
The use of roles in a multiagent adaptivesimulationOlivier Sigaud1 and Pierre Gérard1;21 Dassault Aviation, DGT/DPR/DESA78, Quai Mar
el Dassault, 92552 St-Cloud Cedex2 AnimatLab-LIP6, 8, rue du 
apitaine S
ott, 75015 PARISolivier.sigaud�dassault-aviation.fr pierre.gerard�lip6.frAbstra
t. This paper is about the use of roles in a multiagent adaptive
ontext. We des
ribe a simulation experiment in whi
h several sheepdogagents have to 
oordinate their e�ort to drive a �o
k of du
ks towards agoal area. We use the Classi�er System formalism to 
ontrol the agents.We show that using a notion of role is natural in su
h a 
ontext. We
ompare the performan
e of an expert 
ontroller with and without roles.Then we show how applying adaptive te
hniques to that �bootstrap�
ontroller 
an improve the performan
e with respe
t to expert rules.From this empiri
al study, it appears that an emergent strategy getsbetter results than the 
on
eption of the roles we designed by hand.Thus we advo
ate the ne
essity of ta
kling the problem of evolving theroles of the agents.1 Introdu
tionThe ne
essity of having good ben
hmarks to test and 
ompare algorithmsand ar
hite
tures is now 
entral in the multiagent resear
h 
ommunity. TheRobo
up [Asada and Kitano, 1999℄ is su
h a ben
hmark seeming both generaland 
ompli
ated enough to a
t as a representative testbed for the entire �eld.But, if one uses ma
hine learning te
hniques and adaptive 
apabilities to solvethe 
omplete task, the problem seems too di�
ult. In the parti
ular 
ase ofreinfor
ement learning te
hniques, the agents do not get enough feedba
k tolearn everything from s
rat
h. The resear
hers may either use these te
hniquesat one parti
ular level of the game, or use them to solve parti
ular subtasks (forinstan
e, the pass to another player [Asada et al., 1999℄).Therefore, the tenden
y in adaptive multiagent simulations is to study mu
hsimpler appli
ation domains. The Prey/Predator pursuit domain involving sev-eral predators [Stone and Veloso, 1997℄ is su
h a ben
hmark and illustrates thistrend. But in these latter 
ases, the problem is often oversimpli�ed: the agentsmove in a grid-world, they have few possible a
tions. Hen
e, the problem la
ksthe 
ontinuous dynami
s 
hara
terizing most industrial appli
ations. Sin
e ourfo
us is on adaptive te
hniques and we have industrial appli
ations in mind, wehave 
hosen to work on an appli
ation whi
h appears as a good 
ompromise be-tween the too 
omplex Robo
up problem and the oversimpli�ed prey-predator



problems. We draw inspiration from [Vaughan et al., 1998℄, who have presentedthe Robot Sheepdog Proje
t, involving a robot driving a �o
k of du
ks towards agoal position. The algorithm governing the behavior of the robot was �rst testedin simulation and then implemented on a real robot driving a real �o
k of du
ks.In this paper, we present a simulated extension of the task to the 
ase whereseveral robots share the goal mentioned above. Sin
e it is neither oversimpli�ednor too 
omplex, we believe that this experiment is a good 
ase-study to meetand ta
kle the di�
ulties arising when one tries to 
ombine adaptive 
apabilitiesand multiagent 
oordination s
hemes.The purpose of the paper is to show that expli
itly using roles in a multiagentdomain is an e�
ient design te
hnique improving both the resulting 
ontrollersand their adaptive 
apabilities. In su
h a 
ontext, providing the system with theability to evolve roles is both something whi
h helps �nding better strategiesand something whi
h 
an be done straight-forwardly with adaptive algorithms.In a wider perspe
tive, the general purpose of our approa
h is to show thatproviding some expert 
ontrol knowledge as a starting point to a Classi�er Sys-tem (CS) is both an e�
ient way to improve the expert solution through adaptivealgorithms and a good strategy to make the use of CSs feasible even for 
ompli-
ated industrial problems� see [Sigaud, 2000℄ for a more 
omplete dis
ussion.The paper is organized as follows. In the next se
tion, we des
ribe our sim-ulator and the multiagent strategy we used to solve the task. In se
tion 3, wepresent how we implemented this strategy in the formalism of CSs. In se
tion 4,we give the results obtained with a hand-
rafted 
ontroller. In se
tion 5, weshow how our �rst hand-
rafted 
ontroller was signi�
antly improved with anexpli
it use of roles, resulting in a new ar
hite
ture involving a set of behaviorsdevoted to the ful�llment of ea
h role. We present the bene�ts whi
h 
an bedrawn from su
h an ar
hite
ture. Then, we 
ompare the results with those ob-tained by applying adaptive algorithms to ea
h behavior. In se
tion 7, we showin an empiri
al study that an emergent strategy obtains better results than the
on
eption of the roles that we designed in se
tion 2. Therefore we advo
ate inse
tion 8 the ne
essity of ta
kling the problem of evolving the roles of the agents.We show how roles 
an be formalized as internal states and 
on
lude that ouradaptive algorithm will provide a �rst step towards this fun
tionality.2 The problem and its representation2.1 Des
ription of the problemOur simulation environment is shown in �gure 1. It in
ludes a 
ir
ular arena,a �o
k of du
ks and some sheepdog agents who must drive the �o
k towards a goalarea. We tested all 
ontrollers in simulations involving three sheepdog agents andsix du
ks. The du
ks and the sheepdog agents have the same maximum velo
ity.The goal is a
hieved as soon as all the du
ks are inside the goal area.The behavior of the du
ks results from a 
ombination of three tenden
ies.They tend:



Ducks

Target Area

Sheepdog Agents

Arena

Fig. 1. The arena, du
ks and sheepdogs isRightToFlock

Flock limit

isLeftToFlock

isAtGoal

isBehindFlock

isInPushingArea

isInRightGuidingArea
isInLeftGuidingArea

(BetweenFlockAndGoal)
isOnWay

Fig. 2. Des
ription of the situation� to keep away from the walls of the arena 1;� to join their mates when they see them, i.e. when they are within theirvisual range;� to �ee from the sheepdog agents whi
h are within their visual range.On
e the behavior of the du
ks is implemented, our task is to design the
ontrollers of the sheepdog agents so that they drive the �o
k towards the goalarea. A �rst step of this design pro
ess 
onsists in �nding whi
h features of thesimulation are relevant to a
hieve the goal of the sheepdog agents. This is whatwe present in the next se
tion.2.2 Des
ription of the pre-
on
eived strategyWhen one programs the sheepdog agents as simply being attra
ted by the
enter of the �o
k, it appears that, when a sheepdog agent is 
lose to the �o
kand follows it, the �o
k tends to s
atter be
ause ea
h du
k goes away from thesheepdog along a radial straight line.In order to solve this s
attering problem, the strategy we adopted was todesign the behavior of the agents so that at least one agent should push the�o
k towards the target area from behind, while at least one other agent shouldfollow the �o
k on its left hand side and another one on its right hand side sothat the �o
k does not s
atter while being pushed.As a result of this design, the des
ription of the situation given to the agents
onsists in a set of tests on their position, as shown in �gure 2. This gives us a�rst set of 
onditions:1 Therefore, if they are left on their own, they tend to go to the 
enter of the arena



� isAtGoal � isOnWay� isLeftToFlo
k � isRightToFlo
k� isInLeftGuidingArea � isInRightGuidingArea� isBehindFlo
k � isInPushingAreaThe important point is that we de�ned pushing and guiding areas relativeto the �o
k in order to implement the pushing and guiding behaviors. In orderto 
oordinate the a
tions of the agents, we also added the following tests on thesituation of other agents:� nobodyBehindFlo
k � nobodyPushing� nobodyInLeftGuidingArea � nobodyInRightGuidingArea� nobodyLeftToFlo
k � nobodyRightToFlo
k� nobodyOnWay � isFlo
kFormedAll the behaviors of the sheepdog agents 
onsist in going towards a 
ertainpoint. In general, when the �o
k is formed, the sheepdog agents rea
t to the
enter of the �o
k. But, when the �o
k is s
attered, they 
an also rea
t to thedu
k whi
h is 
losest to them or the one whi
h is the further from the 
enter ofthe �o
k. The name of ea
h behavior 
an be interpreted straight-forwardly. Inthe 
ase of the �driveXtoY� behaviors, it 
onsists in going behind X with respe
tto Y so as to push X towards Y. The overall behavior set is the following:� doNothing � goToGoalCenter� goToFlo
kCenter � followFlo
kToGoal� goBehindFlo
k � goToPushingPoint� goToLeftGuidingPoint � goToRightGuidingPoint� goToRightOfFlo
k � goToLeftOfFlo
k� driveOutmostDu
kToFlo
k � driveClosestDu
kToFlo
k� driveClosestDu
kToGoal � goToClosestDu
k� goToOutmostDu
k � goAwayFromFlo
kThe 
ontrollers of our sheepdog agents involve 16 
onditions and 16 ba-si
 behaviors. Designing the 
ontroller involving these sensori-motor 
apabilities
onsists in �nding a good mapping between the 
onditions and the behaviors.3 Implementing 
ontrollers as Classi�er Systems3.1 Elements of the Classi�er System frameworkAs we have some industrial appli
ations in mind, we want to use a formalisminto whi
h we 
an put some expert 
ontrol knowledge. But we also want touse adaptive te
hniques. In this 
ontext, the Classi�er System (CS) formalismappears as a natural 
andidate.The CS framework [Holland, 1975℄ gave rise to popular adaptive algorithms.A 
lassi
al CS is 
omposed of a population of rules, or 
lassi�ers, 
ontainingobservations 
omposed of 
onditions and a
tions:



[Observation℄ ! [A
tion℄(Strength)The di�erent parts of the 
lassi�er are strings of symbols in f0; 1;#g, where#means �either 0 or 1�. The strength of the 
lassi�er 
an be modi�ed by the Bu
ketBrigade algorithm [Holland, 1975℄ a

ording to the estimated reward given tothe agent for �ring the 
lassi�er. The population of 
lassi�ers is generally evolvedthanks to a geneti
 algorithm � see [Goldberg, 1989℄ � using the strength of the
lassi�ers as a �tness measure. When several 
lassi�ers 
an be �red in the samestate, the strength is also used to sele
t the one whi
h will be �red.Re
ently, a new way of using the CS framework has re
eived a growing in-terest [Stolzmann, 1998℄. Based on ideas of [Riolo, 1990℄, it 
onsists in adding inthe 
lassi�ers an [E�e
t℄ part whi
h allows the system to use the rules for anti
i-pating rather than merely rea
ting to the environment. It uses dire
t experien
ein order to build new 
lassi�ers, instead of relying on a geneti
 algorithm. The
lassi�ers of su
h CSs 
ontain the following 
omponents:[Observation℄[A
tion℄ ! [E�e
t℄ (quality parameters)The learning pro
ess of su
h CSs 
an be de
omposed into two 
omplementarypro
esses:� latent learning 
onsists in building a reliable model of the dynami
s ofthe environment, by ensuring that the [E�e
t℄ part of all 
lassi�ers are 
orre
t.This new part provides information about state transitions and allows planning.The latent learning pro
ess 
an take pla
e at ea
h time step regardless of agoal, hen
e it is very e�
ient. In parti
ular, as [Witkowski, 1997℄ has shown,the quality of anti
ipation of every 
lassi�er whi
h 
an be �red at a time 
anbe updated a

ording to the subsequent input message, even if the 
lassi�er hasnot a
tually been �red;� reinfor
ement learning 
onsists in improving a poli
y using the experien
eof the system, so that it be
omes able to 
hoose the optimal a
tion in everystate. This pro
ess takes advantage of latent learning to 
onverge faster.3.2 Our AlgorithmOur own 
lassi�ers 
ontain the following 
omponents:[Observation℄[A
tion℄ ! [E�e
t℄ (Qe; R; Qa)� Qe is the quality of the e�e
t part of the 
lassi�er, also known as the qualityof anti
ipation. It estimates the transition probability between the observationand the e�e
t when the a
tion is 
hosen.�R estimates the immediate reward re
eived by the system when the 
lassi�eris �red.� Qa is the quality of the a
tion represented by the 
lassi�er. It 
orrespondsin 
lassi
al CSs to the Strength parameter used in the a
tion sele
tion pro
ess.The latent learning pro
ess 
reates and deletes 
lassi�ers, and adjusts thequalities of anti
ipation. Let us 
onsider a 
lassi�er with an [Observation℄ part



mat
hing the previous state and whose a
tion is the one whi
h has been 
hosenat the previous time step.If the 
lassi�er was able to anti
ipate the 
urrent state, we in
rease its Qe,even if it was not �red. If it was not able to, we de
rease its Qe and a new
lassi�er may be 
reated, whi
h would anti
ipate well. This pro
ess allows todis
over new [E�e
t℄ parts.New [Observation℄ parts are dis
overed by a spe
ialization pro
ess. A 
lassi�-er whose Qe has been sometimes in
reased and sometimes de
reased is su
h thatits [Observation℄ part mat
hes several distin
t states. It is too general, there-fore its anti
ipation is sometimes 
orre
t and sometimes not. Su
h 
lassi�ers arerepla
ed by new 
lassi�ers with more spe
ialized [Observation℄ parts.These me
hanisms allow the system to 
onverge towards a set of a

urate
lassi�ers anti
ipating 
orre
tly. We use this information about the state transi-tions in order to improve the reinfor
ement learning pro
ess.The �rst part of this pro
ess 
onsists in estimating the immediate rewardresulting from the �ring of ea
h 
lassi�er. At ea
h time step, we use the re
eivedreward to update an estimation of the immediate reward (R) of every 
lassi�erinvolving the last a
tion and the last state, even if it has not a
tually been �red.The state transition informations and the immediate reward estimations allow touse a Dynami
 Programming algorithm [Bellman, 1957℄ to 
ompute the qualityof the a
tion (Qa) for ea
h 
lassi�er. These qualities de�ne the poli
y.A more pre
ise des
ription of this algorithm 
an be found in [Gérard, 2000℄.4 Empiri
al Study without roles4.1 Using a hand-
rafted 
ontrollerIn this se
tion, we present results obtained by hand-
rafted 
ontrollers with-out turning the adaptive 
apabilities on. Rather than initializing CSs with ran-dom 
lassi�ers or 
ompletely general ones, we �rst try to use the CS formalismfor implementing expert rules without using its adaptive 
apabilities.In table 1, we present the 
ontroller that we designed in order to implementthe solution des
ribed in se
tion 2.2. It 
an be seen that we only use 13 of the16 available inputs.We ran 2000 experiments to get a statisti
ally signi�
ant view of the resultsobtained with this 
ontroller. During a trial, if the goal is not rea
hed after 4000time steps, we 
onsider that the 
ontroller results in a loop behavior and willnever su

eed, hen
e we stop the trial. We must also mention that the goal isnever rea
hed in less than 115 time steps, whi
h is the minimum number of timesteps for the sheepdog agents to surround the �o
k and drive it to the goal froma lu
ky initial situation.The average number of time steps to rea
h the goal is 1759.45. The 
ontrolleris stopped after 4000 time steps in 26.65% of the trials.From table 1, it 
an be seen that the representation using a ��at� 
ontroller isnot very 
ompa
t: there are a lot of �#�, whi
h means that ea
h expert 
lassi�er



isBehindFlo
k isInPushingAre
a

isLeftToFlo
k isRightToFlo
k isInLeftGuiding
Area

isInRightGuidin
gArea

isOnWay nobodyBehindF
lo
k

nobodyPushing nobodyLeftToF
lo
k

nobodyRightTo
Flo
k

nobodyOnWay isFlo
kFormed A
tion# 1 # # # # # # # # # 1 1 goToGoalCenter# 1 # # # # # # # # # 1 1 goToFlo
kCenter1 # # # # # # # 1 # # # # goToPushingPoint# # 1 # # # # 1 # # # # # goBehindFlo
k# # 1 # # # # # 1 # # # # goBehindFlo
k# # # 1 # # # 1 # # # # # goBehindFlo
k# # # 1 # # # # 1 # # # # goBehindFlo
k# # 1 # 1 # # 0 0 # # 1 1 followFlo
kToGoal# # # 1 # 1 # 0 0 # # 1 1 followFlo
kToGoal# # 1 # 0 # # # # # # 1 1 goToLeftPushingPoint# # # 1 # 0 # # # # # 1 1 goToRightPushingPoint# # # # # # 1 # # # 1 # # goToRightPushingPoint# # # # # # 1 0 # 0 # # # goToRightPushingPoint# # # # # # 1 # # # 1 # # goToLeftofFlo
k# # # # # # 1 0 # 0 # # # goToLeftofFlo
k# # # # # # 1 # # 1 # # # goToLeftPushingPoint# # # # # # 1 0 # # 0 # # goToLeftPushingPoint# # # # # # 1 # # 1 # # # goToRightofFlo
k# # # # # # 1 0 # # 0 # # goToRightofFlo
k# # # # # # # # # # # # 0 driveClosestDu
kToFlo
k# # # # # # # # # # # # 0 goToOutmostDu
k# # # # # # # # # # # # 0 goToClosestDu
k# # # # # # # # # # # # 0 driveOutmostDu
kToFlo
k# # # # # # # # # # # # 0 goAwayFromFlo
kTable 1. A hand-
rafted 
ontrolleruses very few of the available inputs. As a result, the 
ontroller is di�
ult todesign and is not very e�
ient.Furthermore, the adaptive algorithms of the CS would be slow to 
onvergeon su
h a representation, sin
e the sear
h spa
e is too big. Therefore, ratherthan trying to adapt it, we �rst tried to add further stru
ture in our 
ontroller,as explained in the next se
tion.5 An ar
hite
ture to deal with rolesThe notion of role appears naturally in the strategy we presented in se
-tion 2.2. In our solution, at least one agent must push the �o
k from behind(playing a Pusher role) and at least one agent must guide the �o
k on its



left hand side and another one on its right hand side (playing LeftGuide andRightGuide roles respe
tively). Therefore we tried to modify the ar
hite
tureof the 
ontroller used in se
tion 3 so as to make an expli
it use of roles. Our newar
hite
ture 
ontains two kinds of 
omponents:� The role table is a CS stating under whi
h 
onditions on the situationa agent 
hanges his role into another role. If no observation mat
hes, the roleremains the same. The roles are initialized so that ea
h agent 
hooses betweenFuturePusher, FutureLeftGuide and FutureRightGuide randomly, butin su
h a way that ea
h role is assigned to at least one agent.� The behavior tables are CSs whi
h �re a
tions of the agent a

ording to
onditions on the situation. There is one table for ea
h role. Hen
e, there is onlyone behavior table a
tive at a time, the one whi
h 
orresponds to the role playedby the agent.
isInPushingAre
a

isInLeftGuiding
Area

isInRightGuidin
gArea

isFlo
kFormed Former Role New Role1 # # 1 FuturePusher Pusher# 1 # 1 FutureLeftGuide LeftGuide# # 1 1 FutureRightGuide RightGuide1 # # 0 FuturePusher FuturePusher# 1 # 0 FutureLeftGuide FutureLeftGuide# # 1 0 FutureRightGuide FutureRightGuide1 # # 0 Pusher FuturePusher# 1 # 0 LeftGuide FutureLeftGuide# # 1 0 RightGuide FutureRightGuide0 # # # Pusher FuturePusher# 0 # # LeftGuide FutureLeftGuide# # 0 # RightGuide FutureRightGuideTable 2. The role tableOur role table is shown in table 2. We have 6 behaviors, ea
h one 
orrespond-ing to the ful�llment of one parti
ular role, i.e. PusherBehavior, LeftGuide-Behavior, RightGuideBehavior, FuturePusherBehavior, FutureLeft-GuideBehavior, FutureRightGuideBehavior. As an example, the initialPusherBehavior table is shown in table 3.Introdu
ing roles in our ar
hite
ture brings several bene�ts.



isInPushingAre
a

isBehindFlo
k nobodyOnWay nobodyLeftToF
lo
k

nobodyRightTo
Flo
k

isFlo
kFormed A
tion1 # 1 0 0 1 goToGoalCenter0 1 # # # 1 goToFlo
kCenter# 0 # # # 1 goBehindFlo
k# 0 # # # 0 driveOutmostDu
kToFlo
k# 1 # # # 0 goToOutmostDu
kTable 3. The PusherBehavior table� It is easier to design a behavior CS devoted to ful�ll one parti
ular role,sin
e a parti
ular role 
orresponds to a spe
ialized part of the global behavior.Hen
e, ea
h behavior table is mu
h smaller than the table presented in se
tion 3.� It is easier to design an internal reinfor
ement signal poli
y when we useroles. Generally, ful�lling a role 
orresponds to rea
hing a parti
ular situationwhi
h 
an be dete
ted by the agent, and/or to insure that some validity 
ondi-tions hold. Then the agents 
an be rewarded or punished if the �rst 
onditionholds or the se
ond one is broken. In our �o
k 
ontrol example, for instan
e,playing a FutureLeftGuide role involves both rea
hing the leftGuidingAreaand keeping the �o
k formed. Hen
e, an agent holding the FutureLeftGuiderole 
an be rewarded when he rea
hes the leftGuidingArea and punished if the�o
k is s
attered. We think that this way of providing intermediate reinfor
ementsignals is less ad ho
 than it was in [Matari¢, 1994℄, for instan
e.6 Empiri
al Study with rolesAs in se
tion 3, we studied the performan
e of this new ar
hite
ture �rstwith hand-
rafted 
lassi�ers, and then with the adaptive algorithms turned on.6.1 Using a hand-
rafted 
ontrollerFirst of all, it appears that the results of the expert role-based 
ontroller aremu
h better than in the 
ase without roles. Over 2000 trials, we only had 32failures (versus 533 in the previous 
ase), and the average number of time stepsis 626.05 (versus 1759.45 in the previous 
ase).The 
ontroller involving roles proved to be both more e�
ient and easier todesign sin
e the 
oupling between roles and a
tions was often straight-forward.Of 
ourse, this might 
ome from the fa
t that our design is less a

urate in the



�rst 
ase than in the se
ond. A
tually, we devoted mu
h less time to the designof the role-based 
ontroller, but sin
e we had designed the other one beforehandand learned from it, we 
annot draw too many 
on
lusions out of that.6.2 Turning on the adaptive algorithmsWe used the adaptive 
apabilities of our algorithm by turning on the adaptivealgorithms during 9 trials only, then turning them o� again and measuring theperforman
e of the evolved system on 2000 more trials. Before adaptation, theinitial 
ontroller of ea
h agent in
luded 60 rules. The adaptation mainly 
onsistedin spe
ializing these 
ontrollers, hen
e the number of rules rea
hed 139, 149 and153 respe
tively after the adaptation trials.As a result, we further improved the performan
e of our 
ontrollers. Over 2000trials, we only had 24 failures (versus 32 without adaptation), and the averagenumber of time steps dropped to 568.55 (versus 626.05 without adaptation).7 A further inquiryAlthough the hand-
rafted role-based 
ontrollers appeared more e�
ientthan the ones without roles, we did want to 
he
k whether it would be more orless robust with respe
t to the size of the agents population. Therefore, we de
id-ed to test the robustness of both 
ontrol poli
ies when the number of sheepdogagents was in
reased from three to nine. We dis
overed that the performan
e ofthe 
ontroller without roles in
reases as the number of agents is augmented but,quite surprisingly, the performan
e of the 
ontroller involving roles rather tendsto de
rease. For ea
h number of agents, we ran more than 500 experiments, so weare positive about the fa
t that this phenomenon is not a statisti
al artifa
t. Inorder to explain it, we examined more 
losely a lot of simulation runs displayedby a graphi
al interfa
e. To our surprise, we dis
overed that the 
ontrollers with-out roles were often manifesting an unexpe
ted strategy more e�
ient that theone we had in mind. This strategy is shown in �gure 3.It happens that two sheepdog agents are able to drive the �o
k to the targetarea. Furthermore, this strategy seems more robust than the pre-
on
eived one,the du
ks es
ape less often from the sheepdog agents 
hase. What happened isa typi
al 
ase of favorable emergen
e.This phenomenon 
an be explained quite straight-forwardly. In the 
ase of
ontrollers using roles, the behavior of the agents is very tightly determined. Inthe 
ase of 
ontrollers without roles, on the 
ontrary, the more sheepdog agentsthere are, the more likely is the situation where at least two agents are pushingthe �o
k from behind as shown in �gure 3 to take pla
e.First, this explains that, in the role-based 
ase, if there are three agents, theperforman
e are better, sin
e the agents do exa
tly what they are told to, sothe system less often goes to unforeseen situations resulting in degraded per-forman
e. But this also explains that the performan
e does not in
rease as the



Fig. 3. An emergent strategynumber of agents is augmented, sin
e the additional agents a
t exa
tly as thethree original ones.Moreover, the performan
e slightly de
reases be
ause, as long as the agentshave not rea
hed the area to whi
h they have been assigned, they may be on theroute of the �o
k already pushed by others agents. Then, the more agents thereare, the more they tend to divert the �o
k away from its route to the goal area.8 Future Work and 
on
lusionRather than showing that using roles might be detrimental to the design ofadaptive 
ontrollers, our experimental study has shown that a too tight pre-
on
eption of the roles 
an result in a degraded performan
e if a better solutionexists. This �nding makes a strong argument for the design of an adaptive systemwhi
h would be able to modify the organization of a so
iety of agents when abetter strategy is found by 
han
e.Therefore, we plan to extend the s
ope of our adaptive algorithms towardsan ar
hite
ture re�e
ting the one we designed to implement the use of roles inour �o
k 
ontrol experiment. Our algorithm will be able to 
reate internal stateswhen ne
essary and to let evolve the mapping between them and 
onditions onthe situation. Implementing roles as internal states will give us a 
ontrol systemfor an agent able to 
reate and evolve its own roles. Furthermore, it should beable to globally reorganize its behaviors thanks to the adaptive pro
esses.To summarize, we presented a simulation experiment into whi
h several a-gents had to solve a 
ommon task. In this parti
ular 
ase, it appeared that givingroles to the agents was an e�
ient way to design a 
ontrol strategy. But it alsoappeared that a mis
on
eption of the roles 
ould result in degraded performan
eand robustness of the strategy. Thus we advo
ated for the ne
essity to let theroles evolve as well as the behavior of the agents.



9 A
knowledgementsThe authors want to thank the anonymous reviewers who provided veryvaluable advi
es to improve this paper.Referen
es[Asada and Kitano, 1999℄ Asada, M. and Kitano, H., (Eds.) (1999). Robo
up-98: RobotSo

er World Cup II. Le
tures Notes in Arti�
ial Intelligen
e 1604, Springer-Verlag.[Asada et al., 1999℄ Asada, M., U
hibe, E., and Hosoda, K. (1999). Cooperative behav-ior a
quisition for mobile robots in dynami
ally 
hanging real-worlds via vision-basedreinfor
ement learning and development. Arti�
ial Intelligen
e, 110(2):275�292.[Bellman, 1957℄ Bellman, R. E. (1957). Dynami
 Programming. Prin
eton UniversityPress, Prin
eton, NJ.[Gérard, 2000℄ Gérard, P. (to appear, 2000). Combining anti
ipation and dynami
programming in 
lassi�er systems. In Stolzmann, W., Lanzi, P.-L., and Wilson,S. W., (Eds.), Third International Workshop on Learning Classi�er Systems, Paris,Fran
e.[Goldberg, 1989℄ Goldberg, D. E. (1989). Geneti
 Algorithms in Sear
h, Optimization,and Ma
hine Learning. Addison Wesley.[Holland, 1975℄ Holland, J. H. (1975). Adaptation in Natural and Arti�
ial Systems.The University of Mi
higan Press.[Matari¢, 1994℄ Matari¢, M. J. (1994). Rewards fun
tions for a

elerated learning. InCohen, W. W. and Hirs
h, H., (Eds.), From Animals to Animats: Pro
eedings of theFirst International Conferen
e on Simulation of Adaptive Behavior, San Fran
is
o,CA. Morgan Kaufmann Publishers.[Riolo, 1990℄ Riolo, R. L. (1990). Lookahead planning and latent learning in a 
lassi�ersystem. In From Animals to Animats: Pro
eedings of the First International Con-feren
e on Simulation of Adaptive Behavior, pages 316�326, Cambridge, MA. MITPress.[Sigaud, 2000℄ Sigaud, O. (to appear, 2000). On the usefulness of a semi-automatized
lassi�er system: the engineering perspe
tive. In Stolzmann, W., Lanzi, P.-L., andWilson, S. W., (Eds.), Pro
eedings of the third International Workshop on LearningClassi�er Systems, Paris, Fran
e.[Stolzmann, 1998℄ Stolzmann, W. (1998). Anti
ipatory 
lassi�er systems. In Koza,J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H.,Golberg, D. E., Iba, H., and Riolo, R., (Eds.), Geneti
 Programming. Morgan Kauf-mann Publishers, In
., San Fran
is
o, CA.[Stone and Veloso, 1997℄ Stone, P. and Veloso, M. (1997). Multiagent systems: A sur-vey from a ma
hine learning perspe
tive. Te
hni
al Report CMU-CS-97-193, S
hoolof Computer S
ien
e, Carnegie Mellon University, Pittsburg, PA 15213.[Vaughan et al., 1998℄ Vaughan, R., Stumpter, N., Frost, A., and Cameron, S. (1998).Robot sheepdog proje
t a
hieves automati
 �o
k 
ontrol. In Pfeifer, R., Blumberg,B., Meyer, J.-A., and Wilson, S. W., (Eds.), From Animals to Animats 5: ro
eedingsof the Fifth International Conferen
e on Simulation of Adaptive Behavior, pages 489�493, Cambridge, MA. MIT Press.[Witkowski, 1997℄ Witkowski, C. M. (1997). S
hemes for Learning and behaviour: ANew Expe
tan
y Model. PhD thesis, Department of Computer S
ien
e, University ofLondon, England.


