
From SAB94 to SAB2000: What's New, Animat?Agn�es Guillot Jean-Ar
ady MeyerAnimatLab-LIP68, rue du 
apitaine S
ott75015 Paris, Fran
efagnes.guillot, jean-ar
ady.meyerg�lip6.frAbstra
tThis paper is 
omplementary to a previous re-view of signi�
ant resear
h on adaptive behav-ior in animats. It summarizes the 
urrent state-of-the art and outlines dire
tions for possibleprogress.1. Introdu
tionIn the pro
eedings of SAB94, we published a reviewof signi�
ant resear
h on adaptive behavior in animatssin
e the �rst SAB 
onferen
e, held in 1990 (MEYE94).This review summarized the state-of-the art, insofar asthe pro
eedings of three dedi
ated 
onferen
es 
ould helpdelineate it. Now that three other SAB 
onferen
es havebeen held, we 
onsidered that it would be useful to up-date that earlier review, in order to assess the 
orre-sponding progress, to infer the dire
tions in whi
h in-teresting developments are likely to be expe
ted, and tostress needs for spe
i�
 additional resear
h e�orts.As in the pre
eding review, this one makes referen
eonly to SAB 
onferen
e pro
eedings (SAB96, SAB98,SAB00), on the premise that this perspe
tive, althoughvoluntarily limited, does nevertheless a�ord a 
ompre-hensive view of the �eld of adaptive behavior in animats.It will �rst 
lassify the main results that have been ob-tained sin
e 1994 a

ording to the general organizationof the 
urrent book, an organization that seems to havealmost 
onverged in the 
ourse of six 
onferen
es. Thenit will outline possible dire
tions for future work.2. Per
eption and motor 
ontrolSin
e SAB94, new sensory modalities have been in
or-porated into models of sensori-motor 
oordination andhave been o

asionally used for a
tual robot 
ontrol.For instan
e, biomimeti
 models for odor-guided move-ments (BELA96, MALA96) have been des
ribed, someof whi
h have been implemented on a Lego robot thatdete
ts al
ohol (SHAR98), or on a robot-lobster thatmay use the temporal pattern of odors produ
ed by tur-bulent dispersal pro
esses to lo
ate a distal food sour
e(GRAS96). Likewise, a biomimeti
 model for phono-taxis has been des
ribed and implemented on a 
ri
ket-

robot (WEBB96), while a biomimeti
 model of sounddi�ra
tion and re
e
tions in the human 
on
ha has beenapplied to bat pinna design for e
holo
ating animals(CARM00). In CHAP00, a biologi
ally-inspired windsensor is mounted on a Khepera robot to perform a re-a
tive maze solving task.Vision has been extensively studied in this perspe
-tive and many resear
h e�orts have dealt with visio-motor 
oordination. For instan
e, a biomimeti
 model ofdepth per
eption using peering in inse
ts has been imple-mented on a Khepera robot (LEWI98). Visual loominghas been implemented on a Pioneer robot as a robust andinexpensive range sensor to be used as a 
omplement toa sonar (SAHI98; see also NEVE96 and DAHM98). Asystem for maze navigation using opti
al 
ow has beendemonstrated on a simulated robot (DUCH96). A sim-ple vision system has been used to modulate the type ofgait and the dire
tion of motion produ
ed by a lo
omo-tor 
ir
uit in a simulated salamander, thereby 
onferringthe 
apa
ity to tra
k a randomly moving target both inwater and on dry land (IJSP00). Likewise, spe
i�
 
on-tributions have dealt with 
ourse stabilization and �xa-tion behavior in 
ies (HUBE98), as well as with adaptiveimage stabilization, visually-guided pointing and orien-tation behavior in Cog and other robots with movingeyes (FERR96, MARJ96, PANE00).Motor 
ontrol for motion has also been extensivelystudied. For instan
e, Yokoi et al. designed a so-
alledMorpho-Fun
tional Ma
hine, i.e., a deformable robotthat exhibits an amoeba-like motion (YOKO98). Like-wise, Kawai and Hara des
ribe a ma
hine that 
hangesits morphology in order to 
arry an obje
t toward agoal while passing through a narrow 
orridor (KAWA98).Walking 
ontrollers for four-legged robots are des
ribedin ILG98 and ITO98. Walking 
ontrollers for simu-lated six-legged inse
ts are des
ribed in CRUS96. Moregenerally, a mathemati
al framework that helps designnetworks of neural os
illators 
apable of 
ontrolling therhythmi
 motion of an animat is given in ARSE00.In ZIEM96 and ZIEM00, several re
urrent 
onne
tion-ist 
ontrol ar
hite
tures likely to make possible eÆ
ient
oupling between sensory inputs and motor outputs aredes
ribed. The latter work introdu
es the distin
tion be-



tween syn
hroni
ally and dia
hroni
ally stru
tured 
on-trol me
hanisms, and des
ribes how an animat 
an a
-tively and sele
tively de
ide when to use feedba
k to re-vise its sensorimotor mapping. A

ording to the author,this me
hanism allows the animat to 
exibly assign vary-ing meanings to environmental stimuli.Finally, two spe
i�
 aspe
ts of the per
eption-a
tion
oordination problem are dealt with in SCHE96 andWILS00. S
heier and Lambrinos des
ribe how 
atego-rization must be treated as a sensori-motor 
oordinationproblem, not as a per
eptual one. Their system learnsto re
ognize an obje
t with visual and hapti
 modali-ties and to dis
riminate it from other obje
ts (SCHE96).Wilson and Neal, using a model of intera
tions betweena shepherd, his dog and a sheep, study how the behav-ior repertoire of the dog robot impa
ts on the numberof intera
tions required from the shepherd to 
ontrol thesheep (WILS00).3. A
tion sele
tion and behavioral se-quen
esSeveral resear
h e�orts 
ontributed to delineating themethodologi
al issues underlying the a
tion-sele
tionproblem and the design of motivational systems. For in-stan
e, Spier and M
Farland use a biologi
ally-inspiredmotivational system to demonstrate that tradeo� be-tween opportunities in response to the environment isoften suÆ
ient for generating behavioral sequen
es thatan external observer might attribute to an underlyingplanning pro
ess (SPIE96). Aube and Senteni suggestthat emotions are motivations that ensure managementand regulation of ressour
es (AUBE96). Steinhage andBergener demonstrate how a
tion sele
tion 
an be imple-mented in a dynami
al system as the result of nonlinearphase transitions (STEI98). Lastly, Seth des
ribes howa
tion sele
tion and sele
tive attention 
an be exhibitedby a simple animat with dire
t sensori-motor links, thus
hallenging the 
on
epts of a
tion, attention, and sele
-tion (SETH98).Various ar
hite
tures for a
tion sele
tion have been
ompared within the 
ontext of reinfor
ement learning(HUMP96) or from the point of view of hierar
hi
alversus parallel organizations (BRYS00). In GONZ00,a biomimeti
 basal ganglia model of a
tion sele
tionhas been embedded within the 
ontrol ar
hite
ture ofa Khepera robot, and shown to exhibit ni
e propertiesof 
lean swit
hing, la
k of distortion and persisten
e. Inparti
ular, interesting similarities to what is observedon animals have been obtained through the e�e
ts on arobot model of varying simulated dopamine levels. InCHAO00, Chao, Panangadan and Dyer des
ribe a 
on-ne
tionist ar
hite
ture that enables animats to navigateeÆ
iently and learn to build spe
i�ed stru
tures withinan arti�
ial environment. This approa
h 
alls upon anexternal tea
her to learn an a
tion-sele
tion ar
hite
ture

that mediates between rea
tive and planning behaviors,a problem also ta
kled in REVE98.Witkowski (WITK00) des
ribes the role extin
tionme
hanisms play in the 
ontext of a
tion sele
tion. Su
hextin
tion me
hanisms 
ontribute to the prote
tion ofthe animat against the potentially fatal 
onsequen
esof unattainable high-priority goal-driven a
tivities. HisDynami
 Expe
tan
y Model is one of the 
ontempo-rary learning a
tion sele
tion models that are based onexpli
it use of predi
tion to drive the learning pro
ess(TANI98, STOL00).4. Internal world models for navigationSimple internal world models are elaborated by animatsthat are able to 
ategorize their environment when mov-ing through it. This is exempli�ed by the work of Mars-land et al. (MARS00) in whi
h a novelty �lter usinga model of habituation allows a robot operating in anunstru
tured environment to produ
e a self-organizedmodel of its surroundings, and to dete
t deviations fromthe learned model. Likewise, various systems for self-
ategorization of sensori-motor patterns 
an be found inBERT98, SCHE98, TANI98 and LINA00. In the lat-ter 
ase, the te
hnique fa
ilitates the understanding ofthe 
on
epts abstra
ted from the animat's sensori-motor
ow, and 
an be used for automati
 map-building.Another extremely simple internal model of the en-vironment is des
ribed in PIAG00, where the border-line between behavior-based and representation-basednavigation is investigated. This approa
h 
alls upon aminimal internal representation to solve lo
al navigationproblems indu
ed by lo
al minima in arti�
ial poten-tial �elds. Likewise, in CORB96, an analogous potential�eld approa
h is des
ribed, where a biomimeti
 model ofdetour behavior in frogs 
alls upon generalized s
hema-based learning. An ar
hite
ture that 
ombines fuzzy andrea
tive te
hniques for obsta
le-avoidan
e is des
ribed inGHAN96, where two 
oupled mobile robots have to movein an environment with obsta
les.Other internal models have been used in severalbiomimeti
 approa
hes to animal homing behavior. InDICK96, alternative modeling approa
hes to how in-se
ts learn about the sun's 
ourse are des
ribed. InNEHM00, a numeri
al simulation of Kramer's "Map andCompass" model of long-range pigeon navigation is per-formed. This model postulates that pigeons use natu-rally o

urring gradients to determine the 
ourse to theloft, and 
ompass senses (sun and magneti
) to establishand maintain this dire
tion. Likewise, to simulate hom-ing behavior in desert ants, Moller et al. implemented ona mobile robot a path-integration system using a polar-ized light 
ompass, in 
onjun
tion with a visual pilotingsystem (MOLL98). In KIM00, a 
ir
ular neuron 
ellstru
ture, in whi
h ea
h neuron a

umulates distan
etraveled in a parti
ular dire
tion, is suggested as a suit-



able 
omputational stru
ture for �nding a proper homingve
tor.The way rodents en
ode spatial representationsof their environment has been exploited in severallandmark-based navigation models. This is shown forinstan
e in GAUS98 and in TRUL98. In ARLE00, twobiomimeti
 models of the operation of head-dire
tion
ells and pla
e-
ells are 
ombined and implemented ina Khepera robot for navigation. In FILL00, su
h abiomimeti
 approa
h is 
ombined with a traditionalPOMDP (Partially Observable Markovian De
ision Pro-
ess) model that implements an a
tive per
eption me
h-anism for map learning and reliable lo
alization in a sim-ulated robot. Another engineering model of landmark-based navigation is given in OWEN98, whereas DONN96des
ribes how an animat that doesn't use vision to 
at-egorize landmarks, but 
alls on proprio
eption only, isnevertheless 
apable of building a 
ognitive map of itsenvironment and of using it to a

urately position itself.These navigation models 
ould bene�t from the workof Balkenius and Mor�en, who demonstrate that a stable
ontext representation 
an be learned from a dynami
sequen
e of attentional shifts between various stimuli inthe environment. Su
h a system 
an be used for noveltydete
tion and, more spe
i�
ally, 
an be used in modelswhere pla
e-
ell �ring must be asso
iated with spe
i�
landmarks (BALK00). Likewise, interesting suggestionsare to be found in TOOM98, where a biomimeti
 modelof landmark learning in gerbils is used to demonstratethat 
omplex spatial navigation behavior does not needto be predi
ated on 
omplex and navigation spe
i�
 
om-putations. Other interesting suggestions are also to befound in WIER98, where a method for 
olle
ting usefulexperien
es through exploration in sto
hasti
 environ-ments is des
ribed (see also WILS96). Finally, an hy-brid model that learns 
ontinuously from ongoing expe-rien
e without pre
onstru
ted data-sets and that learnsboth pro
edural knowledge - through Q-learning - andde
larative knowledge - through propositional rules - isdes
ribed in SUN98. This model is implemented on asimulated robot required to navigate towards a targetthrough a mine�eld.5. LearningConditioning is a variety of impli
it learning in animalsthat improves their per
eptual or motor skills by repe-tition, without 
alling on awareness or higher 
ognitivepro
esses. Classi
al 
onditioning allows an animal tore
ognize 
ues for biologi
ally signi�
ant events, whileoperant 
onditioning allows to 
hange its voluntary be-havior a

ording to the out
ome of its a
tions.A wide variety of models implement su
h abilities inanimats. For instan
e, models of 
lassi
al 
onditioningare des
ribed in SALO98, BALK98 and HALL00. Amodel of operant 
onditioning has been used by Touret-

zky and Saksida (TOUR96) to implement 
haining 
a-pa
ities in a robot, a

ording to whi
h 
omplex be-havioral routines are built up from smaller a
tion seg-ments, the response of the �rst one being the stimulusfor the next. Stolzmann et al. (STOL00) des
ribe an-other model of operant 
onditioning based upon Ho�-mann's learning theory of anti
ipatory behavioral 
on-trol. This model reprodu
es some of the experimentalresults that have been obtained on rats in a Skinner box:It is notably 
apable of distinguishing between di�erentrea
tion-e�e
t relations and of relating them to di�erentstimuli. Lastly, models that 
ombine 
lassi
al and oper-ant 
onditioning are to be found in BALK96, GAUD96and BLUM96. The latter 
ase demonstrates how a vir-tual dog 
an a
quire new behaviors like taste aversion,out
ome devaluation, habit formation, and superstitiousbehavior.In the �eld of reinfor
ement learning, improvementsto the traditional Q-learning algorithm have beendemonstrated in ARAU96, DIGN96, DIGN98, MINA98,MORE98, NAKA98, IIJI00 and MOTO00. Several re-sear
h e�orts have been devoted to non-Markovian prob-lems: ARAU96, MCCA96, SUNa00, SUNb00. A uni�edapproa
h to per
eptual aliasing is presented by Lanzi(LANZ00) who introdu
es the so-
alled "on the payo�s"aliasing problem and suggests that, to a
hieve properperforman
e, an animat does not need to learn the wholemapping s
heme from per
eption-a
tion pairs to payo�s.To this end, non-tabular reinfor
ement learning s
hemes(e.g., LCS) may be more e�e
tive than tabular te
h-niques inspired from Dynami
 Programming (e.g., Q-learning). An alternative to the usual state-a
tion eval-uation approa
h to reinfor
ement learning is suggestedby Porta and Celaya in the 
ase of 
ategorizable envi-ronments, i.e., environments where the e�e
ts of a givena
tion 
an be foreseen through a limited number of theanimat's sensors. Here, the problem is to determine therelevan
e of the sensors with respe
t to ea
h a
tion andto the 
orresponding reward. The 
orresponding paper(PORT00) des
ribes an appli
ation to step 
oordinationin a simulated 6-legged robot walking either in 
at andrough terrain.Learning by being taught or by imitation has also re-
eived spe
ial emphasis, notably in RAO96, ANDR00and COLL00. In CRAB00, it is shown how observationand imitation of a tea
her 
an be used by a learningagent to satisfy a sequen
e of goals. Learning of goalsequen
es di�ers from usual a
tion-learning in that theorder of individual a
tions is left open, but the order ofthe goals that these a
tions a
hieve is �xed. This ap-proa
h is applied to animats that 
an perform 
onstru
-tion tasks while maintaining their survival in a 
omplexand hazardous environment.Finally, several arti
les investigate how emotionsmight be involved in learning, in
luding WRIG96,



GADA98 and MORE00.6. EvolutionWhile Lerena and Courant explored the relationships be-tween sexual sele
tion and natural sele
tion in LERE98and LERE00, me
hanisms for arti�
ial sele
tion havebeen studied and put to work in a large number ofappli
ations. It thus has been possible to evolve an-imats that play ho
key (BLAI98), that explore theirenvironment (SMIT96), forage for food (BENN96) or
olle
t garbage (CALA98), that visually tra
k tar-gets (JAKO98, KORT00) or dis
riminate landmarks(NOLF00), or that are 
apable of swit
hing from swim-ming to walking (IJSP98). Likewise, the feasibility ofevolving both the morphology and the 
ontrol of ani-mats has been investigated in VENT96, KIKU98 andBONG00.To demonstrate the 
apa
ity of evolutionary ap-proa
hes to generate more than mere re
exive behaviors,Beer and 
olleagues evolved a series of neural 
ontrollersthat exhibit "minimally 
ognitive behaviors", i.e., thesimplest behaviors that raise issues of genuine 
ognitiveinterest. In BEER96, animats are evolved for orienta-tion and rea
hing obje
ts, as well as for dis
riminationbetween obje
ts (see also BIRO98). In SLOC00, ani-mats are evolved that 
an judge the passability of open-ings relative to their own body size, that 
an distinguishbetween visible parts of themselves and other obje
tsin their environment, that 
an predi
t and rememberthe future lo
ation of obje
ts in order to 
at
h themblind, and that 
an swit
h their attention between mul-tiple distal obje
ts. Very often, su
h fun
tionalities relyon me
hanisms for a
tive s
anning and sensory-motor
oordination.In nature, evolution 
on
urs with development andlearning in animal adaptation, and one main obje
tiveof animat resear
h is to understand the 
orrespondingsynergies. In this perspe
tive, relationships between evo-lution and learning have been investigated in FLOR96and MAYL96. In DIPA00, rules of plasti
 
hange atsynapti
 level within neural 
ontrollers are geneti
allyen
oded. Robots are evolved to perform phototaxis andto re
over after the inversion of their visual �eld andother disruptions. Likewise, intera
tions between devel-opment and evolution have been investigated in EGGE96and DELL96.Me
hanisms of 
o-evolution have been extensivelystudied through a variety of pursuit-evasion games, asin CLIF96, WAHD98, FICI98, FLOR98. The latter twopapers des
ribe Red-Queen e�e
ts that prevent regular�tness in
rease, a

ording to whi
h 
o-evolution is notautomati
ally better than simple evolution. In FUNE98and FUNE00 a statisti
al method is proposed that servesto evaluate the �tness of ea
h individual in su
h 
o-evolutionary experiments.

Another methodologi
al 
ontribution is that of Jakobi,whose "minimal simulation" approa
h is designed to helptransfer to the real world 
ontrollers or morphologiesthat have been evolved in simulation (JAKO98).It may likewise be instru
tive to refer to ZAER96 fora 
ase-study where arti�
ial evolution failed to produ
e
ontrollers analogous to those hand-
rafted by humans,for reasons that the authors think are rooted in the dif-�
ulties of formulating an e�e
tive evaluation fun
tion.7. Colle
tive behaviorsSeveral 
olle
tivities of animats have been involved in re-sear
h e�orts that dealt with foraging or related behav-iors. In this 
ontext, the mandatory tradeo� betweenexploration and exploitation is investigated in BONA96,while DEB096 and SETH00 deal with optimal forag-ing theory. In WERG96, it is shown how robots withlo
al sensing and a
tion form a system that dynami-
ally and globally adapts to environmental 
hanges. Thisroboti
 system, inspired from the natural phenomenonof ant pheromone trail formation, en
odes informationin its physi
al environment in order to redu
e sensing,a
tuation, and 
omputational requirements for gather-ing metal pu
ks. In FONT96, a territorial prin
iple thatimplements a division of labor into ex
lusive spatial ar-eas is used for the same task. In MELH98 a 
olle
tivesorting and segregation task is performed by a system ofsimple homogeneous autonomous robots whi
h have no
apa
ities for spatial orientation or memory. Finally, therole of so
ial development in the evolution of 
ooperationhas been explored by Di Paolo (DIPA98), who suggeststhat the role played by natural sele
tion be re
onsideredas the main explanatory fa
tor in the determinants ofso
ial behaviors.The way signaling �ghting ability 
an help solve 
on-
i
ts has been explored in several 
ontexts. For instan
e,Noble des
ribes an evolutionary simulation that 
hal-lenges Enquist's assumption that weak animals will sig-nal their �ghting ability honestly be
ause they have somu
h to lose by bluÆng (NOBL00). Likewise, Vaughanet al. implement stylized �ghting behavior in a 
olle
-tivity of robots to solve spatial interferen
e problems. In
ase of spa
e 
on
i
t between two robots, these robots
ompare their apparent levels of aggression and the moreaggressive robot takes pre
eden
e over the less aggres-sive one (VAUG00). A related work is that of Hemelrijk(HEME96), who studies dominan
e intera
tions, spatialdynami
s and emergent re
ipro
ity in a virtual world.Another related work is that of Noble (NOBL98), whodes
ribes intention movements and the evolution of sig-naling in animal 
ontests.Other varieties of 
ommuni
ation have been studiedin the SAB 
ontext (NOBL96, SAUN96). In parti
ular,Reznikova and Ryabko apply Information Theory to thestudy of 
ommuni
ation in ants and demonstrate that, in



the 
ommuni
ation system of these inse
ts, the frequen
yof use of a message 
orrelates with its length. The au-thors also demonstrate that the numeri
al 
ompeten
eof ants 
alls on adding or subtra
ting small numbers inpreferen
e to large ones (REZN00).More sophisti
ated varieties of 
ommuni
ation are ex-plored in the "language games" initiated by Steels andhis 
olleagues. STEE96 fo
usses on emergent adaptivelexi
ons, while STEE98 deals with the stru
tural 
ou-pling of 
ognitive memories. Moukas and Hayes des
ribehow a movement-based language, like that of bees, 
anbe implemented in Lego robots. In this work, a robotlearns the language elements, what they mean, and howto reprodu
e them, by observing a tea
her robot thatperforms a "dan
e" indi
ating the presen
e of a parti
-ular type of "food" at a parti
ular distan
e and bearing(MOUK96).Finally, several resear
h e�orts address multi-agentpursuit games. This is the 
ase with ONO96, ZHAO96and ARAI00.8. Applied adaptive behaviorThe 
on
epts and te
hniques in favor in the SAB 
om-munity have been used in diverse appli
ations, rangingfrom market trading (CLIF98), to traÆ
 system mod-eling (MORI98), environmental monitoring (COST98),and software agent learning (RAMA98). In DAUT00,Dautenhahn and Werry des
ribe how mobile robots 
anplay a therapeuti
 role in the rehabilitation of 
hildrenwith autism. In SKLA00, Sklar and Polla
k des
ribe anevolutionary algorithm that is used to sele
t 
ontent forkeyboarding edu
ational games in a web-based learning
ommunity.9. Prospe
tsAs emphasized by Clark and Miller (CLARK98), re
entresear
h into animats suggests that a great deal of theiradaptive 
apa
ities are grounded, not in the systemati
a
tivity of internal representations, but in 
omplex inter-a
tions involving neural, bodily and environmental fa
-tors. In his quest for understanding intelligen
e, Pfeifer,for instan
e, has long advo
ated the design of 
ompleteand embodied animats (PFEI96, SCHE98). In PFEI00,he introdu
es the 
on
ept of "e
ologi
al balan
e" whi
hmeans that, given a parti
ular task environment, theremust be a harmonious relationship between an animat'smorphology, materials and 
ontrol. In HARA00, he elab-orates on the relation among morphology, material and
ontrol in morpho-fun
tional ma
hines. The role of em-bodiment is also stressed by Kri
hmar et al. (KRIC00;see also ALMA98), who demonstrate the role of earlysensory experien
e for the development of per
eptual
ategories in Darwin VI. This pro
ess appears to behighly dynami
 and to depend strongly upon the a
tual

sequen
e and 
ontent of sensory experien
e, and uponindividual histories of stimulus en
ounters. Therefore,be
ause of its embodiment, a robot never experien
es astimulus in exa
tly the same way.However, Clark and Miller 
hallenge the above-mentioned pessimisti
 view about the explanatory roleof representations in the determinants of adaptive be-havior (CLARK98). Their work, together with that ofresear
hers who expli
itly dealt with 
ognitive pro
esses(see, e.g., BEER96, SPIE98, SLOC00, STOL00), raisesthe questions of how far animat designers will be ableto raise the 
ognitive 
apa
ities of their 
reatures, andwhi
h role internal representations will play in the 
or-responding a
hievements. No doubt numerous empiri
alanswers will be brought to bear on these issues in thenear future.Another 
ontribution that gives food for thought isthat of Keijzer (KEIJ98). A

ording to this author, thedi�eren
e is 
onsiderable between movement and behav-ior: Animats and robots move, while animals behave.Su
h a distin
tion is related to that between proximaland distal stimuli. The former dire
tly impinge on theanimat's body, but this stimulation in itself tends to beneutral as far as adaptation is 
on
erned. The latterare provided by the adaptively relevant elements in anenvironment that are usually at some distan
e from theanimat, and provide the possible nourishment, threatsor mates on whi
h survival and reprodu
tion depend.In this 
ontext, the behavior of animals, but not thatof robots, 
onsists of a pro
ess of self-organization a
-
ording to whi
h variable proximal (fast and short-term)sensory-motor 
oupling maintains stable distal (slowerand longer-term) per
eption-a
tion 
oupling. Whateverthe 
ase, many lessons are still to be drawn from 
ompar-isons of natural and arti�
ial adaptive behaviors. In par-ti
ular, an animat 
ertainly has a long way to go beforeit might be taken for an animal, in any sort of Turing-liketest that may be invented in future.Several appli
ations of dynami
al systems theory toanimat design were mentioned above (e.g., BEER96,NEVE96, JAEG98, RYLA98, MENZ00), whose authorsseem 
onvin
ed that this approa
h will s
ale with more
omplex behaviors and survival problems. Likewise, al-though Aubin's viability theory has just been introdu
edto the SAB 
ommunity (AUBI00), it appears in our opin-ion to be too 
losely related to animat 
on
erns (see,e.g., MEYE94) for not soon start guiding the intuitionof animat designers. There is therefore de�nitely somehope that su
h e�orts to bring mathemati
s and theirdedu
tive power into the empiri
ism of animat resear
hwill sooner or later generate the sort of stability theo-rem or 
onvergen
e proof that the �eld de�nitely la
ksat present. Advan
es in these dire
tions will undoubt-edly foster numerous pra
ti
al appli
ations, over thosealready des
ribed above.



Several methodologi
al 
ontributions to the �eldof adaptive behavior have already been listed (e.g.,PFEI96, JAKO98, FUNE00). Another su
h 
ontribu-tion worth mentioning is that of Bakker and de Jong(BAKK00), who provide a means for 
ounting the num-ber of states in an animat's behavior and for 
ountingthe number of states required to perform a parti
ulartask in an environment. Su
h state 
ounts provide ameasure of the 
omplexity of agents and environments.Likewise, in a reinfor
ement learning framework, Wil-son (WILS96) reviews ten strategies for the autonomous
ontrol of the explore-versus-exploit de
ision, and pleasfor a better understanding of how a system 
an tell howwell it is doing. Lastly, in the work of Fleming et al.(FLEM00), the brain of a lamprey is used to 
ontrol aKhepera robot. The observed arti�
ial behaviors helpextra
t information about information pro
essing in theneural tissue 
onne
ted to the robot. Su
h ex
iting workprobably paves the way for the numerous "hybrid" ap-proa
hes - where arti�
ial and biologi
al materials willbe merged - the fast expansion of whi
h 
an be readilyforeseen, hopefully to the best avail. Be that as it may,methodologi
al 
ontributions like these reinfor
e the ex-perimental bases of animat resear
h, and hopefully manymore will 
ome to 
omplete them.Finally, in our previous review of animat resear
h(MEYE94), we stressed the need for 
omparisons thatwould allow understanding what ar
hite
tures and work-ing prin
iples 
an allow an animat to solve what kind ofproblem in what kind of environment. Although sev-eral papers have been fo
ussed on su
h 
omparisons(e.g., DICK96, HUMP96, MAYL96, SMIT96, BALK98,BLAI98, CALA98, HEME98, WIER98), we are obligedto observe that the number of ar
hite
tures and work-ing prin
iples has grown mu
h faster than the number of
omparisons. In this sense, the present situation is worsethan it was three SAB 
onferen
es ago. Nevertheless, it
an hardly be 
on
luded that the �eld of animat resear
his not healthy and produ
tive.10. Con
lusionSin
e SAB94, the �eld of animat resear
h has broad-ened and deepened. New ma
hines, new me
hanisms,new methods, and new 
on
epts have been des
ribedin this paper. Beyond mere re
exes, signi�
ant stepshave been taken towards implementing higher 
ognitiveme
hanisms in the 
ontrol ar
hite
tures of animats. Inthe near future, a number of the theoreti
al and method-ologi
al advan
es outlined herein should provide the sortof generalizations that we eagerly wished for in our pre-vious review.
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