWhile Lerena and Courant explored the relationships be-tween sexual seletion and natural seletion in LERE98and LERE00, mehanisms for arti�ial seletion havebeen studied and put to work in a large number ofappliations. It thus has been possible to evolve an-imats that play hokey (BLAI98), that explore theirenvironment (SMIT96), forage for food (BENN96) orollet garbage (CALA98), that visually trak tar-gets (JAKO98, KORT00) or disriminate landmarks(NOLF00), or that are apable of swithing from swim-ming to walking (IJSP98). Likewise, the feasibility ofevolving both the morphology and the ontrol of ani-mats has been investigated in VENT96, KIKU98 andBONG00.To demonstrate the apaity of evolutionary ap-proahes to generate more than mere reexive behaviors,Beer and olleagues evolved a series of neural ontrollersthat exhibit "minimally ognitive behaviors", i.e., thesimplest behaviors that raise issues of genuine ognitiveinterest. In BEER96, animats are evolved for orienta-tion and reahing objets, as well as for disriminationbetween objets (see also BIRO98). In SLOC00, ani-mats are evolved that an judge the passability of open-ings relative to their own body size, that an distinguishbetween visible parts of themselves and other objetsin their environment, that an predit and rememberthe future loation of objets in order to ath themblind, and that an swith their attention between mul-tiple distal objets. Very often, suh funtionalities relyon mehanisms for ative sanning and sensory-motoroordination.In nature, evolution onurs with development andlearning in animal adaptation, and one main objetiveof animat researh is to understand the orrespondingsynergies. In this perspetive, relationships between evo-lution and learning have been investigated in FLOR96and MAYL96. In DIPA00, rules of plasti hange atsynapti level within neural ontrollers are genetiallyenoded. Robots are evolved to perform phototaxis andto reover after the inversion of their visual �eld andother disruptions. Likewise, interations between devel-opment and evolution have been investigated in EGGE96and DELL96.Mehanisms of o-evolution have been extensivelystudied through a variety of pursuit-evasion games, asin CLIF96, WAHD98, FICI98, FLOR98. The latter twopapers desribe Red-Queen e�ets that prevent regular�tness inrease, aording to whih o-evolution is notautomatially better than simple evolution. In FUNE98and FUNE00 a statistial method is proposed that servesto evaluate the �tness of eah individual in suh o-evolutionary experiments.

Another methodologial ontribution is that of Jakobi,whose "minimal simulation" approah is designed to helptransfer to the real world ontrollers or morphologiesthat have been evolved in simulation (JAKO98).It may likewise be instrutive to refer to ZAER96 fora ase-study where arti�ial evolution failed to produeontrollers analogous to those hand-rafted by humans,for reasons that the authors think are rooted in the dif-�ulties of formulating an e�etive evaluation funtion.7. Colletive behaviorsSeveral olletivities of animats have been involved in re-searh e�orts that dealt with foraging or related behav-iors. In this ontext, the mandatory tradeo� betweenexploration and exploitation is investigated in BONA96,while DEB096 and SETH00 deal with optimal forag-ing theory. In WERG96, it is shown how robots withloal sensing and ation form a system that dynami-ally and globally adapts to environmental hanges. Thisroboti system, inspired from the natural phenomenonof ant pheromone trail formation, enodes informationin its physial environment in order to redue sensing,atuation, and omputational requirements for gather-ing metal puks. In FONT96, a territorial priniple thatimplements a division of labor into exlusive spatial ar-eas is used for the same task. In MELH98 a olletivesorting and segregation task is performed by a system ofsimple homogeneous autonomous robots whih have noapaities for spatial orientation or memory. Finally, therole of soial development in the evolution of ooperationhas been explored by Di Paolo (DIPA98), who suggeststhat the role played by natural seletion be reonsideredas the main explanatory fator in the determinants ofsoial behaviors.The way signaling �ghting ability an help solve on-its has been explored in several ontexts. For instane,Noble desribes an evolutionary simulation that hal-lenges Enquist's assumption that weak animals will sig-nal their �ghting ability honestly beause they have somuh to lose by bluÆng (NOBL00). Likewise, Vaughanet al. implement stylized �ghting behavior in a olle-tivity of robots to solve spatial interferene problems. Inase of spae onit between two robots, these robotsompare their apparent levels of aggression and the moreaggressive robot takes preedene over the less aggres-sive one (VAUG00). A related work is that of Hemelrijk(HEME96), who studies dominane interations, spatialdynamis and emergent reiproity in a virtual world.Another related work is that of Noble (NOBL98), whodesribes intention movements and the evolution of sig-naling in animal ontests.Other varieties of ommuniation have been studiedin the SAB ontext (NOBL96, SAUN96). In partiular,Reznikova and Ryabko apply Information Theory to thestudy of ommuniation in ants and demonstrate that, in



the ommuniation system of these insets, the frequenyof use of a message orrelates with its length. The au-thors also demonstrate that the numerial ompeteneof ants alls on adding or subtrating small numbers inpreferene to large ones (REZN00).More sophistiated varieties of ommuniation are ex-plored in the "language games" initiated by Steels andhis olleagues. STEE96 fousses on emergent adaptivelexions, while STEE98 deals with the strutural ou-pling of ognitive memories. Moukas and Hayes desribehow a movement-based language, like that of bees, anbe implemented in Lego robots. In this work, a robotlearns the language elements, what they mean, and howto reprodue them, by observing a teaher robot thatperforms a "dane" indiating the presene of a parti-ular type of "food" at a partiular distane and bearing(MOUK96).Finally, several researh e�orts address multi-agentpursuit games. This is the ase with ONO96, ZHAO96and ARAI00.8. Applied adaptive behaviorThe onepts and tehniques in favor in the SAB om-munity have been used in diverse appliations, rangingfrom market trading (CLIF98), to traÆ system mod-eling (MORI98), environmental monitoring (COST98),and software agent learning (RAMA98). In DAUT00,Dautenhahn and Werry desribe how mobile robots anplay a therapeuti role in the rehabilitation of hildrenwith autism. In SKLA00, Sklar and Pollak desribe anevolutionary algorithm that is used to selet ontent forkeyboarding eduational games in a web-based learningommunity.9. ProspetsAs emphasized by Clark and Miller (CLARK98), reentresearh into animats suggests that a great deal of theiradaptive apaities are grounded, not in the systematiativity of internal representations, but in omplex inter-ations involving neural, bodily and environmental fa-tors. In his quest for understanding intelligene, Pfeifer,for instane, has long advoated the design of ompleteand embodied animats (PFEI96, SCHE98). In PFEI00,he introdues the onept of "eologial balane" whihmeans that, given a partiular task environment, theremust be a harmonious relationship between an animat'smorphology, materials and ontrol. In HARA00, he elab-orates on the relation among morphology, material andontrol in morpho-funtional mahines. The role of em-bodiment is also stressed by Krihmar et al. (KRIC00;see also ALMA98), who demonstrate the role of earlysensory experiene for the development of pereptualategories in Darwin VI. This proess appears to behighly dynami and to depend strongly upon the atual

sequene and ontent of sensory experiene, and uponindividual histories of stimulus enounters. Therefore,beause of its embodiment, a robot never experienes astimulus in exatly the same way.However, Clark and Miller hallenge the above-mentioned pessimisti view about the explanatory roleof representations in the determinants of adaptive be-havior (CLARK98). Their work, together with that ofresearhers who expliitly dealt with ognitive proesses(see, e.g., BEER96, SPIE98, SLOC00, STOL00), raisesthe questions of how far animat designers will be ableto raise the ognitive apaities of their reatures, andwhih role internal representations will play in the or-responding ahievements. No doubt numerous empirialanswers will be brought to bear on these issues in thenear future.Another ontribution that gives food for thought isthat of Keijzer (KEIJ98). Aording to this author, thedi�erene is onsiderable between movement and behav-ior: Animats and robots move, while animals behave.Suh a distintion is related to that between proximaland distal stimuli. The former diretly impinge on theanimat's body, but this stimulation in itself tends to beneutral as far as adaptation is onerned. The latterare provided by the adaptively relevant elements in anenvironment that are usually at some distane from theanimat, and provide the possible nourishment, threatsor mates on whih survival and reprodution depend.In this ontext, the behavior of animals, but not thatof robots, onsists of a proess of self-organization a-ording to whih variable proximal (fast and short-term)sensory-motor oupling maintains stable distal (slowerand longer-term) pereption-ation oupling. Whateverthe ase, many lessons are still to be drawn from ompar-isons of natural and arti�ial adaptive behaviors. In par-tiular, an animat ertainly has a long way to go beforeit might be taken for an animal, in any sort of Turing-liketest that may be invented in future.Several appliations of dynamial systems theory toanimat design were mentioned above (e.g., BEER96,NEVE96, JAEG98, RYLA98, MENZ00), whose authorsseem onvined that this approah will sale with moreomplex behaviors and survival problems. Likewise, al-though Aubin's viability theory has just been introduedto the SAB ommunity (AUBI00), it appears in our opin-ion to be too losely related to animat onerns (see,e.g., MEYE94) for not soon start guiding the intuitionof animat designers. There is therefore de�nitely somehope that suh e�orts to bring mathematis and theirdedutive power into the empiriism of animat researhwill sooner or later generate the sort of stability theo-rem or onvergene proof that the �eld de�nitely laksat present. Advanes in these diretions will undoubt-edly foster numerous pratial appliations, over thosealready desribed above.



Several methodologial ontributions to the �eldof adaptive behavior have already been listed (e.g.,PFEI96, JAKO98, FUNE00). Another suh ontribu-tion worth mentioning is that of Bakker and de Jong(BAKK00), who provide a means for ounting the num-ber of states in an animat's behavior and for ountingthe number of states required to perform a partiulartask in an environment. Suh state ounts provide ameasure of the omplexity of agents and environments.Likewise, in a reinforement learning framework, Wil-son (WILS96) reviews ten strategies for the autonomousontrol of the explore-versus-exploit deision, and pleasfor a better understanding of how a system an tell howwell it is doing. Lastly, in the work of Fleming et al.(FLEM00), the brain of a lamprey is used to ontrol aKhepera robot. The observed arti�ial behaviors helpextrat information about information proessing in theneural tissue onneted to the robot. Suh exiting workprobably paves the way for the numerous "hybrid" ap-proahes - where arti�ial and biologial materials willbe merged - the fast expansion of whih an be readilyforeseen, hopefully to the best avail. Be that as it may,methodologial ontributions like these reinfore the ex-perimental bases of animat researh, and hopefully manymore will ome to omplete them.Finally, in our previous review of animat researh(MEYE94), we stressed the need for omparisons thatwould allow understanding what arhitetures and work-ing priniples an allow an animat to solve what kind ofproblem in what kind of environment. Although sev-eral papers have been foussed on suh omparisons(e.g., DICK96, HUMP96, MAYL96, SMIT96, BALK98,BLAI98, CALA98, HEME98, WIER98), we are obligedto observe that the number of arhitetures and work-ing priniples has grown muh faster than the number ofomparisons. In this sense, the present situation is worsethan it was three SAB onferenes ago. Nevertheless, itan hardly be onluded that the �eld of animat researhis not healthy and produtive.10. ConlusionSine SAB94, the �eld of animat researh has broad-ened and deepened. New mahines, new mehanisms,new methods, and new onepts have been desribedin this paper. Beyond mere reexes, signi�ant stepshave been taken towards implementing higher ognitivemehanisms in the ontrol arhitetures of animats. Inthe near future, a number of the theoretial and method-ologial advanes outlined herein should provide the sortof generalizations that we eagerly wished for in our pre-vious review.
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