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Abstract. This paper is about the use of roles in a multiagent adaptive
context. We describe a simulation experiment in which several sheepdog
agents have to coordinate their effort to drive a flock of ducks towards a
goal area. We use the Classifier System formalism to control the agents.
We show that using a notion of role is natural in such a context. We
compare the performance of an expert controller with and without roles.
Then we show how applying adaptive techniques to that “bootstrap”
controller can improve the performance with respect to expert rules.
From this empirical study, it appears that an emergent strategy gets
better results than the conception of the roles we designed by hand.
Thus we advocate the necessity of tackling the problem of evolving the
roles of the agents.

1 Introduction

The necessity of having good benchmarks to test and compare algorithms
and architectures is now central in the multiagent research community. The
Robocup [Asada and Kitano, 1999] is such a benchmark seeming both general
and complicated enough to act as a representative testbed for the entire field.
But, if one uses machine learning techniques and adaptive capabilities to solve
the complete task, the problem seems too difficult. In the particular case of
reinforcement learning techniques, the agents do not get enough feedback to
learn everything from scratch. The researchers may either use these techniques
at one particular level of the game, or use them to solve particular subtasks (for
instance, the pass to another player [Asada et al., 1999]).

Therefore, the tendency in adaptive multiagent simulations is to study much
simpler application domains. The Prey/Predator pursuit domain involving sev-
eral predators [Stone and Veloso, 1997] is such a benchmark and illustrates this
trend. But in these latter cases, the problem is often oversimplified: the agents
move in a grid-world, they have few possible actions. Hence, the problem lacks
the continuous dynamics characterizing most industrial applications. Since our
focus is on adaptive techniques and we have industrial applications in mind, we
have chosen to work on an application which appears as a good compromise be-
tween the too complex Robocup problem and the oversimplified prey-predator



problems. We draw inspiration from [Vaughan et al., 1998], who have presented
the Robot Sheepdog Project, involving a robot driving a flock of ducks towards a
goal position. The algorithm governing the behavior of the robot was first tested
in simulation and then implemented on a real robot driving a real flock of ducks.

In this paper, we present a simulated extension of the task to the case where
several robots share the goal mentioned above. Since it is neither oversimplified
nor too complex, we believe that this experiment is a good case-study to meet
and tackle the difficulties arising when one tries to combine adaptive capabilities
and multiagent coordination schemes.

The purpose of the paper is to show that explicitly using roles in a multiagent
domain is an efficient design technique improving both the resulting controllers
and their adaptive capabilities. In such a context, providing the system with the
ability to evolve roles is both something which helps finding better strategies
and something which can be done straight-forwardly with adaptive algorithms.

In a wider perspective, the general purpose of our approach is to show that
providing some expert control knowledge as a starting point to a Classifier Sys-
tem (CS) is both an efficient way to improve the expert solution through adaptive
algorithms and a good strategy to make the use of CSs feasible even for compli-
cated industrial problems— see [Sigaud, 2000] for a more complete discussion.

The paper is organized as follows. In the next section, we describe our sim-
ulator and the multiagent strategy we used to solve the task. In section 3, we
present how we implemented this strategy in the formalism of CSs. In section 4,
we give the results obtained with a hand-crafted controller. In section 5, we
show how our first hand-crafted controller was significantly improved with an
explicit use of roles, resulting in a new architecture involving a set of behaviors
devoted to the fulfillment of each role. We present the benefits which can be
drawn from such an architecture. Then, we compare the results with those ob-
tained by applying adaptive algorithms to each behavior. In section 7, we show
in an empirical study that an emergent strategy obtains better results than the
conception of the roles that we designed in section 2. Therefore we advocate in
section 8 the necessity of tackling the problem of evolving the roles of the agents.
We show how roles can be formalized as internal states and conclude that our
adaptive algorithm will provide a first step towards this functionality.

2 The problem and its representation

2.1 Description of the problem

Our simulation environment is shown in figure 1. It includes a circular arena,
a flock of ducks and some sheepdog agents who must drive the flock towards a goal
area. We tested all controllers in simulations involving three sheepdog agents and
six ducks. The ducks and the sheepdog agents have the same maximum velocity.
The goal is achieved as soon as all the ducks are inside the goal area.

The behavior of the ducks results from a combination of three tendencies.
They tend:
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e to keep away from the walls of the arena ';

e to join their mates when they see them, i.e. when they are within their
visual range;

e to flee from the sheepdog agents which are within their visual range.

Once the behavior of the ducks is implemented, our task is to design the
controllers of the sheepdog agents so that they drive the flock towards the goal
area. A first step of this design process consists in finding which features of the
simulation are relevant to achieve the goal of the sheepdog agents. This is what
we present in the next section.

2.2 Description of the pre-conceived strategy

When one programs the sheepdog agents as simply being attracted by the
center of the flock, it appears that, when a sheepdog agent is close to the flock
and follows it, the flock tends to scatter because each duck goes away from the
sheepdog along a radial straight line.

In order to solve this scattering problem, the strategy we adopted was to
design the behavior of the agents so that at least one agent should push the
flock towards the target area from behind, while at least one other agent should
follow the flock on its left hand side and another one on its right hand side so
that the flock does not scatter while being pushed.

As a result of this design, the description of the situation given to the agents
consists in a set of tests on their position, as shown in figure 2. This gives us a
first set of conditions:

! Therefore, if they are left on their own, they tend to go to the center of the arena



e isAtGoal e isOnWay

o isLeft ToFlock o isRightToFlock
e isInLeftGuidingArea e isInRightGuidingArea
e isBehindFlock e isInPushingArea

The important point is that we defined pushing and guiding areas relative
to the flock in order to implement the pushing and guiding behaviors. In order
to coordinate the actions of the agents, we also added the following tests on the
situation of other agents:

e nobodyBehindFlock e nobodyPushing

¢ nobodyInLeftGuidingArea ¢ nobodyInRightGuidingArea
e nobodyLeftToFlock e nobodyRightToFlock

e nobodyOnWay e isFlockFormed

All the behaviors of the sheepdog agents consist in going towards a certain
point. In general, when the flock is formed, the sheepdog agents react to the
center of the flock. But, when the flock is scattered, they can also react to the
duck which is closest to them or the one which is the further from the center of
the flock. The name of each behavior can be interpreted straight-forwardly. In
the case of the “driveXtoY” behaviors, it consists in going behind X with respect
to Y so as to push X towards Y. The overall behavior set is the following:

e doNothing e goToGoalCenter

e goToFlockCenter o followFlockToGoal

e goBehindFlock e goToPushingPoint

o goToLeft GuidingPoint ¢ goToRight GuidingPoint
e goToRightOfFlock e goToLeftOfFlock

e driveOutmostDuckToFlock e driveClosestDuckToFlock
e driveClosestDuckToGoal e goToClosestDuck

e goToOutmostDuck e goAwayFromFlock

The controllers of our sheepdog agents involve 16 conditions and 16 ba-
sic behaviors. Designing the controller involving these sensori-motor capabilities
consists in finding a good mapping between the conditions and the behaviors.

3 Implementing controllers as Classifier Systems

3.1 Elements of the Classifier System framework

As we have some industrial applications in mind, we want to use a formalism
into which we can put some expert control knowledge. But we also want to
use adaptive techniques. In this context, the Classifier System (CS) formalism
appears as a natural candidate.

The CS framework [Holland, 1975] gave rise to popular adaptive algorithms.
A classical CS is composed of a population of rules, or classifiers, containing
observations composed of conditions and actions:



[Observation] — [Action](Strength)

The different parts of the classifier are strings of symbolsin {0, 1, #}, where #
means “either 0 or 1”. The strength of the classifier can be modified by the Bucket
Brigade algorithm [Holland, 1975] according to the estimated reward given to
the agent for firing the classifier. The population of classifiers is generally evolved
thanks to a genetic algorithm — see [Goldberg, 1989] — using the strength of the
classifiers as a fitness measure. When several classifiers can be fired in the same
state, the strength is also used to select the one which will be fired.

Recently, a new way of using the CS framework has received a growing in-
terest [Stolzmann, 1998]. Based on ideas of [Riolo, 1990], it consists in adding in
the classifiers an [Effect] part which allows the system to use the rules for antici-
pating rather than merely reacting to the environment. It uses direct experience
in order to build new classifiers, instead of relying on a genetic algorithm. The
classifiers of such CSs contain the following components:

[Observation][Action] — [Effect] (quality parameters)

The learning process of such CSs can be decomposed into two complementary
processes:

e latent learning consists in building a reliable model of the dynamics of
the environment, by ensuring that the [Effect] part of all classifiers are correct.
This new part provides information about state transitions and allows planning.
The latent learning process can take place at each time step regardless of a
goal, hence it is very efficient. In particular, as [Witkowski, 1997] has shown,
the quality of anticipation of every classifier which can be fired at a time can
be updated according to the subsequent input message, even if the classifier has
not actually been fired;

e reinforcement learning consists in improving a policy using the experience
of the system, so that it becomes able to choose the optimal action in every
state. This process takes advantage of latent learning to converge faster.

3.2 Our Algorithm

Our own classifiers contain the following components:
[Observation][Action] — [Effect] (Qe, R, Qa)

e (). is the quality of the effect part of the classifier, also known as the quality
of anticipation. It estimates the transition probability between the observation
and the effect when the action is chosen.

e R estimates the immediate reward received by the system when the classifier
is fired.

e (), is the quality of the action represented by the classifier. It corresponds
in classical CSs to the Strength parameter used in the action selection process.

The latent learning process creates and deletes classifiers, and adjusts the
qualities of anticipation. Let us consider a classifier with an [Observation] part



matching the previous state and whose action is the one which has been chosen
at the previous time step.

If the classifier was able to anticipate the current state, we increase its @,
even if it was not fired. If it was not able to, we decrease its ). and a new
classifier may be created, which would anticipate well. This process allows to
discover new [Effect] parts.

New [Observation] parts are discovered by a specialization process. A classifi-
er whose (). has been sometimes increased and sometimes decreased is such that
its [Observation] part matches several distinct states. It is too general, there-
fore its anticipation is sometimes correct and sometimes not. Such classifiers are
replaced by new classifiers with more specialized [Observation] parts.

These mechanisms allow the system to converge towards a set of accurate
classifiers anticipating correctly. We use this information about the state transi-
tions in order to improve the reinforcement learning process.

The first part of this process consists in estimating the immediate reward
resulting from the firing of each classifier. At each time step, we use the received
reward to update an estimation of the immediate reward (R) of every classifier
involving the last action and the last state, even if it has not actually been fired.
The state transition informations and the immediate reward estimations allow to
use a Dynamic Programming algorithm [Bellman, 1957] to compute the quality
of the action (Q,) for each classifier. These qualities define the policy.

A more precise description of this algorithm can be found in [Gérard, 2000].

4 Empirical Study without roles

4.1 Using a hand-crafted controller

In this section, we present results obtained by hand-crafted controllers with-
out turning the adaptive capabilities on. Rather than initializing CSs with ran-
dom classifiers or completely general ones, we first try to use the CS formalism
for implementing expert rules without using its adaptive capabilities.

In table 1, we present the controller that we designed in order to implement
the solution described in section 2.2. It can be seen that we only use 13 of the
16 available inputs.

We ran 2000 experiments to get a statistically significant view of the results
obtained with this controller. During a trial, if the goal is not reached after 4000
time steps, we consider that the controller results in a loop behavior and will
never succeed, hence we stop the trial. We must also mention that the goal is
never reached in less than 115 time steps, which is the minimum number of time
steps for the sheepdog agents to surround the flock and drive it to the goal from
a lucky initial situation.

The average number of time steps to reach the goal is 1759.45. The controller
is stopped after 4000 time steps in 26.65% of the trials.

From table 1, it can be seen that the representation using a “flat” controller is
not very compact: there are a lot of “#”, which means that each expert classifier



Action
goToGoalCenter
goToFlockCenter
goToPushingPoint
goBehindFlock
goBehindFlock
goBehindFlock
goBehindFlock
followFlockToGoal
followFlockToGoal
goToLeftPushingPoint
goToRightPushingPoint
goToRightPushingPoint
goToRightPushingPoint
goToLeftofFlock
goToLeftofFlock
goToLeftPushingPoint
goToLeftPushingPoint
goToRightofFlock
goToRightofFlock
driveClosestDuckToFlock
goToOutmostDuck
goToClosestDuck
driveOutmostDuckToFlock
goAwayFromFlock
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Table 1. A hand-crafted controller

uses very few of the available inputs. As a result, the controller is difficult to
design and is not very efficient.

Furthermore, the adaptive algorithms of the CS would be slow to converge
on such a representation, since the search space is too big. Therefore, rather
than trying to adapt it, we first tried to add further structure in our controller,
as explained in the next section.

5 An architecture to deal with roles

The notion of role appears naturally in the strategy we presented in sec-
tion 2.2. In our solution, at least one agent must push the flock from behind
(playing a PUSHER role) and at least one agent must guide the flock on its



left hand side and another one on its right hand side (playing LEFTGUIDE and
RIGHTGUIDE roles respectively). Therefore we tried to modify the architecture
of the controller used in section 3 so as to make an explicit use of roles. Our new
architecture contains two kinds of components:

e The role table is a CS stating under which conditions on the situation
a agent changes his role into another role. If no observation matches, the role
remains the same. The roles are initialized so that each agent chooses between
FUTUREPUSHER, FUTURELEFTGUIDE and FUTURERIGHTGUIDE randomly, but
in such a way that each role is assigned to at least one agent.

e The behavior tables are CSs which fire actions of the agent according to
conditions on the situation. There is one table for each role. Hence, there is only
one behavior table active at a time, the one which corresponds to the role played
by the agent.

Former Role New Role
FuturePusher Pusher
FutureLeftGuide |LeftGuide
FutureRightGuide|RightGuide
FuturePusher FuturePusher
FutureLeftGuide |FutureLeftGuide
FutureRightGuide|FutureRightGuide

o 33k ~ 3 3k — 3k 3~ 3 3| isInRightGuidingAreal

FHFH o oo oo o~ | isFlockFormed

H o 3 ~ 3 H — 3k F — H| isInLeftGuidingArea

H 3 © 3=~ H F — F 3k ~| isInPushingArea

Pusher FuturePusher
LeftGuide FutureLeftGuide
RightGuide FutureRightGuide
Pusher FuturePusher
LeftGuide FutureLeftGuide
RightGuide FutureRightGuide

Table 2. The role table

Our role table is shown in table 2. We have 6 behaviors, each one correspond-
ing to the fulfillment of one particular role, i.e. PUSHERBEHAVIOR, LEFTGUIDE-
BEHAVIOR, RIGHTGUIDEBEHAVIOR, FUTUREPUSHERBEHAVIOR, FUTURELEFT-
GUIDEBEHAVIOR, FUTURERIGHTGUIDEBEHAVIOR. As an example, the initial
PUSHERBEHAVIOR table is shown in table 3.

Introducing roles in our architecture brings several benefits.



Action
goToGoalCenter
goToFlockCenter
goBehindFlock
driveOutmostDuckToFlock
goToOutmostDuck
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# 3 3 3 ~| nobodyOnWay
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Table 3. The PusHERBEHAVIOR table

e It is easier to design a behavior CS devoted to fulfill one particular role,
since a particular role corresponds to a specialized part of the global behavior.
Hence, each behavior table is much smaller than the table presented in section 3.

e It is easier to design an internal reinforcement signal policy when we use
roles. Generally, fulfilling a role corresponds to reaching a particular situation
which can be detected by the agent, and/or to insure that some validity condi-
tions hold. Then the agents can be rewarded or punished if the first condition
holds or the second one is broken. In our flock control example, for instance,
playing a FUTURELEFTGUIDE role involves both reaching the left GuidingArea
and keeping the flock formed. Hence, an agent holding the FUTURELEFTGUIDE
role can be rewarded when he reaches the leftGuidingArea and punished if the
flock is scattered. We think that this way of providing intermediate reinforcement
signals is less ad hoc than it was in [Matari¢, 1994], for instance.

6 Empirical Study with roles

As in section 3, we studied the performance of this new architecture first
with hand-crafted classifiers, and then with the adaptive algorithms turned on.

6.1 Using a hand-crafted controller

First of all, it appears that the results of the expert role-based controller are
much better than in the case without roles. Over 2000 trials, we only had 32
failures (versus 533 in the previous case), and the average number of time steps
is 626.05 (versus 1759.45 in the previous case).

The controller involving roles proved to be both more efficient and easier to
design since the coupling between roles and actions was often straight-forward.
Of course, this might come from the fact that our design is less accurate in the



first case than in the second. Actually, we devoted much less time to the design
of the role-based controller, but since we had designed the other one beforehand
and learned from it, we cannot draw too many conclusions out of that.

6.2 Turning on the adaptive algorithms

We used the adaptive capabilities of our algorithm by turning on the adaptive
algorithms during 9 trials only, then turning them off again and measuring the
performance of the evolved system on 2000 more trials. Before adaptation, the
initial controller of each agent included 60 rules. The adaptation mainly consisted
in specializing these controllers, hence the number of rules reached 139, 149 and
153 respectively after the adaptation trials.

As aresult, we further improved the performance of our controllers. Over 2000
trials, we only had 24 failures (versus 32 without adaptation), and the average
number of time steps dropped to 568.55 (versus 626.05 without adaptation).

7 A further inquiry

Although the hand-crafted role-based controllers appeared more efficient
than the ones without roles, we did want to check whether it would be more or
less robust with respect to the size of the agents population. Therefore, we decid-
ed to test the robustness of both control policies when the number of sheepdog
agents was increased from three to nine. We discovered that the performance of
the controller without roles increases as the number of agents is augmented but,
quite surprisingly, the performance of the controller involving roles rather tends
to decrease. For each number of agents, we ran more than 500 experiments, so we
are positive about the fact that this phenomenon is not a statistical artifact. In
order to explain it, we examined more closely a lot of simulation runs displayed
by a graphical interface. To our surprise, we discovered that the controllers with-
out roles were often manifesting an unexpected strategy more efficient that the
one we had in mind. This strategy is shown in figure 3.

It happens that two sheepdog agents are able to drive the flock to the target
area. Furthermore, this strategy seems more robust than the pre-conceived one,
the ducks escape less often from the sheepdog agents chase. What happened is
a typical case of favorable emergence.

This phenomenon can be explained quite straight-forwardly. In the case of
controllers using roles, the behavior of the agents is very tightly determined. In
the case of controllers without roles, on the contrary, the more sheepdog agents
there are, the more likely is the situation where at least two agents are pushing
the flock from behind as shown in figure 3 to take place.

First, this explains that, in the role-based case, if there are three agents, the
performance are better, since the agents do exactly what they are told to, so
the system less often goes to unforeseen situations resulting in degraded per-
formance. But this also explains that the performance does not increase as the



Fig. 3. An emergent strategy

number of agents is augmented, since the additional agents act exactly as the
three original ones.

Moreover, the performance slightly decreases because, as long as the agents
have not reached the area to which they have been assigned, they may be on the
route of the flock already pushed by others agents. Then, the more agents there
are, the more they tend to divert the flock away from its route to the goal area.

8 Future Work and conclusion

Rather than showing that using roles might be detrimental to the design of
adaptive controllers, our experimental study has shown that a too tight pre-
conception of the roles can result in a degraded performance if a better solution
exists. This finding makes a strong argument for the design of an adaptive system
which would be able to modify the organization of a society of agents when a
better strategy is found by chance.

Therefore, we plan to extend the scope of our adaptive algorithms towards
an architecture reflecting the one we designed to implement the use of roles in
our flock control experiment. Our algorithm will be able to create internal states
when necessary and to let evolve the mapping between them and conditions on
the situation. Implementing roles as internal states will give us a control system
for an agent able to create and evolve its own roles. Furthermore, it should be
able to globally reorganize its behaviors thanks to the adaptive processes.

To summarize, we presented a simulation experiment into which several a-
gents had to solve a common task. In this particular case, it appeared that giving
roles to the agents was an efficient way to design a control strategy. But it also
appeared that a misconception of the roles could result in degraded performance
and robustness of the strategy. Thus we advocated for the necessity to let the
roles evolve as well as the behavior of the agents.
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