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Abstract

A new and original trend in the Learning
Classifier System (LCS) framework is fo-
cussed on latent learning. These new LCSs
call upon classifiers with a [condition], an
[action] and an [effect] part. In the LCS
framework, the latent learning process is in
charge of discovering classifiers which are able
to anticipate accurately the consequences of
actions under some conditions. Accordingly,
this process builds a model of the dynam-
ics of the environment. This paper describes
how YACS performs latent learning, and how
it is enhanced by a dedicated generalization
process which offers an alternative to Genetic
Algorithms.

1 INTRODUCTION

Holland [Hol76] presented the first ideas about LCSs
(Learning Classifier Systems). The capability of gener-
alizing is the main advantage of LCSs with respect to
other reinforcement learning systems like (Q-learning
[Wat89]. It allows to consider several perceived situa-
tions within a common description so that the repre-
sentation of the problem gets smaller. The accuracy
based approach in Wilson’s XCS [Wil95] overcomes the
problem in previous LCSs where especially deferred re-
ward leads to over-generalization.

Another concern in the general reinforcement learning
framework is to build an internal model of the dynam-
ics of the environment. This model can be used to
adapt the policy further and faster. In multi-step prob-
lems, an agent can learn to anticipate what happens
immediately after the execution of an action. This
learning process can take place even in the absence of
reward. Such a model of the dynamics of the envi-
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ronment can be learned latently and allows lookahead
mechanisms. In order to use LCSs to learn a model of
the dynamics of the environment, Holland [Hol90] pro-
posed an implicit approach based on tagged internal
messages. Riolo [Rio91] implemented this idea in his
CFSC2 and demonstrated its latent learning capabil-
ity. A more explicit linkage is used in CXCS [TBO00].

In contrast with all these approaches, ACS (Antici-
patory Classifier System, [Sto98]) and YACS (Yet An-
other Classifier System, [GSS01]) both form C'— A—E*
classifiers. This formalism is similar to Sutton’s Dy-
naQ-+ [Sut91] approach but draws benefits of the gen-
eralization capability of LCSs. ACS and YACS both
take advantage of the information provided by the suc-
cession of situations in order to drive the classifier dis-
covering process. Therefore, they use heuristics in-
stead of Genetic Algorithms, which are general but
not explicitly driven by experience. This way, YACS
explores the solution space rationally, so as to be able
to tackle large problems like the Sheep-dog problem
described in [SGO1].

In [GSS01], we showed how the latent learning pro-
cess in YACS leads to near-optimal but not optimal
representations of the dynamics of the environment.
This paper focuses on the latent learning process of
YACS and presents the generalization process which
overcomes the near-optimality problem.

In section 2 we show how the formalism used in YACS
allows generalization. In section 3 we briefly describe
the heuristics used for the latent learning process in
YACS. For further details or a comparison with ACS,
please refer to [GSS01]. In section 4 we describe how
we introduce a generalization process in YACS. In sec-
tion 5 we show experimentally how this new process
helps to overcome the over-specialization problems in
YACS.

'C stands for [condition], A for [action] and E for
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2 GENERALIZATION IN YACS

As ACS [Sto98], YACS deals with C-A-FE classifiers 2.
C parts take advantage of generality and may match
several perceived situations. An A part specifies a par-
ticular action possible in the environment.

A situation is divided into several features representing
perceivable properties of the environment. A C part
has the same structure but it may contain don’t care
symbols ““#**. The E part stores for each perceived fea-
ture the expected changes in the environment when the
action of the classifier is chosen and when the perceived
situation matches its condition. The E part might con-
tain don’t change symbols #°°. A don’t change symbol
in the E part means “the feature of the perceived situa-
tion corresponding to the don’t change symbol remains
unchanged”.

This formalism allows the classifiers to represent regu-
larities in the environment like for instance “In a maze,
when the agent perceives a wall on north, whatever the
other features are, moving north will drive the agent
to hit the wall, and no change will be perceived”

In YACS, generalization is allowed by the joint use of
don’t care and don’t change symbols. As ACS, YACS
generalizes over the anticipation of an expected effect
in terms of situations, and not over the prediction of
a payoff, as in XCS [Wil95].

Thus, what we call generalization in YACS is not the
same as the generalization studied in XCS by [Lan97]
for instance. As a result, it does not make sense to
store information about the expected payoff in the
classifiers. The list of classifiers only models the tran-
sitions in the environment.

As we showed in [GSS01], so as to perform rein-
forcement learning, YACS must deal with information
about specific situations. So, this system uses a set
P of every perceived situation encountered during the
lifetime of the agent. This set only contains one single
instance of each already perceived situation. Each sit-
uation is valued by the expected payoff when reaching
the considered situation.

This set only contains the actually perceived situa-
tions, not all the virtually possible situations resulting
from the number of features and the number of val-
ues they can take. In a large problem like the multi-
agent Sheep-dog problem described in [SGO1] for in-
stance, the number of actually encountered situations
is 290 while the number of virtually possible situations
is 8192.

2C stands for [condition], A for [action] and E for

[effect]

A way to reduce the size of this set could be to provide
to YACS with a dedicated generalization mechanism
which relies on the expected payoff.
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Figure 1: The YACS architecture

So, as shown in figure 1, YACS consists in several
parts:

e a latent learning manager which updates the clas-
sifiers list;

e a policy manager which is in charge of updating a
set of valued encountered situations. The policy
manager is also in charge of selecting actions.

3 LATENT LEARNING IN YACS

The latent learning process is in charge of discovering
C — A — F classifiers with maximally general C' parts
that accurately model the dynamics of the environ-
ment. Unlike ACS, it learns C' and F parts separately.
So as to discover accurate C' and E parts, YACS as-
sociates additional information to the classifiers®. As
a result, a classifier in YACS needs more memory, but
this information is used in order to reduce the com-
plexity of the resulting model in terms of number of
classifiers.

In the following sections, we briefly give the main
mechanisms of the latent learning process as it were
described in [GSSO01]. For further details, please refer
to this paper.

3two situations, a finite set of booleans markers and two
sets estimates which are real numbers.



3.1 EFFECT COVERING

The effect covering mechanism is the part of the la-
tent learning process is in charge of discovering accu-
rate E parts (i.e. E parts representing actual effects
of actions under some conditions). When the system
learns accurate effects, it creates new classifiers with
suitable E parts settled according to experience, by
direct comparison of successive perceived situations.

This mechanism causes major problems in noisy envi-
ronments. In such environments, it may create a lot of
classifiers. Thus, we work on a new version of YACS
without the effect covering mechanism.

During the effect covering process, YACS also updates
a trace T of good and bad markers memorizing past
anticipation mistakes and successes of each classifier.
This trace works as a FIFO list with a finite length m.

3.2 SELECTION OF ACCURATE
CLASSIFIERS

As YACS tries to build a set of classifiers that antici-
pate accurately, it has a deletion mechanism to remove
inaccurate classifiers. The trace T of good and bad
markers allows to check the anticipation abilities of a
classifier.

If the trace T of a classifier is full and if it only contains
bad markers, then YACS assumes that the classifier
always anticipates incorrectly and removes it. If the
trace is full and if it contains good and bad markers, we
say that the classifier oscillates because its condition is
too general. In this case, the condition must be further
specialized.

3.3 SPECIALIZATION OF CONDITIONS

A C part should be as general as possible in order to
represent regularities in the environment. But it must
be specific enough so that the classifier does not oscil-
late. The specialization process incrementally special-
izes C parts so as to reach the right level of generality.

The classifier discovery problem is usually solved by
a Genetic Algorithm. But the genetic operators do
not explicitly take advantage of the experience of the
agent.

YACS starts without making any distinction between
situations, and incrementally introduces experience
driven specializations in C parts. It uses neither mu-
tation nor crossover operators.

The specialization process of YACS uses the mutspec
operator introduced by [Dor94|. This operator selects

a general feature of the C' part* of an oscillating clas-
sifier, and produces one new classifier for each possible
specific value of the selected feature. YACS improves
the selection of the features to specialize by using the
expected improvement by specialization estimate i, as-
sociated to each don’t care symbol in the C part of each
classifier. This value estimates how much the special-
ization of the token would help to split the situation
set covered by the C' part into several sub-sets of equal
cardinality.

4 GENERALIZATION OF
CONDITIONS

In section 3.3 we have presented how YACS specializes
C parts so as to allow the E part to be accurate. But
even if this process is cautious, it may produce classi-
fiers with a C part at a sub-optimal level of generality,
in particular when YACS specializes C parts while it
did not experience many possible situations.

As the specialization process, the generalization uses
heuristics in order to take advantage of experience to
drive the process. Thus the YACS approach differs
from ACS since its generalization process does not use
Genetic Algorithms [BGS00a]. This process considers
sets of classifiers with the same C' and A parts and
decides how to specialize C' parts. The generalization
process also uses estimates to drive the generalization
process: the expected improvement by generalization.

4.1 THE EXPECTED IMPROVEMENT BY
GENERALIZATION ESTIMATES

An expected improvement by generalization i, estimate
is associated to each specialized feature of a C' part. It
estimates if the E part of the classifier would remain
accurate if the considered feature was general.

At each time step, YACS knows the current situation
S; resulting from the action A;_; in the situation S;_.
This information is used to compute the desired effect
DE which is the E part of a classifier which could have
been fired at the preceding time step, and whose E
part accurately reflects the changes actually perceived
in the environment.

In the effect covering process, every classifier whose C'
part matches S;_; and whose A part matches A; 1 is
checked. In order to compute the ¢, estimates, YACS
checks every classifier whose A part matches 4;_; and
whose C part does not match S;_;.

Considering such classifiers, for each specialized fea-

%a feature with a don’t care symbol



ture of the C part, YACS checks if the C' part of the
classifier would match S;_; if the considered feature
were general. In this case, the considered i, estimate
is updated:

e If the FE part of the classifier equals the desired
effect DFE, then a classifier with a more general
C part would have an accurate E part and the
considered i, estimate is increased.

e If the E part of the classifier does not equal the
desired effect DFE, then a classifier with a more
general C part would have an inaccurate E part
and the corresponding i, estimate is decreased.

The i, estimates are increased and decreased according
to a Widrow-Hoff delta rule. The initial values are 0.5.
A general feature is given an i, value of 0.5.

Up to that point, with this mechanism, YACS is able
to check if a feature of a C' part should be generalized
or not.

4.2 THE GENERALIZATION PROCESS

The expected improvement by generalization estimates
detailed above allow the classifier generalization mech-
anism to be driven by experience and are used in the
C parts generalization process.

From one situation S;_; to a new one S}, the selected
action A;_; leads to some effects DFE in the environ-
ment. Each time step, YACS checks if there is some
possible generalization between the C parts of the clas-
sifiers such that their E part equals DE and their A
part matches A;_1. So, the generalization process con-
siders sets of classifiers with the same A and E parts.

With such a set of classifiers, YACS builds a new set
of classifiers which are more general or equal to the
original ones. These new classifiers are such that they
do not match situations already matched by classifiers

Figure 2: The Maze4 environment

with a different F part. The classifiers of the new set
replace the original ones in the Classifier System.

If every estimate i, of a classifier is lower than 0.5,
it is not a good candidate for the generalization and
it is added without modifications in the new set of
classifiers.

In either case, a new classifier is created. A feature of
the C' part is generalized if its associated estimate ¢,
equals to the greatest among the estimates associated
to the considered classifier.

The new C part may lead to a conflict with other clas-
sifiers with the same A part but a different E part.
In this case, YACS does not add the new and general
classifier to the new set, but the original one. A con-
flict is detected when two classifiers share the same A
parts but have different E parts, and if at least one
situation is matched by both C parts. YACS finds the
possible situations in the set P of every perceived situ-
ation encountered during the lifetime of the agent (see
section 2).

At this point YACS has computed a new set of classi-
fiers such that each classifier is more general or equal
to the original one, and such that none of them drives
to a conflict with other classifiers in the system. The
next step is to select the more general classifiers.

To do so, YACS checks iteratively every possible pair
of classifiers. When the C' parts of two classifiers are
matching, the classifier with the smallest number of
general features is removed. So the classifiers of the
resulting set are not redundant.

This process allows to replace several classifiers with
a smaller or equal number of classifiers. The C' part
of the new classifiers cover the same situations. Thus
they do not drive to a conflict with other classifiers in
the system.

Figure 3: The Maze6 environment
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Figure 4: Evolution of the number of classifiers in
Maze4

5 EXPERIMENTAL RESULTS

This section presents experimental results of YACS
modeling Wilson’s woods environments. The simu-
lated woods environments are described in section 5.1.
We show in section 5.2 how the generalization process
helps the latent learning process of YACS to converge
to the optimal number of accurate classifiers. There-
fore, YACS did not learn a policy, but only a model of
dynamics of the environment while moving randomly
in the mazes.

5.1 THE MAZE4 AND MAZE6 WOODS
ENVIRONMENTS

In woods environments, the agent is situated in a maze
cell and perceives the eight adjacent cells. A cell can
either be empty, or contain an obstacle B or food F. It
can move towards any of these cells. If the agent moves
towards an obstacle, it remains in the same cell.

Maze4 and Maze6 (see figures 2 and 3) have been ear-
lier investigated by Lanzi. The experiments we present
in this paper involve YACS interacting with these en-
vironments. The experiments are divided into trials.
The agent starts a trial in a free cell chosen randomly.
A trial ends when the agent reaches the cell with food.
In that case the agent gets a reward, it gets a new
perceived situation, and a new trial starts.

In these environments, it is possible to generalize the
transitions which do not lead to any change. This is
the case when an action leads the agent to hit an ob-
stacle. There are respectively 93 and 135 transitions
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Figure 5: Evolution of the number of classifiers in
Maze6

of that kind in Maze4 and Maze6 By taking advan-
tage of generality, the transitions resulting from such
actions can be modeled with 8 classifiers: one classi-
fier for each possible action, by paying attention to the
presence of a block in the direction corresponding to
the action. There are no other useful regularities in
Mazed4 and Maze6. Since the total number of possi-
ble transitions is 208 in Maze4 and 288 in Maze6, the
optimal numbers of classifiers YACS should reach are
respectively 123 (208 —93 + 8) and 161 (288 — 135+ 8)
for Maze4 and Maze6.

Moreover, so as to provide YACS more occasions to
take advantage of generalization, we add irrelevant bits
to the perceived situations. These attributes are ran-
domly set between 0 and 1 when a new trial starts and
keep the same value during the whole trial. For a sys-
tem without any generalization capability this would
result in new perceived situations. But as the added
perceived features are irrelevant to distinguish between
situations, the optimal number of classifiers remains
the same when irrelevant bits are added.

5.2 EXPERIMENTS IN MAZE4 AND
MAZEG6

In order to estimate the evolution of the accuracy of
the model over successive time steps, we use a measure
of the percentage of knowledge provided by the model.
For each possible transition in the environment, we
check if the classifier system is able to model accu-
rately the transition. The percentage of knowledge
is the ratio of possible transitions covered by reliable
classifiers only. The memory size m is set to 5 and



Maze4 with 2 irrelevant bits

250 A—A A ——p—A—A—A—a
nb. classifiers, with gen. —e—
nb. classifiers, without gen. —e—
optimal nb. classifiers --------
200 knowledge, with gen. —+— |

knowledge, without gen. —2—

150

100

50

number of classifiers, percentage x 250

15000

0 1 1
0 5000 10000

time step

20000

Figure 6: Evolution of the number of classifiers in
Mazed with 2 irrelevant bits

the learning rates are set to 0.1. All the results are
averaged over 10 experiments.

Figure 4 presents the evolution of both the number
of classifiers and the percentage of knowledge for the
Maze4 experiments with 0 irrelevant features. The ex-
perimental results are shown for YACS running with
and without the generalization process. Figure 5 shows
the same information for the experiments with the
Maze6 environment. Without generalization, the av-
erage number of classifiers discovered by YACS con-
verges towards 127.3 (4.3 more than optimum) for
Mazed and 164.1 (3.1 more than optimum) for Maze6.
This number is only near-optimal and with the gen-
eralization process enabled, the number of classifiers
converges to the optimum (123 for Maze4 and 161 for
Maze6, see section 5.1). Even if in Maze6, there are
around 40% more transitions to model than in Maze4,
these figures show that YACS does not need much
more time to converge towards an optimal model of
the dynamics of the environment.

During the first part of the learning process, YACS
mostly creates new classifiers and their number is
growing. During the second part, because the actions
are selected at random, YACS may take time to exper-
iment every possible transition as many times as nec-
essary to remove inaccurate classifiers. As the mem-
ory size m is reduced, YACS converges faster because
it takes less time to remove inaccurate classifiers, but
the maximum number of classifiers during the learning
process gets higher. So as to speed up the convergence
towards an optimal model, we could use exploration
bonuses as in [SB98|. The benefits drawn would be
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Figure 7: Evolution of the number of classifiers in
Maze6 with 2 irrelevant bits

larger as the environment is more complex.

Figure 6 presents the evolution of both the number
of classifiers and the percentage of knowledge for the
Maze4 experiments when 2 irrelevant bits are added.
Figure 7 shows the same in the Maze6 environment.

Without generalization, the average number of classi-
fiers discovered by YACS converges towards 132.1 for
Maze4 (9.1 more than optimum) and 168.6 for Maze6
(7.6 more than optimum). With the generalization
process enabled, the number of classifiers converges to
the optimum. Without generalization, the difference
between the number of discovered classifiers and the
optimum is greater with irrelevant bits. In this case,
YACS sometimes specializes according to these bits
because the estimates are not absolutely reliable, espe-
cially in the case of partial exploration of the situation
space.

The results with generalization show that this pro-
cess is able to reconsider early specialization mistakes
without modifying a lot the learning speed. This way,
YACS models the environment with a smaller number
of classifiers than ACS [BGS00b] does.

6 CONCLUSION AND FUTURE
WORK

The latent learning process builds a model of the dy-
namics of the environment even in the absence of re-
wards. It models how the actions modify the perceived
situations. This modeling process uses information
about successive perceived situations. The informa-



tion used is available at each time step. So, latent
learning systems make an intensive use of the percep-
tual feedback offered by the sensori-motor loop. Thus,
they can quickly identify relevant and general classi-
fiers without using Genetic Algorithms.

In this paper, we briefly described the main mecha-
nisms of the latent learning in YACS and we proposed
a new way for performing generalization. We have
shown experimentally that this additional process is
able to overcome the over-specialization problems oc-
curring in previous versions of YACS.

However, YACS is still bounded to deterministic
Markov problems. In a middle term, YACS should be
enhanced to tackle non-Markov problems. Moreover,
we will explore in a short term a new formalism which
allows to express more regularities of the environment.
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