
The use of roles in a multiagent adaptivesimulationOlivier Sigaud1 and Pierre Gérard1;21 Dassault Aviation, DGT/DPR/DESA78, Quai Marel Dassault, 92552 St-Cloud Cedex2 AnimatLab-LIP6, 8, rue du apitaine Sott, 75015 PARISolivier.sigaud�dassault-aviation.fr pierre.gerard�lip6.frAbstrat. This paper is about the use of roles in a multiagent adaptiveontext. We desribe a simulation experiment in whih several sheepdogagents have to oordinate their e�ort to drive a �ok of duks towards agoal area. We use the Classi�er System formalism to ontrol the agents.We show that using a notion of role is natural in suh a ontext. Weompare the performane of an expert ontroller with and without roles.Then we show how applying adaptive tehniques to that �bootstrap�ontroller an improve the performane with respet to expert rules.From this empirial study, it appears that an emergent strategy getsbetter results than the oneption of the roles we designed by hand.Thus we advoate the neessity of takling the problem of evolving theroles of the agents.1 IntrodutionThe neessity of having good benhmarks to test and ompare algorithmsand arhitetures is now entral in the multiagent researh ommunity. TheRoboup [Asada and Kitano, 1999℄ is suh a benhmark seeming both generaland ompliated enough to at as a representative testbed for the entire �eld.But, if one uses mahine learning tehniques and adaptive apabilities to solvethe omplete task, the problem seems too di�ult. In the partiular ase ofreinforement learning tehniques, the agents do not get enough feedbak tolearn everything from srath. The researhers may either use these tehniquesat one partiular level of the game, or use them to solve partiular subtasks (forinstane, the pass to another player [Asada et al., 1999℄).Therefore, the tendeny in adaptive multiagent simulations is to study muhsimpler appliation domains. The Prey/Predator pursuit domain involving sev-eral predators [Stone and Veloso, 1997℄ is suh a benhmark and illustrates thistrend. But in these latter ases, the problem is often oversimpli�ed: the agentsmove in a grid-world, they have few possible ations. Hene, the problem laksthe ontinuous dynamis haraterizing most industrial appliations. Sine ourfous is on adaptive tehniques and we have industrial appliations in mind, wehave hosen to work on an appliation whih appears as a good ompromise be-tween the too omplex Roboup problem and the oversimpli�ed prey-predator



problems. We draw inspiration from [Vaughan et al., 1998℄, who have presentedthe Robot Sheepdog Projet, involving a robot driving a �ok of duks towards agoal position. The algorithm governing the behavior of the robot was �rst testedin simulation and then implemented on a real robot driving a real �ok of duks.In this paper, we present a simulated extension of the task to the ase whereseveral robots share the goal mentioned above. Sine it is neither oversimpli�ednor too omplex, we believe that this experiment is a good ase-study to meetand takle the di�ulties arising when one tries to ombine adaptive apabilitiesand multiagent oordination shemes.The purpose of the paper is to show that expliitly using roles in a multiagentdomain is an e�ient design tehnique improving both the resulting ontrollersand their adaptive apabilities. In suh a ontext, providing the system with theability to evolve roles is both something whih helps �nding better strategiesand something whih an be done straight-forwardly with adaptive algorithms.In a wider perspetive, the general purpose of our approah is to show thatproviding some expert ontrol knowledge as a starting point to a Classi�er Sys-tem (CS) is both an e�ient way to improve the expert solution through adaptivealgorithms and a good strategy to make the use of CSs feasible even for ompli-ated industrial problems� see [Sigaud, 2000℄ for a more omplete disussion.The paper is organized as follows. In the next setion, we desribe our sim-ulator and the multiagent strategy we used to solve the task. In setion 3, wepresent how we implemented this strategy in the formalism of CSs. In setion 4,we give the results obtained with a hand-rafted ontroller. In setion 5, weshow how our �rst hand-rafted ontroller was signi�antly improved with anexpliit use of roles, resulting in a new arhiteture involving a set of behaviorsdevoted to the ful�llment of eah role. We present the bene�ts whih an bedrawn from suh an arhiteture. Then, we ompare the results with those ob-tained by applying adaptive algorithms to eah behavior. In setion 7, we showin an empirial study that an emergent strategy obtains better results than theoneption of the roles that we designed in setion 2. Therefore we advoate insetion 8 the neessity of takling the problem of evolving the roles of the agents.We show how roles an be formalized as internal states and onlude that ouradaptive algorithm will provide a �rst step towards this funtionality.2 The problem and its representation2.1 Desription of the problemOur simulation environment is shown in �gure 1. It inludes a irular arena,a �ok of duks and some sheepdog agents who must drive the �ok towards a goalarea. We tested all ontrollers in simulations involving three sheepdog agents andsix duks. The duks and the sheepdog agents have the same maximum veloity.The goal is ahieved as soon as all the duks are inside the goal area.The behavior of the duks results from a ombination of three tendenies.They tend:
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Fig. 2. Desription of the situation� to keep away from the walls of the arena 1;� to join their mates when they see them, i.e. when they are within theirvisual range;� to �ee from the sheepdog agents whih are within their visual range.One the behavior of the duks is implemented, our task is to design theontrollers of the sheepdog agents so that they drive the �ok towards the goalarea. A �rst step of this design proess onsists in �nding whih features of thesimulation are relevant to ahieve the goal of the sheepdog agents. This is whatwe present in the next setion.2.2 Desription of the pre-oneived strategyWhen one programs the sheepdog agents as simply being attrated by theenter of the �ok, it appears that, when a sheepdog agent is lose to the �okand follows it, the �ok tends to satter beause eah duk goes away from thesheepdog along a radial straight line.In order to solve this sattering problem, the strategy we adopted was todesign the behavior of the agents so that at least one agent should push the�ok towards the target area from behind, while at least one other agent shouldfollow the �ok on its left hand side and another one on its right hand side sothat the �ok does not satter while being pushed.As a result of this design, the desription of the situation given to the agentsonsists in a set of tests on their position, as shown in �gure 2. This gives us a�rst set of onditions:1 Therefore, if they are left on their own, they tend to go to the enter of the arena



� isAtGoal � isOnWay� isLeftToFlok � isRightToFlok� isInLeftGuidingArea � isInRightGuidingArea� isBehindFlok � isInPushingAreaThe important point is that we de�ned pushing and guiding areas relativeto the �ok in order to implement the pushing and guiding behaviors. In orderto oordinate the ations of the agents, we also added the following tests on thesituation of other agents:� nobodyBehindFlok � nobodyPushing� nobodyInLeftGuidingArea � nobodyInRightGuidingArea� nobodyLeftToFlok � nobodyRightToFlok� nobodyOnWay � isFlokFormedAll the behaviors of the sheepdog agents onsist in going towards a ertainpoint. In general, when the �ok is formed, the sheepdog agents reat to theenter of the �ok. But, when the �ok is sattered, they an also reat to theduk whih is losest to them or the one whih is the further from the enter ofthe �ok. The name of eah behavior an be interpreted straight-forwardly. Inthe ase of the �driveXtoY� behaviors, it onsists in going behind X with respetto Y so as to push X towards Y. The overall behavior set is the following:� doNothing � goToGoalCenter� goToFlokCenter � followFlokToGoal� goBehindFlok � goToPushingPoint� goToLeftGuidingPoint � goToRightGuidingPoint� goToRightOfFlok � goToLeftOfFlok� driveOutmostDukToFlok � driveClosestDukToFlok� driveClosestDukToGoal � goToClosestDuk� goToOutmostDuk � goAwayFromFlokThe ontrollers of our sheepdog agents involve 16 onditions and 16 ba-si behaviors. Designing the ontroller involving these sensori-motor apabilitiesonsists in �nding a good mapping between the onditions and the behaviors.3 Implementing ontrollers as Classi�er Systems3.1 Elements of the Classi�er System frameworkAs we have some industrial appliations in mind, we want to use a formalisminto whih we an put some expert ontrol knowledge. But we also want touse adaptive tehniques. In this ontext, the Classi�er System (CS) formalismappears as a natural andidate.The CS framework [Holland, 1975℄ gave rise to popular adaptive algorithms.A lassial CS is omposed of a population of rules, or lassi�ers, ontainingobservations omposed of onditions and ations:



[Observation℄ ! [Ation℄(Strength)The di�erent parts of the lassi�er are strings of symbols in f0; 1;#g, where#means �either 0 or 1�. The strength of the lassi�er an be modi�ed by the BuketBrigade algorithm [Holland, 1975℄ aording to the estimated reward given tothe agent for �ring the lassi�er. The population of lassi�ers is generally evolvedthanks to a geneti algorithm � see [Goldberg, 1989℄ � using the strength of thelassi�ers as a �tness measure. When several lassi�ers an be �red in the samestate, the strength is also used to selet the one whih will be �red.Reently, a new way of using the CS framework has reeived a growing in-terest [Stolzmann, 1998℄. Based on ideas of [Riolo, 1990℄, it onsists in adding inthe lassi�ers an [E�et℄ part whih allows the system to use the rules for antii-pating rather than merely reating to the environment. It uses diret experienein order to build new lassi�ers, instead of relying on a geneti algorithm. Thelassi�ers of suh CSs ontain the following omponents:[Observation℄[Ation℄ ! [E�et℄ (quality parameters)The learning proess of suh CSs an be deomposed into two omplementaryproesses:� latent learning onsists in building a reliable model of the dynamis ofthe environment, by ensuring that the [E�et℄ part of all lassi�ers are orret.This new part provides information about state transitions and allows planning.The latent learning proess an take plae at eah time step regardless of agoal, hene it is very e�ient. In partiular, as [Witkowski, 1997℄ has shown,the quality of antiipation of every lassi�er whih an be �red at a time anbe updated aording to the subsequent input message, even if the lassi�er hasnot atually been �red;� reinforement learning onsists in improving a poliy using the experieneof the system, so that it beomes able to hoose the optimal ation in everystate. This proess takes advantage of latent learning to onverge faster.3.2 Our AlgorithmOur own lassi�ers ontain the following omponents:[Observation℄[Ation℄ ! [E�et℄ (Qe; R; Qa)� Qe is the quality of the e�et part of the lassi�er, also known as the qualityof antiipation. It estimates the transition probability between the observationand the e�et when the ation is hosen.�R estimates the immediate reward reeived by the system when the lassi�eris �red.� Qa is the quality of the ation represented by the lassi�er. It orrespondsin lassial CSs to the Strength parameter used in the ation seletion proess.The latent learning proess reates and deletes lassi�ers, and adjusts thequalities of antiipation. Let us onsider a lassi�er with an [Observation℄ part



mathing the previous state and whose ation is the one whih has been hosenat the previous time step.If the lassi�er was able to antiipate the urrent state, we inrease its Qe,even if it was not �red. If it was not able to, we derease its Qe and a newlassi�er may be reated, whih would antiipate well. This proess allows todisover new [E�et℄ parts.New [Observation℄ parts are disovered by a speialization proess. A lassi�-er whose Qe has been sometimes inreased and sometimes dereased is suh thatits [Observation℄ part mathes several distint states. It is too general, there-fore its antiipation is sometimes orret and sometimes not. Suh lassi�ers arereplaed by new lassi�ers with more speialized [Observation℄ parts.These mehanisms allow the system to onverge towards a set of auratelassi�ers antiipating orretly. We use this information about the state transi-tions in order to improve the reinforement learning proess.The �rst part of this proess onsists in estimating the immediate rewardresulting from the �ring of eah lassi�er. At eah time step, we use the reeivedreward to update an estimation of the immediate reward (R) of every lassi�erinvolving the last ation and the last state, even if it has not atually been �red.The state transition informations and the immediate reward estimations allow touse a Dynami Programming algorithm [Bellman, 1957℄ to ompute the qualityof the ation (Qa) for eah lassi�er. These qualities de�ne the poliy.A more preise desription of this algorithm an be found in [Gérard, 2000℄.4 Empirial Study without roles4.1 Using a hand-rafted ontrollerIn this setion, we present results obtained by hand-rafted ontrollers with-out turning the adaptive apabilities on. Rather than initializing CSs with ran-dom lassi�ers or ompletely general ones, we �rst try to use the CS formalismfor implementing expert rules without using its adaptive apabilities.In table 1, we present the ontroller that we designed in order to implementthe solution desribed in setion 2.2. It an be seen that we only use 13 of the16 available inputs.We ran 2000 experiments to get a statistially signi�ant view of the resultsobtained with this ontroller. During a trial, if the goal is not reahed after 4000time steps, we onsider that the ontroller results in a loop behavior and willnever sueed, hene we stop the trial. We must also mention that the goal isnever reahed in less than 115 time steps, whih is the minimum number of timesteps for the sheepdog agents to surround the �ok and drive it to the goal froma luky initial situation.The average number of time steps to reah the goal is 1759.45. The ontrolleris stopped after 4000 time steps in 26.65% of the trials.From table 1, it an be seen that the representation using a ��at� ontroller isnot very ompat: there are a lot of �#�, whih means that eah expert lassi�er
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left hand side and another one on its right hand side (playing LeftGuide andRightGuide roles respetively). Therefore we tried to modify the arhitetureof the ontroller used in setion 3 so as to make an expliit use of roles. Our newarhiteture ontains two kinds of omponents:� The role table is a CS stating under whih onditions on the situationa agent hanges his role into another role. If no observation mathes, the roleremains the same. The roles are initialized so that eah agent hooses betweenFuturePusher, FutureLeftGuide and FutureRightGuide randomly, butin suh a way that eah role is assigned to at least one agent.� The behavior tables are CSs whih �re ations of the agent aording toonditions on the situation. There is one table for eah role. Hene, there is onlyone behavior table ative at a time, the one whih orresponds to the role playedby the agent.
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isFlokFormed Ation1 # 1 0 0 1 goToGoalCenter0 1 # # # 1 goToFlokCenter# 0 # # # 1 goBehindFlok# 0 # # # 0 driveOutmostDukToFlok# 1 # # # 0 goToOutmostDukTable 3. The PusherBehavior table� It is easier to design a behavior CS devoted to ful�ll one partiular role,sine a partiular role orresponds to a speialized part of the global behavior.Hene, eah behavior table is muh smaller than the table presented in setion 3.� It is easier to design an internal reinforement signal poliy when we useroles. Generally, ful�lling a role orresponds to reahing a partiular situationwhih an be deteted by the agent, and/or to insure that some validity ondi-tions hold. Then the agents an be rewarded or punished if the �rst onditionholds or the seond one is broken. In our �ok ontrol example, for instane,playing a FutureLeftGuide role involves both reahing the leftGuidingAreaand keeping the �ok formed. Hene, an agent holding the FutureLeftGuiderole an be rewarded when he reahes the leftGuidingArea and punished if the�ok is sattered. We think that this way of providing intermediate reinforementsignals is less ad ho than it was in [Matari¢, 1994℄, for instane.6 Empirial Study with rolesAs in setion 3, we studied the performane of this new arhiteture �rstwith hand-rafted lassi�ers, and then with the adaptive algorithms turned on.6.1 Using a hand-rafted ontrollerFirst of all, it appears that the results of the expert role-based ontroller aremuh better than in the ase without roles. Over 2000 trials, we only had 32failures (versus 533 in the previous ase), and the average number of time stepsis 626.05 (versus 1759.45 in the previous ase).The ontroller involving roles proved to be both more e�ient and easier todesign sine the oupling between roles and ations was often straight-forward.Of ourse, this might ome from the fat that our design is less aurate in the



�rst ase than in the seond. Atually, we devoted muh less time to the designof the role-based ontroller, but sine we had designed the other one beforehandand learned from it, we annot draw too many onlusions out of that.6.2 Turning on the adaptive algorithmsWe used the adaptive apabilities of our algorithm by turning on the adaptivealgorithms during 9 trials only, then turning them o� again and measuring theperformane of the evolved system on 2000 more trials. Before adaptation, theinitial ontroller of eah agent inluded 60 rules. The adaptation mainly onsistedin speializing these ontrollers, hene the number of rules reahed 139, 149 and153 respetively after the adaptation trials.As a result, we further improved the performane of our ontrollers. Over 2000trials, we only had 24 failures (versus 32 without adaptation), and the averagenumber of time steps dropped to 568.55 (versus 626.05 without adaptation).7 A further inquiryAlthough the hand-rafted role-based ontrollers appeared more e�ientthan the ones without roles, we did want to hek whether it would be more orless robust with respet to the size of the agents population. Therefore, we deid-ed to test the robustness of both ontrol poliies when the number of sheepdogagents was inreased from three to nine. We disovered that the performane ofthe ontroller without roles inreases as the number of agents is augmented but,quite surprisingly, the performane of the ontroller involving roles rather tendsto derease. For eah number of agents, we ran more than 500 experiments, so weare positive about the fat that this phenomenon is not a statistial artifat. Inorder to explain it, we examined more losely a lot of simulation runs displayedby a graphial interfae. To our surprise, we disovered that the ontrollers with-out roles were often manifesting an unexpeted strategy more e�ient that theone we had in mind. This strategy is shown in �gure 3.It happens that two sheepdog agents are able to drive the �ok to the targetarea. Furthermore, this strategy seems more robust than the pre-oneived one,the duks esape less often from the sheepdog agents hase. What happened isa typial ase of favorable emergene.This phenomenon an be explained quite straight-forwardly. In the ase ofontrollers using roles, the behavior of the agents is very tightly determined. Inthe ase of ontrollers without roles, on the ontrary, the more sheepdog agentsthere are, the more likely is the situation where at least two agents are pushingthe �ok from behind as shown in �gure 3 to take plae.First, this explains that, in the role-based ase, if there are three agents, theperformane are better, sine the agents do exatly what they are told to, sothe system less often goes to unforeseen situations resulting in degraded per-formane. But this also explains that the performane does not inrease as the



Fig. 3. An emergent strategynumber of agents is augmented, sine the additional agents at exatly as thethree original ones.Moreover, the performane slightly dereases beause, as long as the agentshave not reahed the area to whih they have been assigned, they may be on theroute of the �ok already pushed by others agents. Then, the more agents thereare, the more they tend to divert the �ok away from its route to the goal area.8 Future Work and onlusionRather than showing that using roles might be detrimental to the design ofadaptive ontrollers, our experimental study has shown that a too tight pre-oneption of the roles an result in a degraded performane if a better solutionexists. This �nding makes a strong argument for the design of an adaptive systemwhih would be able to modify the organization of a soiety of agents when abetter strategy is found by hane.Therefore, we plan to extend the sope of our adaptive algorithms towardsan arhiteture re�eting the one we designed to implement the use of roles inour �ok ontrol experiment. Our algorithm will be able to reate internal stateswhen neessary and to let evolve the mapping between them and onditions onthe situation. Implementing roles as internal states will give us a ontrol systemfor an agent able to reate and evolve its own roles. Furthermore, it should beable to globally reorganize its behaviors thanks to the adaptive proesses.To summarize, we presented a simulation experiment into whih several a-gents had to solve a ommon task. In this partiular ase, it appeared that givingroles to the agents was an e�ient way to design a ontrol strategy. But it alsoappeared that a misoneption of the roles ould result in degraded performaneand robustness of the strategy. Thus we advoated for the neessity to let theroles evolve as well as the behavior of the agents.
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