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Abstract 

T h i s  paper presents  a n  original use  of Evolutionary 
Algor i thms  in order t o  approximate by a closed f o r m  
t h e  inverse k inemat ic  model ( I K M )  of analytical, non,- 
anal$ical and general (i.e. wi th  a n  arbitrary geome- 
t r y )  manipulators.  T h e  objective i s  t o  provide a f a s t  
and general solution t o  the  inverse k inemat ic  problem 
w h e n  it i s  extensively evaluated as in design processes 
of manipulators.  A mathemat ica l  f u n c t i o n  is evolved 
through Genet ic  Programming according t o  the  k n o w n  
direct k inemat ic  model t o  de termine  a n  analytical ex- 
pression which approximates the  j o i n t  variable solution 
f o r  a g iven  end-e f fec tor  configuration. As a n  illustru- 
t i o n  of th i s  evolutionary symbolic regression process, 
the  inverse k inemat ic  models of t h e  P U M A  and th.e 
G M F  A r c  M a t e  are approximated before t o  apply th.e 
algorithm t o  general 6R manipulators.  

1 Introduction 

Basically, the inverse kinematic problem (IKP) 
consists in finding the set of joint variables to achieve a 
desired configuration of the tool frame. This problem 
usually involves a set of nonlinear, coupled, algebraic 
equations and there are no general algorithms which 
may be employed to  solve it. Depending on the joint 
axis geometry of the system, closed form or numerical 

' solutions can be determined. Closed form solutions 
exist for special manipulator geometries, for instance 
decoupled manipulators and more generally when the 
degree of the characteristic polynomial is less or equal 
to 4 [8]. Only numerical solutions relying on iterative 
procedures can be used for non-special architectures. 
Literature on robotics proposes number of numerical 
methods for solving the IKP starting from modified 
Newton-Raphson algorithms, to more recent ones such 

as those exploiting polynomial continuation [ll], dya- 
litic elimination [lo], genetic algorithms [9] or neu- 
ral network [12]. Since numerical methods are gene- 
rally time consuming, it can be interesting to have an 
approximation of the IKM under an analytical form. 
This is particularly true when the IKM is involved in 
a computer-aided-design process where it has to be 
solved for many different manipulator geometries and 
extensively evaluated [7]. 

In this context, the search for techniques to pro- 
duce approximations of complex models can have an 
application to  the inverse kinematics. This paper in- 
vestigates the possibility to  find the closed form solu- 
tion of the IKP by the mean of  evolutionary symbolic 
regression. We start with a description of the algo- 
rithm principles which rely on Genetic Programming. 
Examples of 6R analytical and general manipulators 
are used to demonstrate the proposed technique vali- 
dity. 

2 Evolutionary Synibolic Regression 
Algorithm 

2.1 Principles 

The algorithm we developed seeks programs which 
approximate the inverse of a given function by the 
use of, evolutionary symbolic regression. These pro- 
grams will be the closed forms of the IKM. The algo- 
rithm relies on Genetic Programming (GP) techniques 
which are global, semi-stochastic, optimization mecha- 
nisms with intrinsic parallelism. GP is particularly 
well adapted to symbolic regression since it works on 
programs with variable sizes and shapes. 

The direct model is supposed to be known under 
the form of a mathematical function F. It can also 
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be any process getting as input the unknows, which 
can be considered as the design parameters (Y ) ,  and 
returns evaluation values (X) as output. In the case 
of the IKM, ( Y )  is the joint configuration (Y F 0) and 
(X) the configuration of the end-effector. (X) can also 
contain a set of already determined joint parameters 
(K) and the geometric parameters of the manipulator. 

The aim of the algorithm is to find a program- 
function (PF) which approximates the inverse of F: 

F ( Y )  = (XI (1) 
F - y X )  = ( Y )  (2) 

The term "program-function" comes from the fact that 
the algorithm works on programs, which represent here 
analytical expressions. The structure of the algorithm 
is defined in figure 1. 

INITIAL POPULATION 

n n n 

GENETIC OPERATORS 

CROSSOVER FUNCTIONS 

POPULATION OF 

Figure 1: Evolutionary Symbolic Regression 

The learning base C is composed of a set of charac- 
teristic points. Each point is made up of a set of design 
parameters (Y )  and associated yielding values (which 
are the values of (X) that F returns). The symbo- 
lic regression is carried out by applying an evaluation 
function using the points of C. The algorithm is run 
for each joint parameter Y,. 

The underlying principles are developed in the fol- 
lowing sections. 

2.2 Genetic Programming 

GP belongs to the family of Evolutionary Algo- 
rithms (EA). They are semi-stochastic algorithms 
which simulate the evolution of a population. GP  
has been proposed in the early 90s by J.R. Koza [5] 
and has been since improved in its performances [6], 
[l]. An initial population of PF has to be generated. 
Then, genetic operators are applied to each generation 
(selection, crossover and mutation). Mutation can 
be removed in GP [5 ] .  The best individual obtained 

versus the number of generations is chosen to  be 
the solution returned by the algorithm. GP  uses a 
particular kind of individual encoding which is com- 
puter program: solutions (individuals) are encoded 
as a tree-structure similar to LISP code. Nodes can 
be functions or terminals. It .is important to notice 
that functions can require several arguments and that 
terminals can be numbers or variables. Then, two sets 
of available functions and terminals have to be defined 
precisely for each run and they are strongly dependent 
on the problem the GP has to solve. We use the most 
recent evolutions in the GP: Automatically Defined 
Function (ADF) [6] (part of PF which behaves within 
one individual like an encapsulated function), demetic 
grouping [4] or steady state [13]. 

2.3 Evaluation 

The algorithm seeks a model that fits a given sample 
of data. Each run of the algorithm approximates one 
joint parameter 0i. The evaluation of each individual 
(PF) is done by applying a function which assigns a 
value called fitness, wich has to be minimized: 

where: 

0 nb-points is the number of characteristic points of 

0 0: is the joint value 0i computed by the PF for 

is the joint value of this point in the learning 

the learning base C (E Card(C)), 

the characteristic point j ,  

0 

base, 

0 Zp is a penalty for the PF length (the number of 
nodes). This makes possible to control the ave- 
rage length (or size) of the individuals in the PO- 
pulation: those which have a high size tend to be 
eliminated by the selection operator. Generally Zp 
= length(PF)/x where x is the ideal length desired 
by the programmer. 

The algorithm, is applied to approximate the in- 
verse kinematic model for manipulators with six revo- 
lute joints. 

3 Application and Results 

A uniform discretisation of whole or part of the va- 
riables space is used to build a learning base c. The 
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direct kinematics gives the corresponding configura- 
tions of the end-effector. 

The number of characteristic points is arbitrary. A 
trade-off has been made after several tests such as this 
number is sufficiently large so that the algorithm can 
work well, and sufficiently weak so that a larger num- 
ber would be useless and expensive in computing time. 

For the nodes of the tree-encoded individuals, func- 
tions defined with particular conditions can be used 
in the function set (for instance the division by zero). 
If the conditions are not satisfied, they could lead to 
situations where the process is blocked. Thus, protec- 
ted functions have to be defined, in such a way that 
the algorithm tends to eliminate them without being 
blocked: division, square root, arcsin(x) and arccos(x). 

In each of the following cases, the algorithm has 
been run several times with different parameters (po- 
pulation size, number of generations, mean of crea- 
tion of the initial population, selection type, crossover 
probability, demetic grouping, mutation, steady state, 
number of ADF, length penalty, add best to the new 
population?). Characteristic results for the best para- 
meter set are given hereafter. 

Notice that for a 2R manipulator which have simple 
analytical solutions, results converge towards the exact 
analytical expression for one joint, and approximated 
the second with an average error of about lop6  radian 
on each point of the learning base [2 ] .  

3.1 Industrial Manipulators 

A test base 7 of about several hundreds of charac- 
teristic points, different from those of L ,  is built from 
the direct kinematics to check the obtained solutions 
for different configurations in the variables space co- 
vered by the learning base. For one joint parameter 
8i, we determine the average error (ERR)i on each 
characteristic point j of 7 by using the best PF. 

(4) 

where: 

0 8; is obtained from the PF, taking its arguments 
from (X) which contains the configuration of the 
end-effector and possibly the other joint parame- 
ters (see 2.1), 

0 Qat is the joint value in the test base. 

3.1.1 PUMA 560 

The algorithm approximates the expressions of the 
first three joint values with an average error of about 

Figure 2 :  PUMA 560 

radian on each characteristic point of the learning 
and the test bases. The figures 3 and 4 show examples 
of the evolution curves. Notice that the convergence 
is fast: approximately 10 generations. 

14 
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6 

GENERATON 

I__ 

8 

Figure 3: Best individual fitneiss for 81 versus the num- 
ber of generations 

The results allow to follow pre-defined trajectories 
with a precision not greater than 1 mm (simulated 
results). For the other joint values, errors between 
10-1 and radian are found. The less good results 
are explained by the complexity of the joint parame- 
ters solved. The length of the individuals cannot be 
restricted more than slightly. For example, after 20 
generations a PF for 81 is: 

atan2( (pow(pow( (y-160.0) ,2) ,2)* ((pow( 
pow((y-160.0) ,2 )  ,2)*sqrt(((y+x)-sqrt( 
160.0) ) ) ) *sqrt ( (160.0+y) 1) -atan2 ( (160.0+ 

-(sqrt(sqrt(((y+x)-sqrt(L60.0))))-atan2( 
(160.0+y) ,y))) *sqrt ((x+160.0) * (y-I60 . O ) ) ) )  
-sqrt (sqrt (160.0) ) )+ (atan2 ( ( (x+y> -atan2 (x , 
y)) ,atan2((160.0+~) ,y))*sqrt((x+l60.0)* 
(y*y> > 1 * (25600.0-y) > ) 

y) ,y>>>*sqrt((l6O.O+y>>, ((sqrt(sqrt(((x+y) 
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3.2 General Manipulators 

GENERAT" I 

Figure 4: Best individual fitness for 8 2  versus the num- 
ber of generations 

The exact analytical expression is: 81 = 
Atun2(X, I')-Atan2(&, & d X 2  + Y 2  - dg). The size 
of the obtained approximation remains reasonable. 
The function and terminal sets are described in the 
section 3.3. The most direct consequence of the non 
size restriction is to slow down the computation. It 
takes 50 generations and 30 minutes to a SiliconGra- 
phics 0 2  computer to determine one joint parameter. 

3.1.2 GMF Arc Mate 

There is a singularity missing between the GMF and 
the PUMA. The last three joint axis are not intersec- 
ting. Thus, thcre is no analytical solution to its inverse 
kinematics. 

I I I  ' FITNESSU THEBEST INUlVldAL - 

GENERATION I 

Figure 5: Best individual fitness for 81 versus the num- 
ber of generations 

The algorithm finds approximations of the joint va- 
lues with an average error from for 81 (figure 5 )  
to lo-' radian for 8 6 .  All the conclusions given for the 
PUMA are relevant to the GMF. The algorithm still 
gives good results for non analytical manipulators. 

"General" means that the topology is arbitrary. If 
the kinematic description uses the Denavit-Hartenberg 
(D.H.) notation [3], the aim is to find here an expres- 
sion for each joint parameter, depending of the confi- 
guration of the end-effector, the D.H. structural para- 
meters (a1 .. . a6, a l . .  . (Y6, d l .  .. d6) and the joint 
variables previously determined. 

JB 
FiTNESS OF THEBESTlNDlYlDUAL - 

Figure 6: Best individual fitness for 81 versus the num- 
ber of generations 

56 
FTNESS OFTHEBESTiNDlVlDUIL ~ 

51 - 

9 -  

0 2 8 I D  12 
GENERATION 

Figure 7: Best individual fitness for 86 versus the num- 
ber of generations 

The learning base C is then composed of 24 columns 
which are the variable terms of the problem (D.H. pa- 
rameters and the configuration of the end-effector). C 
has been built by taking as input the D.H. parame- 
ters (the direct kinematics gives the coordinates of the 
Cartesian configuration of the end-effector). If, for ins- 
tance, three different values are chosen for each input, 
there are 324 lines in C. Considering this large size, 
we have to randomly eliminate the major part of them 
(more than 99%). 
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The results remain good: of the order of 10-1 radian 
for each joint parameter (see examples in figures 6 and 
7). We can observe on these figures that the fitness 
does not converge towards 0. The reason is that it has 
to be divided by the square root of the total number 
of characteristic points (lines) in C. An example of the 
obtained expression for 81 is: 

sqrt (tan(pow(sqrt (pow(cos(sqrt (sqrt (sqrt ((a2+ 
Y) ) ) ) ) ,2.0) ) ,2.O) *(cos (sqrt (atan2(a2 ,Y) ) ) * 
(cos ( (sin( (sin( cos (a121 )+cos (a12) ) )+atan2 ( 
cos (sqrt (sqrt (Y)) ) , sqrt (atan2 (a2 ,Y)) ) ) * 
(sqrt (atan2 (a2 ,Y) ) *cos (sin( cos (a12)))) ) *cos ( 
sin(tan( (sqrt (sqrt ((a2+Y)) )+pow(cos(sqrt ( 
atan2(a2 ,Y))) ,2.O)) *(cos (cos(al2)) *cos (sin( 
cos(al2) 1) ) ) )  1) 
and for 0 6 :  

atan2 (divide (atan2 (divide(divide(c0s (cos ( 
acos (a5))), cos (sin( (cos (GAE) *tan(atan2 (04, 
al4))-(GAE+2.O))))),cos((sin(pow(sin((atan2( 
05 ,a3) - (GAE+2.0)) ) ,2.0> )+divide (tan(a1.l) ,tan( 
2.0) ) ) ) )  , atan2 (sqrt (pow(a5,2.0) ) , divide(pow ( 
2.0,2.0) ,sin( cos (GAE)) ) ) ) , cos (sin( (sin( (a15- 
a3) ) *sqrt (pow ( (sin(pow (sin(divide (asin(l.0) , 
sin (atan2 (05, a3) ) ) ) ,2.0) )+pow (sin(atan2 (04, 
a14) ) ,2.0) ) ,2.0) ) - (GAE+2.0) ) ) ) ) , atan2 (sqrt ( 
pow (a5 , 2.0)) ,divide (divide (pow(atan2 (I. 0 , I .  0) 
,2.0) ,sin(cos(GAE))) ,cos(03)))) 

Here, 01 . . .os are the previously determined joint pa- 
rameters. (ALE, BEE, GAE) are the Euler angles 
which define the orientation of the end-effector (E 
a , f f ,  f i e f , ,  reff); (X, Y, Z) its position. ali is the 
D.H. parameter ai. 

The solutions returned by the algorithm are che- 
cked by applying them to the PUMA 560: A group of 
points is initially built by the kinematics model ([3]). 
An instance corresponding to the PUMA is then gi- 
ven to the D.H. parameters. The error between the 
joint values given by the obtained solutions and those 
of the set of points previously built is determined. The 
points are obviously chosen different from those of the 
Learning Base C. 

The results show an average error on each point 
comparable to the one which was obtained on C du- 
ring the use of the algorithm. We can also notice that 
the elimination of a great number of points from the 
Learning Base does not introduce a fatal instability. 
The absolute average distance around this error yet 
increased. Its maximum value is 0.3 radian. 

These results are optimal when the dimensions of 
the manipulator are included in the intervals between 
the values chosen for the D.H. parameters to  generate 
the Learning Base. 

' 

3.3 Discussion 

a)  Determining Algorithm Parameters 
Some parameters have a determining influence on 

the algorithm: 

o Population Size P :  the larger it is, the better the 
convergence is. There is also a minimum, which is 
around 10000, below which the algorithm does not 
find any good solutions. Populations are usually 
composed of thousands of individuals, 

0 Tournament Size: with these sizes of population, 
only the tournament selection makes the algo- 
rithm possible to converge towards good indivi- 
duals. The size of the tournament is also deter- 
mining (without seeming to follow precise rules). 
Beyond P=lOOOO, a tournament of 200 indivi- 
duals is needed, 

Length Penalty: in the determination of the P F  
fitness, a penalty for the length of the individuals 
can be included. It is problem dependant. If this 
penalty is too high, the algorithm will be too much 
limited in its search and there will be a premature 
convergence. If it is too weak, the expression of 
the individuals will tend to be too long, which 
can cause problems due to the limitations of the 
computer memory. 

b)  Learning Base 
Since it is well-known that the IKP can have mul- 

tiple solutions, it can be useful, for finding better re- 
sults, to  restrict the characteristic points in the lear- 
ning base corresponding to only one of them. This 
can be obtained either by elimination of the points 
which tend to  increase the fitness; and/or with an ini- 
tial knowledge of the right points field given by the 
observation of the robotic system. 

In general, the more the workspace covered by the 
learning base is restricted, the better the results are. 
This is the same if the discretisation intervals are small 
(but the computing time increases). In each case, the 
best trade-off has to be found. 

For the PUMA and the GMF, learning bases of 
several hundreds of points were used; for general 
manipulators, several tens of thousands. 

c )  Function and Terminal Set 
The choice of the elements of the function and ter- 

minal sets is very important. If there are non deter- 
mining elements, in particular in the terminal set, the 
algorithm can be disturbed. If determining elements 
are missing, the algorithm will be limited in its search 
and will not find good solutions. As an illustration of 
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Figure 8: GMF Arc Mate - Best individual fitness for 
03 with and without the coordinates of the desired 
orientation for the end-effector 

this, for the search of the expression of 6 3  for the GMF 
Arc Mate, the convergence is faster and reaches lower 
fitness values if the coordinates of the desired orienta- 
tion of the cnd-effector ( ( ? i e f f ,  P e f f ,  yeff) are included 
in the terminals. We show this sensitivity in figure 8. 
The best results are found when only the necessary 
functions and terrninals are used. 

The elcmeiits of the function set are chosen among: 

sqrt, square, sin, cos, tan,  acos, asin, atan2, +, -, *, 1, 
Here acos, asin, /, sqrt (square root) are the protected 
function forms. 

As explained in section 2.1, the terminal set is 
composcd of the end-effector Cartesian configuration, 
and the charactcristic geometric dimensions of the 
manipulator (or D.H. parameters for general manipu- 
lators). It can also contain already determined joint 
parameters . 

4 Conclusion 

We have implemented an evolutionary symbolic re- 
gression algorithm in order to give models approxi- 
mating the IKM of any general 6R manipulator by 
program-functions with variable forms and sizes. 

From thc author's knowledge, these approximating 
models are given here for the first time. They allow 
to produce a reliable and fast IKP solution for any 
manipulator geometry. 
. The main advantage of this method is that the on- 

line computation of the obtained models in different 
complex processes is of the order of the micro-second, 
for any coilfiguration of the end-effector, and for ana- 
lytical but also non analytical manipulators. 
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