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Pierre Gérard �;��� AnimatLab (LIP6)8, rue du Capitaine Sott75015 PARIS Olivier Sigaud ���� Dassault Aviation, DGT/DPR/ESA78, Quai Marel Dassault92552 St-Cloud CedexAbstratA new and original trend in the LearningClassi�er System (LCS) framework is fo-ussed on latent learning. These new LCSsall upon lassi�ers with a [ondition℄, an[ation℄ and an [e�et℄ part. In the LCSframework, the latent learning proess is inharge of disovering lassi�ers whih are ableto antiipate aurately the onsequenes ofations under some onditions. Aordingly,this proess builds a model of the dynam-is of the environment. This paper desribeshow YACS performs latent learning, and howit is enhaned by a dediated generalizationproess whih o�ers an alternative to GenetiAlgorithms.1 INTRODUCTIONHolland [Hol76℄ presented the �rst ideas about LCSs(Learning Classi�er Systems). The apability of gener-alizing is the main advantage of LCSs with respet toother reinforement learning systems like Q-learning[Wat89℄. It allows to onsider several pereived situa-tions within a ommon desription so that the repre-sentation of the problem gets smaller. The auraybased approah in Wilson's XCS [Wil95℄ overomes theproblem in previous LCSs where espeially deferred re-ward leads to over-generalization.Another onern in the general reinforement learningframework is to build an internal model of the dynam-is of the environment. This model an be used toadapt the poliy further and faster. In multi-step prob-lems, an agent an learn to antiipate what happensimmediately after the exeution of an ation. Thislearning proess an take plae even in the absene ofreward. Suh a model of the dynamis of the envi-

ronment an be learned latently and allows lookaheadmehanisms. In order to use LCSs to learn a model ofthe dynamis of the environment, Holland [Hol90℄ pro-posed an impliit approah based on tagged internalmessages. Riolo [Rio91℄ implemented this idea in hisCFSC2 and demonstrated its latent learning apabil-ity. A more expliit linkage is used in CXCS [TB00℄.In ontrast with all these approahes, ACS (Antii-patory Classi�er System, [Sto98℄) and YACS (Yet An-other Classi�er System, [GSS01℄) both form C�A�E1lassi�ers. This formalism is similar to Sutton's Dy-naQ+ [Sut91℄ approah but draws bene�ts of the gen-eralization apability of LCSs. ACS and YACS bothtake advantage of the information provided by the su-ession of situations in order to drive the lassi�er dis-overing proess. Therefore, they use heuristis in-stead of Geneti Algorithms, whih are general butnot expliitly driven by experiene. This way, YACSexplores the solution spae rationally, so as to be ableto takle large problems like the Sheep-dog problemdesribed in [SG01℄.In [GSS01℄, we showed how the latent learning pro-ess in YACS leads to near-optimal but not optimalrepresentations of the dynamis of the environment.This paper fouses on the latent learning proess ofYACS and presents the generalization proess whihoveromes the near-optimality problem.In setion 2 we show how the formalism used in YACSallows generalization. In setion 3 we brie�y desribethe heuristis used for the latent learning proess inYACS. For further details or a omparison with ACS,please refer to [GSS01℄. In setion 4 we desribe howwe introdue a generalization proess in YACS. In se-tion 5 we show experimentally how this new proesshelps to overome the over-speialization problems inYACS.1C stands for [ondition℄, A for [ation℄ and E for[effet℄



2 GENERALIZATION IN YACSAs ACS [Sto98℄, YACS deals with C-A-E lassi�ers 2.C parts take advantage of generality and may mathseveral pereived situations. An A part spei�es a par-tiular ation possible in the environment.A situation is divided into several features representingpereivable properties of the environment. A C parthas the same struture but it may ontain don't aresymbols �#�. The E part stores for eah pereived fea-ture the expeted hanges in the environment when theation of the lassi�er is hosen and when the pereivedsituation mathes its ondition. The E part might on-tain don't hange symbols �#�. A don't hange symbolin the E part means �the feature of the pereived situa-tion orresponding to the don't hange symbol remainsunhanged�.This formalism allows the lassi�ers to represent regu-larities in the environment like for instane �In a maze,when the agent pereives a wall on north, whatever theother features are, moving north will drive the agentto hit the wall, and no hange will be pereived�In YACS, generalization is allowed by the joint use ofdon't are and don't hange symbols. As ACS, YACSgeneralizes over the antiipation of an expeted e�etin terms of situations, and not over the predition ofa payo�, as in XCS [Wil95℄.Thus, what we all generalization in YACS is not thesame as the generalization studied in XCS by [Lan97℄for instane. As a result, it does not make sense tostore information about the expeted payo� in thelassi�ers. The list of lassi�ers only models the tran-sitions in the environment.As we showed in [GSS01℄, so as to perform rein-forement learning, YACS must deal with informationabout spei� situations. So, this system uses a setP of every pereived situation enountered during thelifetime of the agent. This set only ontains one singleinstane of eah already pereived situation. Eah sit-uation is valued by the expeted payo� when reahingthe onsidered situation.This set only ontains the atually pereived situa-tions, not all the virtually possible situations resultingfrom the number of features and the number of val-ues they an take. In a large problem like the multi-agent Sheep-dog problem desribed in [SG01℄ for in-stane, the number of atually enountered situationsis 290 while the number of virtually possible situationsis 8192.2C stands for [ondition℄, A for [ation℄ and E for[e�et℄

A way to redue the size of this set ould be to provideto YACS with a dediated generalization mehanismwhih relies on the expeted payo�.
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3.1 EFFECT COVERINGThe e�et overing mehanism is the part of the la-tent learning proess is in harge of disovering au-rate E parts (i.e. E parts representing atual e�etsof ations under some onditions). When the systemlearns aurate e�ets, it reates new lassi�ers withsuitable E parts settled aording to experiene, bydiret omparison of suessive pereived situations.This mehanism auses major problems in noisy envi-ronments. In suh environments, it may reate a lot oflassi�ers. Thus, we work on a new version of YACSwithout the e�et overing mehanism.During the e�et overing proess, YACS also updatesa trae T of good and bad markers memorizing pastantiipation mistakes and suesses of eah lassi�er.This trae works as a FIFO list with a �nite length m.3.2 SELECTION OF ACCURATECLASSIFIERSAs YACS tries to build a set of lassi�ers that antii-pate aurately, it has a deletion mehanism to removeinaurate lassi�ers. The trae T of good and badmarkers allows to hek the antiipation abilities of alassi�er.If the trae T of a lassi�er is full and if it only ontainsbad markers, then YACS assumes that the lassi�eralways antiipates inorretly and removes it. If thetrae is full and if it ontains good and bad markers, wesay that the lassi�er osillates beause its ondition istoo general. In this ase, the ondition must be furtherspeialized.3.3 SPECIALIZATION OF CONDITIONSA C part should be as general as possible in order torepresent regularities in the environment. But it mustbe spei� enough so that the lassi�er does not osil-late. The speialization proess inrementally speial-izes C parts so as to reah the right level of generality.The lassi�er disovery problem is usually solved bya Geneti Algorithm. But the geneti operators donot expliitly take advantage of the experiene of theagent.YACS starts without making any distintion betweensituations, and inrementally introdues experienedriven speializations in C parts. It uses neither mu-tation nor rossover operators.The speialization proess of YACS uses the mutspeoperator introdued by [Dor94℄. This operator selets

a general feature of the C part4 of an osillating las-si�er, and produes one new lassi�er for eah possiblespei� value of the seleted feature. YACS improvesthe seletion of the features to speialize by using theexpeted improvement by speialization estimate is as-soiated to eah don't are symbol in the C part of eahlassi�er. This value estimates how muh the speial-ization of the token would help to split the situationset overed by the C part into several sub-sets of equalardinality.4 GENERALIZATION OFCONDITIONSIn setion 3.3 we have presented how YACS speializesC parts so as to allow the E part to be aurate. Buteven if this proess is autious, it may produe lassi-�ers with a C part at a sub-optimal level of generality,in partiular when YACS speializes C parts while itdid not experiene many possible situations.As the speialization proess, the generalization usesheuristis in order to take advantage of experiene todrive the proess. Thus the YACS approah di�ersfrom ACS sine its generalization proess does not useGeneti Algorithms [BGS00a℄. This proess onsiderssets of lassi�ers with the same C and A parts anddeides how to speialize C parts. The generalizationproess also uses estimates to drive the generalizationproess: the expeted improvement by generalization.4.1 THE EXPECTED IMPROVEMENT BYGENERALIZATION ESTIMATESAn expeted improvement by generalization ig estimateis assoiated to eah speialized feature of a C part. Itestimates if the E part of the lassi�er would remainaurate if the onsidered feature was general.At eah time step, YACS knows the urrent situationSt resulting from the ation At�1 in the situation St�1.This information is used to ompute the desired e�etDE whih is the E part of a lassi�er whih ould havebeen �red at the preeding time step, and whose Epart aurately re�ets the hanges atually pereivedin the environment.In the e�et overing proess, every lassi�er whose Cpart mathes St�1 and whose A part mathes At�1 isheked. In order to ompute the ig estimates, YACSheks every lassi�er whose A part mathes At�1 andwhose C part does not math St�1.Considering suh lassi�ers, for eah speialized fea-4a feature with a don't are symbol



ture of the C part, YACS heks if the C part of thelassi�er would math St�1 if the onsidered featurewere general. In this ase, the onsidered ig estimateis updated:� If the E part of the lassi�er equals the desirede�et DE, then a lassi�er with a more generalC part would have an aurate E part and theonsidered ig estimate is inreased.� If the E part of the lassi�er does not equal thedesired e�et DE, then a lassi�er with a moregeneral C part would have an inaurate E partand the orresponding ig estimate is dereased.The ig estimates are inreased and dereased aordingto a Widrow-Ho� delta rule. The initial values are 0.5.A general feature is given an ig value of 0.5.Up to that point, with this mehanism, YACS is ableto hek if a feature of a C part should be generalizedor not.4.2 THE GENERALIZATION PROCESSThe expeted improvement by generalization estimatesdetailed above allow the lassi�er generalization meh-anism to be driven by experiene and are used in theC parts generalization proess.From one situation St�1 to a new one St, the seletedation At�1 leads to some e�ets DE in the environ-ment. Eah time step, YACS heks if there is somepossible generalization between the C parts of the las-si�ers suh that their E part equals DE and their Apart mathes At�1. So, the generalization proess on-siders sets of lassi�ers with the same A and E parts.With suh a set of lassi�ers, YACS builds a new setof lassi�ers whih are more general or equal to theoriginal ones. These new lassi�ers are suh that theydo not math situations already mathed by lassi�ers
F

Figure 2: The Maze4 environment

with a di�erent E part. The lassi�ers of the new setreplae the original ones in the Classi�er System.If every estimate ig of a lassi�er is lower than 0.5,it is not a good andidate for the generalization andit is added without modi�ations in the new set oflassi�ers.In either ase, a new lassi�er is reated. A feature ofthe C part is generalized if its assoiated estimate igequals to the greatest among the estimates assoiatedto the onsidered lassi�er.The new C part may lead to a on�it with other las-si�ers with the same A part but a di�erent E part.In this ase, YACS does not add the new and generallassi�er to the new set, but the original one. A on-�it is deteted when two lassi�ers share the same Aparts but have di�erent E parts, and if at least onesituation is mathed by both C parts. YACS �nds thepossible situations in the set P of every pereived situ-ation enountered during the lifetime of the agent (seesetion 2).At this point YACS has omputed a new set of lassi-�ers suh that eah lassi�er is more general or equalto the original one, and suh that none of them drivesto a on�it with other lassi�ers in the system. Thenext step is to selet the more general lassi�ers.To do so, YACS heks iteratively every possible pairof lassi�ers. When the C parts of two lassi�ers aremathing, the lassi�er with the smallest number ofgeneral features is removed. So the lassi�ers of theresulting set are not redundant.This proess allows to replae several lassi�ers witha smaller or equal number of lassi�ers. The C partof the new lassi�ers over the same situations. Thusthey do not drive to a on�it with other lassi�ers inthe system.
F

Figure 3: The Maze6 environment
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Figure 4: Evolution of the number of lassi�ers inMaze45 EXPERIMENTAL RESULTSThis setion presents experimental results of YACSmodeling Wilson's woods environments. The simu-lated woods environments are desribed in setion 5.1.We show in setion 5.2 how the generalization proesshelps the latent learning proess of YACS to onvergeto the optimal number of aurate lassi�ers. There-fore, YACS did not learn a poliy, but only a model ofdynamis of the environment while moving randomlyin the mazes.5.1 THE MAZE4 AND MAZE6 WOODSENVIRONMENTSIn woods environments, the agent is situated in a mazeell and pereives the eight adjaent ells. A ell aneither be empty, or ontain an obstale � or food F. Itan move towards any of these ells. If the agent movestowards an obstale, it remains in the same ell.Maze4 and Maze6 (see �gures 2 and 3) have been ear-lier investigated by Lanzi. The experiments we presentin this paper involve YACS interating with these en-vironments. The experiments are divided into trials.The agent starts a trial in a free ell hosen randomly.A trial ends when the agent reahes the ell with food.In that ase the agent gets a reward, it gets a newpereived situation, and a new trial starts.In these environments, it is possible to generalize thetransitions whih do not lead to any hange. This isthe ase when an ation leads the agent to hit an ob-stale. There are respetively 93 and 135 transitions
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Figure 5: Evolution of the number of lassi�ers inMaze6of that kind in Maze4 and Maze6 By taking advan-tage of generality, the transitions resulting from suhations an be modeled with 8 lassi�ers: one lassi-�er for eah possible ation, by paying attention to thepresene of a blok in the diretion orresponding tothe ation. There are no other useful regularities inMaze4 and Maze6. Sine the total number of possi-ble transitions is 208 in Maze4 and 288 in Maze6, theoptimal numbers of lassi�ers YACS should reah arerespetively 123 (208�93+8) and 161 (288�135+8)for Maze4 and Maze6.Moreover, so as to provide YACS more oasions totake advantage of generalization, we add irrelevant bitsto the pereived situations. These attributes are ran-domly set between 0 and 1 when a new trial starts andkeep the same value during the whole trial. For a sys-tem without any generalization apability this wouldresult in new pereived situations. But as the addedpereived features are irrelevant to distinguish betweensituations, the optimal number of lassi�ers remainsthe same when irrelevant bits are added.5.2 EXPERIMENTS IN MAZE4 ANDMAZE6In order to estimate the evolution of the auray ofthe model over suessive time steps, we use a measureof the perentage of knowledge provided by the model.For eah possible transition in the environment, wehek if the lassi�er system is able to model au-rately the transition. The perentage of knowledgeis the ratio of possible transitions overed by reliablelassi�ers only. The memory size m is set to 5 and
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Figure 6: Evolution of the number of lassi�ers inMaze4 with 2 irrelevant bitsthe learning rates are set to 0:1. All the results areaveraged over 10 experiments.Figure 4 presents the evolution of both the numberof lassi�ers and the perentage of knowledge for theMaze4 experiments with 0 irrelevant features. The ex-perimental results are shown for YACS running withand without the generalization proess. Figure 5 showsthe same information for the experiments with theMaze6 environment. Without generalization, the av-erage number of lassi�ers disovered by YACS on-verges towards 127.3 (4.3 more than optimum) forMaze4 and 164.1 (3.1 more than optimum) for Maze6.This number is only near-optimal and with the gen-eralization proess enabled, the number of lassi�ersonverges to the optimum (123 for Maze4 and 161 forMaze6, see setion 5.1). Even if in Maze6, there arearound 40% more transitions to model than in Maze4,these �gures show that YACS does not need muhmore time to onverge towards an optimal model ofthe dynamis of the environment.During the �rst part of the learning proess, YACSmostly reates new lassi�ers and their number isgrowing. During the seond part, beause the ationsare seleted at random, YACS may take time to exper-iment every possible transition as many times as ne-essary to remove inaurate lassi�ers. As the mem-ory size m is redued, YACS onverges faster beauseit takes less time to remove inaurate lassi�ers, butthe maximum number of lassi�ers during the learningproess gets higher. So as to speed up the onvergenetowards an optimal model, we ould use explorationbonuses as in [SB98℄. The bene�ts drawn would be
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Figure 7: Evolution of the number of lassi�ers inMaze6 with 2 irrelevant bitslarger as the environment is more omplex.Figure 6 presents the evolution of both the numberof lassi�ers and the perentage of knowledge for theMaze4 experiments when 2 irrelevant bits are added.Figure 7 shows the same in the Maze6 environment.Without generalization, the average number of lassi-�ers disovered by YACS onverges towards 132.1 forMaze4 (9.1 more than optimum) and 168.6 for Maze6(7.6 more than optimum). With the generalizationproess enabled, the number of lassi�ers onverges tothe optimum. Without generalization, the di�erenebetween the number of disovered lassi�ers and theoptimum is greater with irrelevant bits. In this ase,YACS sometimes speializes aording to these bitsbeause the estimates are not absolutely reliable, espe-ially in the ase of partial exploration of the situationspae.The results with generalization show that this pro-ess is able to reonsider early speialization mistakeswithout modifying a lot the learning speed. This way,YACS models the environment with a smaller numberof lassi�ers than ACS [BGS00b℄ does.6 CONCLUSION AND FUTUREWORKThe latent learning proess builds a model of the dy-namis of the environment even in the absene of re-wards. It models how the ations modify the pereivedsituations. This modeling proess uses informationabout suessive pereived situations. The informa-



tion used is available at eah time step. So, latentlearning systems make an intensive use of the perep-tual feedbak o�ered by the sensori-motor loop. Thus,they an quikly identify relevant and general lassi-�ers without using Geneti Algorithms.In this paper, we brie�y desribed the main meha-nisms of the latent learning in YACS and we proposeda new way for performing generalization. We haveshown experimentally that this additional proess isable to overome the over-speialization problems o-urring in previous versions of YACS.However, YACS is still bounded to deterministiMarkov problems. In a middle term, YACS should beenhaned to takle non-Markov problems. Moreover,we will explore in a short term a new formalism whihallows to express more regularities of the environment.Referenes[BGS00a℄ M. V. Butz, D. E. Goldberg, and W. Stolz-mann. Introduing a geneti generaliza-tion pressure to the Antiipatory Classi�erSystem part i: Theoretial approah. InProeedings of the 2000 Geneti and Evolu-tionary Computation Conferene (GECCO2000), 2000.[BGS00b℄ M. V. Butz, D. E. Goldberg, and W. Stolz-mann. Introduing a geneti generaliza-tion pressure to the Antiipatory Classi�erSystem part ii: Experimental results. InProeedings of the 2000 Geneti and Evolu-tionary Computation Conferene (GECCO2000), 2000.[Dor94℄ M. Dorigo. Geneti and non-geneti oper-ators in alesys. Evolutionary Computa-tion, 1(2):151�164, 1994.[GSS01℄ P. Gérard, W. Stolzmann, and O. Sigaud.YACS : a new Learning Classi�er Systemusing Antiipation. Journal of Soft Com-puting : Speial Issue on Learning Classi-�er Systems, (to appear) 2001.[Hol76℄ J.H. Holland. Adaptation. Progress in the-orial biology, 1976.[Hol90℄ J.H. Holland. Conerning the emergene oftag mediated lookahead in Classi�er Sys-tems. Speial Issue of Physia D, 42:188�201, 1990.[Lan97℄ P. L. Lanzi. A study of the generaliza-tion apabilities of XSC. In T. Baek, ed-
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