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tA new and original trend in the LearningClassi�er System (LCS) framework is fo-
ussed on latent learning. These new LCSs
all upon 
lassi�ers with a [
ondition℄, an[a
tion℄ and an [e�e
t℄ part. In the LCSframework, the latent learning pro
ess is in
harge of dis
overing 
lassi�ers whi
h are ableto anti
ipate a

urately the 
onsequen
es ofa
tions under some 
onditions. A

ordingly,this pro
ess builds a model of the dynam-i
s of the environment. This paper des
ribeshow YACS performs latent learning, and howit is enhan
ed by a dedi
ated generalizationpro
ess whi
h o�ers an alternative to Geneti
Algorithms.1 INTRODUCTIONHolland [Hol76℄ presented the �rst ideas about LCSs(Learning Classi�er Systems). The 
apability of gener-alizing is the main advantage of LCSs with respe
t toother reinfor
ement learning systems like Q-learning[Wat89℄. It allows to 
onsider several per
eived situa-tions within a 
ommon des
ription so that the repre-sentation of the problem gets smaller. The a

ura
ybased approa
h in Wilson's XCS [Wil95℄ over
omes theproblem in previous LCSs where espe
ially deferred re-ward leads to over-generalization.Another 
on
ern in the general reinfor
ement learningframework is to build an internal model of the dynam-i
s of the environment. This model 
an be used toadapt the poli
y further and faster. In multi-step prob-lems, an agent 
an learn to anti
ipate what happensimmediately after the exe
ution of an a
tion. Thislearning pro
ess 
an take pla
e even in the absen
e ofreward. Su
h a model of the dynami
s of the envi-

ronment 
an be learned latently and allows lookaheadme
hanisms. In order to use LCSs to learn a model ofthe dynami
s of the environment, Holland [Hol90℄ pro-posed an impli
it approa
h based on tagged internalmessages. Riolo [Rio91℄ implemented this idea in hisCFSC2 and demonstrated its latent learning 
apabil-ity. A more expli
it linkage is used in CXCS [TB00℄.In 
ontrast with all these approa
hes, ACS (Anti
i-patory Classi�er System, [Sto98℄) and YACS (Yet An-other Classi�er System, [GSS01℄) both form C�A�E1
lassi�ers. This formalism is similar to Sutton's Dy-naQ+ [Sut91℄ approa
h but draws bene�ts of the gen-eralization 
apability of LCSs. ACS and YACS bothtake advantage of the information provided by the su
-
ession of situations in order to drive the 
lassi�er dis-
overing pro
ess. Therefore, they use heuristi
s in-stead of Geneti
 Algorithms, whi
h are general butnot expli
itly driven by experien
e. This way, YACSexplores the solution spa
e rationally, so as to be ableto ta
kle large problems like the Sheep-dog problemdes
ribed in [SG01℄.In [GSS01℄, we showed how the latent learning pro-
ess in YACS leads to near-optimal but not optimalrepresentations of the dynami
s of the environment.This paper fo
uses on the latent learning pro
ess ofYACS and presents the generalization pro
ess whi
hover
omes the near-optimality problem.In se
tion 2 we show how the formalism used in YACSallows generalization. In se
tion 3 we brie�y des
ribethe heuristi
s used for the latent learning pro
ess inYACS. For further details or a 
omparison with ACS,please refer to [GSS01℄. In se
tion 4 we des
ribe howwe introdu
e a generalization pro
ess in YACS. In se
-tion 5 we show experimentally how this new pro
esshelps to over
ome the over-spe
ialization problems inYACS.1C stands for [
ondition℄, A for [a
tion℄ and E for[effe
t℄



2 GENERALIZATION IN YACSAs ACS [Sto98℄, YACS deals with C-A-E 
lassi�ers 2.C parts take advantage of generality and may mat
hseveral per
eived situations. An A part spe
i�es a par-ti
ular a
tion possible in the environment.A situation is divided into several features representingper
eivable properties of the environment. A C parthas the same stru
ture but it may 
ontain don't 
aresymbols �#�. The E part stores for ea
h per
eived fea-ture the expe
ted 
hanges in the environment when thea
tion of the 
lassi�er is 
hosen and when the per
eivedsituation mat
hes its 
ondition. The E part might 
on-tain don't 
hange symbols �#�. A don't 
hange symbolin the E part means �the feature of the per
eived situa-tion 
orresponding to the don't 
hange symbol remainsun
hanged�.This formalism allows the 
lassi�ers to represent regu-larities in the environment like for instan
e �In a maze,when the agent per
eives a wall on north, whatever theother features are, moving north will drive the agentto hit the wall, and no 
hange will be per
eived�In YACS, generalization is allowed by the joint use ofdon't 
are and don't 
hange symbols. As ACS, YACSgeneralizes over the anti
ipation of an expe
ted e�e
tin terms of situations, and not over the predi
tion ofa payo�, as in XCS [Wil95℄.Thus, what we 
all generalization in YACS is not thesame as the generalization studied in XCS by [Lan97℄for instan
e. As a result, it does not make sense tostore information about the expe
ted payo� in the
lassi�ers. The list of 
lassi�ers only models the tran-sitions in the environment.As we showed in [GSS01℄, so as to perform rein-for
ement learning, YACS must deal with informationabout spe
i�
 situations. So, this system uses a setP of every per
eived situation en
ountered during thelifetime of the agent. This set only 
ontains one singleinstan
e of ea
h already per
eived situation. Ea
h sit-uation is valued by the expe
ted payo� when rea
hingthe 
onsidered situation.This set only 
ontains the a
tually per
eived situa-tions, not all the virtually possible situations resultingfrom the number of features and the number of val-ues they 
an take. In a large problem like the multi-agent Sheep-dog problem des
ribed in [SG01℄ for in-stan
e, the number of a
tually en
ountered situationsis 290 while the number of virtually possible situationsis 8192.2C stands for [
ondition℄, A for [a
tion℄ and E for[e�e
t℄

A way to redu
e the size of this set 
ould be to provideto YACS with a dedi
ated generalization me
hanismwhi
h relies on the expe
ted payo�.
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hite
tureSo, as shown in �gure 1, YACS 
onsists in severalparts:� a latent learning manager whi
h updates the 
las-si�ers list;� a poli
y manager whi
h is in 
harge of updating aset of valued en
ountered situations. The poli
ymanager is also in 
harge of sele
ting a
tions.3 LATENT LEARNING IN YACSThe latent learning pro
ess is in 
harge of dis
overingC �A�E 
lassi�ers with maximally general C partsthat a

urately model the dynami
s of the environ-ment. Unlike ACS, it learns C and E parts separately.So as to dis
over a

urate C and E parts, YACS as-so
iates additional information to the 
lassi�ers3. Asa result, a 
lassi�er in YACS needs more memory, butthis information is used in order to redu
e the 
om-plexity of the resulting model in terms of number of
lassi�ers.In the following se
tions, we brie�y give the mainme
hanisms of the latent learning pro
ess as it weredes
ribed in [GSS01℄. For further details, please referto this paper.3two situations, a �nite set of booleans markers and twosets estimates whi
h are real numbers.



3.1 EFFECT COVERINGThe e�e
t 
overing me
hanism is the part of the la-tent learning pro
ess is in 
harge of dis
overing a

u-rate E parts (i.e. E parts representing a
tual e�e
tsof a
tions under some 
onditions). When the systemlearns a

urate e�e
ts, it 
reates new 
lassi�ers withsuitable E parts settled a

ording to experien
e, bydire
t 
omparison of su

essive per
eived situations.This me
hanism 
auses major problems in noisy envi-ronments. In su
h environments, it may 
reate a lot of
lassi�ers. Thus, we work on a new version of YACSwithout the e�e
t 
overing me
hanism.During the e�e
t 
overing pro
ess, YACS also updatesa tra
e T of good and bad markers memorizing pastanti
ipation mistakes and su

esses of ea
h 
lassi�er.This tra
e works as a FIFO list with a �nite length m.3.2 SELECTION OF ACCURATECLASSIFIERSAs YACS tries to build a set of 
lassi�ers that anti
i-pate a

urately, it has a deletion me
hanism to removeina

urate 
lassi�ers. The tra
e T of good and badmarkers allows to 
he
k the anti
ipation abilities of a
lassi�er.If the tra
e T of a 
lassi�er is full and if it only 
ontainsbad markers, then YACS assumes that the 
lassi�eralways anti
ipates in
orre
tly and removes it. If thetra
e is full and if it 
ontains good and bad markers, wesay that the 
lassi�er os
illates be
ause its 
ondition istoo general. In this 
ase, the 
ondition must be furtherspe
ialized.3.3 SPECIALIZATION OF CONDITIONSA C part should be as general as possible in order torepresent regularities in the environment. But it mustbe spe
i�
 enough so that the 
lassi�er does not os
il-late. The spe
ialization pro
ess in
rementally spe
ial-izes C parts so as to rea
h the right level of generality.The 
lassi�er dis
overy problem is usually solved bya Geneti
 Algorithm. But the geneti
 operators donot expli
itly take advantage of the experien
e of theagent.YACS starts without making any distin
tion betweensituations, and in
rementally introdu
es experien
edriven spe
ializations in C parts. It uses neither mu-tation nor 
rossover operators.The spe
ialization pro
ess of YACS uses the mutspe
operator introdu
ed by [Dor94℄. This operator sele
ts

a general feature of the C part4 of an os
illating 
las-si�er, and produ
es one new 
lassi�er for ea
h possiblespe
i�
 value of the sele
ted feature. YACS improvesthe sele
tion of the features to spe
ialize by using theexpe
ted improvement by spe
ialization estimate is as-so
iated to ea
h don't 
are symbol in the C part of ea
h
lassi�er. This value estimates how mu
h the spe
ial-ization of the token would help to split the situationset 
overed by the C part into several sub-sets of equal
ardinality.4 GENERALIZATION OFCONDITIONSIn se
tion 3.3 we have presented how YACS spe
ializesC parts so as to allow the E part to be a

urate. Buteven if this pro
ess is 
autious, it may produ
e 
lassi-�ers with a C part at a sub-optimal level of generality,in parti
ular when YACS spe
ializes C parts while itdid not experien
e many possible situations.As the spe
ialization pro
ess, the generalization usesheuristi
s in order to take advantage of experien
e todrive the pro
ess. Thus the YACS approa
h di�ersfrom ACS sin
e its generalization pro
ess does not useGeneti
 Algorithms [BGS00a℄. This pro
ess 
onsiderssets of 
lassi�ers with the same C and A parts andde
ides how to spe
ialize C parts. The generalizationpro
ess also uses estimates to drive the generalizationpro
ess: the expe
ted improvement by generalization.4.1 THE EXPECTED IMPROVEMENT BYGENERALIZATION ESTIMATESAn expe
ted improvement by generalization ig estimateis asso
iated to ea
h spe
ialized feature of a C part. Itestimates if the E part of the 
lassi�er would remaina

urate if the 
onsidered feature was general.At ea
h time step, YACS knows the 
urrent situationSt resulting from the a
tion At�1 in the situation St�1.This information is used to 
ompute the desired e�e
tDE whi
h is the E part of a 
lassi�er whi
h 
ould havebeen �red at the pre
eding time step, and whose Epart a

urately re�e
ts the 
hanges a
tually per
eivedin the environment.In the e�e
t 
overing pro
ess, every 
lassi�er whose Cpart mat
hes St�1 and whose A part mat
hes At�1 is
he
ked. In order to 
ompute the ig estimates, YACS
he
ks every 
lassi�er whose A part mat
hes At�1 andwhose C part does not mat
h St�1.Considering su
h 
lassi�ers, for ea
h spe
ialized fea-4a feature with a don't 
are symbol



ture of the C part, YACS 
he
ks if the C part of the
lassi�er would mat
h St�1 if the 
onsidered featurewere general. In this 
ase, the 
onsidered ig estimateis updated:� If the E part of the 
lassi�er equals the desirede�e
t DE, then a 
lassi�er with a more generalC part would have an a

urate E part and the
onsidered ig estimate is in
reased.� If the E part of the 
lassi�er does not equal thedesired e�e
t DE, then a 
lassi�er with a moregeneral C part would have an ina

urate E partand the 
orresponding ig estimate is de
reased.The ig estimates are in
reased and de
reased a

ordingto a Widrow-Ho� delta rule. The initial values are 0.5.A general feature is given an ig value of 0.5.Up to that point, with this me
hanism, YACS is ableto 
he
k if a feature of a C part should be generalizedor not.4.2 THE GENERALIZATION PROCESSThe expe
ted improvement by generalization estimatesdetailed above allow the 
lassi�er generalization me
h-anism to be driven by experien
e and are used in theC parts generalization pro
ess.From one situation St�1 to a new one St, the sele
teda
tion At�1 leads to some e�e
ts DE in the environ-ment. Ea
h time step, YACS 
he
ks if there is somepossible generalization between the C parts of the 
las-si�ers su
h that their E part equals DE and their Apart mat
hes At�1. So, the generalization pro
ess 
on-siders sets of 
lassi�ers with the same A and E parts.With su
h a set of 
lassi�ers, YACS builds a new setof 
lassi�ers whi
h are more general or equal to theoriginal ones. These new 
lassi�ers are su
h that theydo not mat
h situations already mat
hed by 
lassi�ers
F

Figure 2: The Maze4 environment

with a di�erent E part. The 
lassi�ers of the new setrepla
e the original ones in the Classi�er System.If every estimate ig of a 
lassi�er is lower than 0.5,it is not a good 
andidate for the generalization andit is added without modi�
ations in the new set of
lassi�ers.In either 
ase, a new 
lassi�er is 
reated. A feature ofthe C part is generalized if its asso
iated estimate igequals to the greatest among the estimates asso
iatedto the 
onsidered 
lassi�er.The new C part may lead to a 
on�i
t with other 
las-si�ers with the same A part but a di�erent E part.In this 
ase, YACS does not add the new and general
lassi�er to the new set, but the original one. A 
on-�i
t is dete
ted when two 
lassi�ers share the same Aparts but have di�erent E parts, and if at least onesituation is mat
hed by both C parts. YACS �nds thepossible situations in the set P of every per
eived situ-ation en
ountered during the lifetime of the agent (seese
tion 2).At this point YACS has 
omputed a new set of 
lassi-�ers su
h that ea
h 
lassi�er is more general or equalto the original one, and su
h that none of them drivesto a 
on�i
t with other 
lassi�ers in the system. Thenext step is to sele
t the more general 
lassi�ers.To do so, YACS 
he
ks iteratively every possible pairof 
lassi�ers. When the C parts of two 
lassi�ers aremat
hing, the 
lassi�er with the smallest number ofgeneral features is removed. So the 
lassi�ers of theresulting set are not redundant.This pro
ess allows to repla
e several 
lassi�ers witha smaller or equal number of 
lassi�ers. The C partof the new 
lassi�ers 
over the same situations. Thusthey do not drive to a 
on�i
t with other 
lassi�ers inthe system.
F

Figure 3: The Maze6 environment
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Figure 4: Evolution of the number of 
lassi�ers inMaze45 EXPERIMENTAL RESULTSThis se
tion presents experimental results of YACSmodeling Wilson's woods environments. The simu-lated woods environments are des
ribed in se
tion 5.1.We show in se
tion 5.2 how the generalization pro
esshelps the latent learning pro
ess of YACS to 
onvergeto the optimal number of a

urate 
lassi�ers. There-fore, YACS did not learn a poli
y, but only a model ofdynami
s of the environment while moving randomlyin the mazes.5.1 THE MAZE4 AND MAZE6 WOODSENVIRONMENTSIn woods environments, the agent is situated in a maze
ell and per
eives the eight adja
ent 
ells. A 
ell 
aneither be empty, or 
ontain an obsta
le � or food F. It
an move towards any of these 
ells. If the agent movestowards an obsta
le, it remains in the same 
ell.Maze4 and Maze6 (see �gures 2 and 3) have been ear-lier investigated by Lanzi. The experiments we presentin this paper involve YACS intera
ting with these en-vironments. The experiments are divided into trials.The agent starts a trial in a free 
ell 
hosen randomly.A trial ends when the agent rea
hes the 
ell with food.In that 
ase the agent gets a reward, it gets a newper
eived situation, and a new trial starts.In these environments, it is possible to generalize thetransitions whi
h do not lead to any 
hange. This isthe 
ase when an a
tion leads the agent to hit an ob-sta
le. There are respe
tively 93 and 135 transitions
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Figure 5: Evolution of the number of 
lassi�ers inMaze6of that kind in Maze4 and Maze6 By taking advan-tage of generality, the transitions resulting from su
ha
tions 
an be modeled with 8 
lassi�ers: one 
lassi-�er for ea
h possible a
tion, by paying attention to thepresen
e of a blo
k in the dire
tion 
orresponding tothe a
tion. There are no other useful regularities inMaze4 and Maze6. Sin
e the total number of possi-ble transitions is 208 in Maze4 and 288 in Maze6, theoptimal numbers of 
lassi�ers YACS should rea
h arerespe
tively 123 (208�93+8) and 161 (288�135+8)for Maze4 and Maze6.Moreover, so as to provide YACS more o

asions totake advantage of generalization, we add irrelevant bitsto the per
eived situations. These attributes are ran-domly set between 0 and 1 when a new trial starts andkeep the same value during the whole trial. For a sys-tem without any generalization 
apability this wouldresult in new per
eived situations. But as the addedper
eived features are irrelevant to distinguish betweensituations, the optimal number of 
lassi�ers remainsthe same when irrelevant bits are added.5.2 EXPERIMENTS IN MAZE4 ANDMAZE6In order to estimate the evolution of the a

ura
y ofthe model over su

essive time steps, we use a measureof the per
entage of knowledge provided by the model.For ea
h possible transition in the environment, we
he
k if the 
lassi�er system is able to model a

u-rately the transition. The per
entage of knowledgeis the ratio of possible transitions 
overed by reliable
lassi�ers only. The memory size m is set to 5 and
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Figure 6: Evolution of the number of 
lassi�ers inMaze4 with 2 irrelevant bitsthe learning rates are set to 0:1. All the results areaveraged over 10 experiments.Figure 4 presents the evolution of both the numberof 
lassi�ers and the per
entage of knowledge for theMaze4 experiments with 0 irrelevant features. The ex-perimental results are shown for YACS running withand without the generalization pro
ess. Figure 5 showsthe same information for the experiments with theMaze6 environment. Without generalization, the av-erage number of 
lassi�ers dis
overed by YACS 
on-verges towards 127.3 (4.3 more than optimum) forMaze4 and 164.1 (3.1 more than optimum) for Maze6.This number is only near-optimal and with the gen-eralization pro
ess enabled, the number of 
lassi�ers
onverges to the optimum (123 for Maze4 and 161 forMaze6, see se
tion 5.1). Even if in Maze6, there arearound 40% more transitions to model than in Maze4,these �gures show that YACS does not need mu
hmore time to 
onverge towards an optimal model ofthe dynami
s of the environment.During the �rst part of the learning pro
ess, YACSmostly 
reates new 
lassi�ers and their number isgrowing. During the se
ond part, be
ause the a
tionsare sele
ted at random, YACS may take time to exper-iment every possible transition as many times as ne
-essary to remove ina

urate 
lassi�ers. As the mem-ory size m is redu
ed, YACS 
onverges faster be
auseit takes less time to remove ina

urate 
lassi�ers, butthe maximum number of 
lassi�ers during the learningpro
ess gets higher. So as to speed up the 
onvergen
etowards an optimal model, we 
ould use explorationbonuses as in [SB98℄. The bene�ts drawn would be
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Figure 7: Evolution of the number of 
lassi�ers inMaze6 with 2 irrelevant bitslarger as the environment is more 
omplex.Figure 6 presents the evolution of both the numberof 
lassi�ers and the per
entage of knowledge for theMaze4 experiments when 2 irrelevant bits are added.Figure 7 shows the same in the Maze6 environment.Without generalization, the average number of 
lassi-�ers dis
overed by YACS 
onverges towards 132.1 forMaze4 (9.1 more than optimum) and 168.6 for Maze6(7.6 more than optimum). With the generalizationpro
ess enabled, the number of 
lassi�ers 
onverges tothe optimum. Without generalization, the di�eren
ebetween the number of dis
overed 
lassi�ers and theoptimum is greater with irrelevant bits. In this 
ase,YACS sometimes spe
ializes a

ording to these bitsbe
ause the estimates are not absolutely reliable, espe-
ially in the 
ase of partial exploration of the situationspa
e.The results with generalization show that this pro-
ess is able to re
onsider early spe
ialization mistakeswithout modifying a lot the learning speed. This way,YACS models the environment with a smaller numberof 
lassi�ers than ACS [BGS00b℄ does.6 CONCLUSION AND FUTUREWORKThe latent learning pro
ess builds a model of the dy-nami
s of the environment even in the absen
e of re-wards. It models how the a
tions modify the per
eivedsituations. This modeling pro
ess uses informationabout su

essive per
eived situations. The informa-



tion used is available at ea
h time step. So, latentlearning systems make an intensive use of the per
ep-tual feedba
k o�ered by the sensori-motor loop. Thus,they 
an qui
kly identify relevant and general 
lassi-�ers without using Geneti
 Algorithms.In this paper, we brie�y des
ribed the main me
ha-nisms of the latent learning in YACS and we proposeda new way for performing generalization. We haveshown experimentally that this additional pro
ess isable to over
ome the over-spe
ialization problems o
-
urring in previous versions of YACS.However, YACS is still bounded to deterministi
Markov problems. In a middle term, YACS should beenhan
ed to ta
kle non-Markov problems. Moreover,we will explore in a short term a new formalism whi
hallows to express more regularities of the environment.Referen
es[BGS00a℄ M. V. Butz, D. E. Goldberg, and W. Stolz-mann. Introdu
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ial Issue on Learning Classi-�er Systems, (to appear) 2001.[Hol76℄ J.H. Holland. Adaptation. Progress in the-ori
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erning the emergen
e oftag mediated lookahead in Classi�er Sys-tems. Spe
ial Issue of Physi
a D, 42:188�201, 1990.[Lan97℄ P. L. Lanzi. A study of the generaliza-tion 
apabilities of XSC. In T. Bae
k, ed-

itor, Pro
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e on Geneti
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