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Abstract. This paper describes our work on the use of anticipation
in Learning Classifier Systems (LCS) applied to Markov problems. We
present YACS!, a new kind of Anticipatory Classifier System. It calls
upon classifiers with a [Condition], an [Action] and an [Ef fect] part.
As in the traditional LCS framework, the classifier discovery process
relies on a selection and a creation mechanism. As in ACS, the selection in
YACS relies on the quality of the anticipation. Therefore, YACS looks for
classifiers which anticipate well rather than for classifiers which propose
an optimal action. The creation mechanism does not rely on classical
genetic operators but on a specialization operator, which is explicitly
driven by experience. Likewise, the action qualities of the classifiers are
not computed by a classical bucket-brigade algorithm, but by a variety
of the value iteration algorithm that takes advantage of the effect part
of the classifiers.

This paper presents the latent learning process of YACS. The description
of the reinforcement learning process is focussed on the problem induced
by the joint use of generalization and dynamic programming methods.

1 Introduction

Our work takes place in the reinforcement learning framework. We model an
agent which acts on this environment and receives a reward and a new percep-
tion. More precisely, we use the Learning Classifier Systems (LCS) framework
whose principles have been set down by [Holland et al., 1986], [Goldberg, 1989]
and [Booker et al., 1989].

More recent achievements in this framework are due to [Wilson, 1994] and
[Wilson, 1995], [Dorigo, 1994], [Stolzmann, 1998] and [Lanzi, 2000] among oth-
ers. Most of these research efforts deal with Markov problems, i.e. problems in
which the distribution of probability for getting a perception only depends on
the previous perception and action. The system we present here is designed to
solve such problems, although we envision extending our work to non-Markov
problems in the future, as [Cliff and Ross, 1994] and [Lanzi, 1998] do.

In this framework, our basic assumptions are the following:

1 YACS stands for “Yet Another Classifier System”



— rather than generating new classifiers with random genetic operators and
evaluating them afterwards, we drive the classifier discovery process by ex-
perience, slightly improving what [Dorigo, 1994] did;

— rather than using a plain reinforcement learning process, the agent per-
forms latent learning [Riolo, 1991] to use its anticipation capabilities. This
latent learning process can take place even if no reward is given by the
environment. The joint use of latent learning and dynamic programming
algorithms speeds up the convergence towards an optimal behavior once
reward sources are identified. It has already been exploited in DynaQ+
[Sutton and Barto, 1998];

— we want to reduce the number of classifiers as much as possible. So, we never
have two classifiers such that one is strictly more general than another.

In the next section, we present the components of YACS. As both our system
and Stolzmann’s ACS? [Stolzmann, 1998] deal with classifiers with an effect part,
we will highlight how the learning process detailed in section 3 differs in both
systems. In this section, we pay a particular attention to the joint use of gen-
eralization and dynamic programming. In section 4, we present the preliminary
results obtained on a very simple application.

2 Features of the system

The system we designed uses a set of different classifiers®. Each classifier is a
set of ordered messages. Each message is a set of ordered tokens. All classifiers
share the same structure and message lengths.

Tokens may take discrete values in a range [0, NbPossibleValues — 1], in
which case they are specialized token, or they may take a # value. We have two
kinds of tokens: action tokens and perception tokens. Action tokens are symbols
representing elementary actions, for example the activation level of a particu-
lar engine in a robot. Perception tokens are symbols representing elementary
perceptions, for example the value given by a particular sensor.

The system deals with two kinds of messages: action and perception messages,
containing respectively action and perception tokens. The range of all tokens at
the same place are the same for all messages of the same kind.

Two tokens are said to match if at least one is a # token, or if both have the
same value. Two messages of the same kind are said to match if all their tokens
match the corresponding token in the other message.

If every token of a perception message is less general or equal to the corre-
sponding tokens of a second message, and if at least two corresponding tokens
are different, the first message is more specialized than the second one.

As in ACS [Stolzmann, 1998|, a classifier is composed of three parts: the
[Condition] and the [Ef fect] parts are perception messages, the [Action] part
is an action message.

2 Anticipatory Classifier System
3 A classifier is never added to the classifier set if another one in the set has the same
[Condition], [Action] and [Ef fect] parts.



The tokens of an [Ef fect] part act as a filter: a # in the [Ef fect] part is
a don’t change token and means “the elementary perception represented by the
token will remain unchanged at the next time step if the classifier is fired”; any
other value is interpreted straight-forwardly. When the condition of a classifier
matches a perception, we use the passthrough operator to predict the next per-
ception if the action of the classifier is chosen: The passthrough operator works
on perception tokens ¢ as follows :

passthrough(t,, t.) = {Z’ :){ff;rwzfe
Applying the passthrough operator on perception messages consists in applying
the operator on their tokens.

Let C be a classifier with a [Condition] part matching the [Perception] mes-
sage. Then C anticipates the perception [Perception].passthrough(C.[E f fect])®
when the action C.[Action] is performed just after [Perception] occurs.

We also use the reverse operator of passthrough - the difference operator -
which works on perception tokens ¢ as follows:

dif ference(ta, t1) = { Z Z{;er;;le

Given two successive perceptions, this operator allows to compute what an
[Ef fect] part should have been to predict correctly the second one if given
the first.

An immediate reward estimate R is associated to each classifier. R reflects the
expected immediate reward if the classifier is fired”. It is estimated from direct
experience. Dynamic programming algorithms like value iteration take advantage
of immediate reward estimates and information provided by the [Ef fect] part
to compute an optimal policy.

Each classifier also keeps a trace T' of good and bad markers memorizing past
anticipation mistakes and successes. The length of this trace is bounded by a
fixed memory size m.

When two classifiers share the same [Action] part and if a [Condition] part is
more specialized than the other one, the first classifier is more specialized than
the other. We do not consider the [Ef fect] part of a classifier to determine its
specialization level because a # in the [Ef fect] is a don’t change token and not
a don’t care token as in a [Condition] part.

* t, is the token of a [Perception] and t. is the token of an [Effect] part.

5 We use the dot symbol (.) to identify a part of a composed item. For example,
C.[Condition] means “the [Condition] part of the classifier C”; C.R means “the R
estimate of the classifier C” (its immediate reward estimate); ¢.S means “the S
estimate of the token ¢”. Hence, we always use the “x” symbol for multiplication.

6 ¢, is a token of a perception occuring just after the perception containing #;

" The default R is 0.



For every classifier, each general token of the [Condition] part keeps an ez-
pected improvement by specialization estimate S® which helps to drive the spe-
cialization process (see section 3.3)

The system also uses a set of every perception encountered during the lifetime
of the agent. This set only contains one instance of each perception. It is not
ordered.

3 The Algorithm

Like [Stolzmann, 1998] and [Witkowski, 1999, we have an [Ef fect] part in the
classifiers. The classifier discovery process builds a set of classifiers which antici-
pate well rather than classifiers which act optimally. This knowledge about state
transitions allows the system to plan its actions or to use a variety of the value
iteration algorithm. It becomes able to adjust his policy very fast when a new
reward source is discovered.

As in many other works, we divide the life-time of the agent into discrete
time steps. During a time step, the agent acts as follows:

1. Tt gets a reward and a perception from the environment;

2. It learns about the dynamics of its environment and the optimality of actions;
3. It selects an action according to what it learned;

4. Tt acts correspondingly in the environment.

The latent learning process is in charge of discovering adequate classifiers
which model the dynamics of the environment. In ACS [Stolzmann, 1998] the
ALP? modifies at the same time [Condition] and [Ef fect] parts in order to re-
flect the changes in the dynamic of the environment. In YACS the [E f fect] part
alone provides all the information about changes in the environment. A special-
ized token in the [Ef fect] part always indicate a change in the environment,
regardless of the corresponding token in the [Condition] part. In YACS, the
latent learning process can be divided into two simple and separate processes:

— adjusting the [Ef fect] parts (section 3.2);
— discovering relevant [Condition] parts (section 3.3).

A [Condition] part may specify a state of the environment even if it is not
fully specialized. Furthermore, the minimal set of tokens necessary to specify a
state does not necessarily correspond to the changing tokens of the perceptions
when the classifier is fired. However, in ACS [Stolzmann, 1998], the ALP always
specializes the [Condition] part and the [E f fect] part at the same time, and only
when the corresponding token in the perceptions is changing. As a result (see
[Butz et al., 2000a]), some [Condition] parts may be over-specialized. Splitting
the anticipatory learning process into two separate processes helps to overcome
this problem.

8 The default S is 0.5.
® Anticipation Learning Process



The reinforcement learning process takes advantage of the model of the dy-
namics of the environment computed by the latent learning process. In section
3.5 we present a problem induced when we jointly want to take advantage of gen-
eralization and use dynamic programming algorithms like value iteration, and
we propose a solution.

The action selection uses a winner-take-all strategy (see section 3.6).

3.1 Getting a reward and a new perception

When the system comes to time step ¢, it gets from the environment the new
perception [Perception]; and the reward value Reward; resulting from the last
selected action.

If the new perception is not present in the set of encountered perceptions, it is
added. But, even if we only keep one instance of every encountered perception,
this set can become significantly large if the agent gets a lot of a elementary
perceptions. In this case, it could be worth taking advantage of generalization
to reduce the size of the set.

As the system learns from one step temporal differences, the latent learning
process relies on a memory of the last perception. So the system stores the last
perception [Perception]i—1 and forgets [Perception]s—».

If the [Condition] part of no classifier matches it for a particular [Action)
message, one is added to the classifier set. The [E f fect] part of the new classifier
is set to difference([Perception]s, [Perception]i—1). The [Condition] part is such
that:

— it matches [Perception]y;

— it is neither more general nor more specialized than any [Condition] part of
the [Condition] part of any other classifier with the same [Action] part.

— it is as general as possible, considering the previous constraints.

These conditions allow to add maximally general classifiers without introducing
redundancies with already specialized ones.

3.2 Learning to anticipate

This process is the part of the latent learning process which is in charge of
discovering accurate [Ef fect] parts. When the system learns to anticipate, it
may create some new classifiers, with suitable [E f fect] parts straight-forwardly
settled according to experience. As [Witkowski, 1999] does, the algorithm does
not only evaluate the classifiers which have been fired, but also takes advantage
of experience to evaluate all the classifiers which could have been fired.

At each time step, the [DesiredE f fect] message is computed according to
the formula:

[Desired E f fect] < dif ference([Perception]:, [Perception];_1)

This message corresponds to the anticipation of a classifier that would have
anticipated well at the last time step and whose selection (see section 3.6) would



have driven the system to act as it actually did. Classifiers can be involved in
the anticipation learning process even if they were not actually selected. These
classifiers C' are such that C.[Condition] matches [Perception];—1 and C.[Action]
matches [Action];_;.

Let us consider such a classifier C.

— If C.[Prediction] equals [Desired Anticipation], the classifier would have
anticipated well, and we add a good marker to its trace T of anticipation
mistakes and successes.

— In either case, the classifier C' would have made an anticipation mistake
and we add a a bad marker to its trace. Moreover, if no classifier did an-
ticipate correctly, we add a new classifier which anticipates well. As in
[Stolzmann, 1998], the anticipation is covered and we add a new classifier
which is the same as the initial one but its [E f fect] part which is set to the
[Desired E f fect]. Its trace T only contains a single good marker.

Our anticipation covering mechanism creates classifiers with relevant [E f fect]
parts by taking advantage of direct experience rather than genetic algorithms
(GA). It differs from the ACS anticipation covering since it does only modify the
[Ef fect] part. The anticipation covering mechanism allows to learn straightfor-
wardly when an action does not change the perceptions of the system, without
requiering a dedicated mechanism like the specification of unchanging compo-
nents in ACS [Stolzmann, 1999].

3.3 Learning relevant conditions

In section 3.2 we have explained how, while learning to anticipate, the sys-
tem adds new classifiers to adjust [Ef fect] parts. This section explains how
[Condition] parts are adjusted.

The MutSpec operator The classifier discovery problem is usually solved
by a GA using a creation process driven by mutation and crossover on classi-
fiers selected by their quality. operators. These blind operators do not explic-
itly take advantage of the experience of the agent. Dorigo’s MutSpec operator
[Dorigo, 1994] improves the classifier discovery process by driving the special-
ization of the classifiers according to its experience. Our purpose is to build
a classifier system without mutation nor crossover operators. Like McCallum’s
U-TREE algorithm [McCallum, 1996], our system starts without making any dis-
tinction between world states, and incrementally introduces experience driven
specializations in [Condition] parts.

At the first time step, the classifier set contains one general classifier for each
possible action. The [Condition] and [E f fect] parts only contain # tokens.

At each time step, we add good and bad markers in the trace T of anticipation
mistakes and sucesses (see section 3.2) of several classifiers. This trace works as
a FIFO list with a finite length m. When the trace is full -i.e. its size equals m-,
we assume that the anticipation accuracy the classifier has been checked enough
and



— if the trace of the classifier only contains good markers, it always anticipated
well and it does not need to be more specialized;

— if the trace of the classifier only contains bad markers, and if it is not the
only one matching a particular perception of the encountered perception set
for a particular action, it is discarded;

— if the trace of the classifier contains good and bad makers, it sometimes an-
ticipates well and sometimes not. The classifier oscillates and its [Condition]
part needs to be specialized.

The specialization process is designed to discover relevant [Condition] parts, it
uses the MutSpec operator introduced by [Dorigo, 1994]. The MutSpec oper-
ator selects a joker token of the classifier and produces one new classifier for
each possible specialized value of the selected token. The original classifier is
discarded.

For instance, when the first token is selected, and assuming that it only may
take two values (0 or 1) the classifier [#|#|#|#] [0] [#|#|#|#] produces two
classifiers:

— [Ol#[#1#1 [0] [#|#|#]#];
— [L1#1#1#1 [0 [#|#1#1#].

So, if the [Condition] part of the original classifier was matching several
states of the environment, each resulting [Condition] part will match a subset
of these states. We want YACS to be able to choose the token two specialize in
such a way that the two resulting subsets have an equal cardinality, in order to
reduce the number of specializations and thus the over-specialization.

The expected improvement by specialization estimate Choosing at ran-
dom the token to specialize as in Dorigo’s original work would lead to an over-
specialization of the [Condition] parts and thus to a sub-optimal number of
classifiers. We improve this selection by using the ezpected improvement by spe-
cialization estimate S associated to each general token of each [Condition] part.
This value estimates how much the specialization of the token would help to
split the state set covered by the [Condition] part into several sub-sets of equal
cardinality.

Let us consider a classifier which tries to anticipate the consequences of an
action in several situations. If the value of a particular feature of the percep-
tion when the classifier anticipates well is always different from the value when
it makes anticipation mistakes, then the [Condition] part must be specialized
according to this particular feature, and the estimate S will get a high value.

In order to compute the estimates S, each classifier memorizes the perception
preceeding the last anticipation mistake [BadPerception] and the last percep-
tion preceeding the last anticipation success [GoodPerception]. Each time the
[Action] part of a classifier matches [Action;_1] and its [Condition] part matches
[Perception;_1], the [Perception,] allows to check the accuracy of the [E f fect]
part.



— If the [Ef fect] part is correct, for each feature of the environment :

e if a particular token of [BadPerception] equals the corresponding feature
of [Perception;_1], then the corresponding estimate S is decreased using
a Widrow-Hoff delta rule;

e if a particular token of [BadPerception] differs from the correspond-
ing feature of [Perception;_1], then the corresponding estimate S is in-
creased using a Widrow-Hoff delta rule;

— If the [Ef fect] part is incorrect, for each feature of the environment :

e if a particular token of [GoodPerception] equals the corresponding fea-
ture of [Perception;_1], then the corresponding estimate S is decreased
using a Widrow-Hoff delta rule;

e if a particular token of [GoodPerception] differs from the correspond-
ing feature of [Perception;_1], then the corresponding estimate S is in-
creased using a Widrow-Hoff delta rule;

This process allows every classifier to identify which general token should be first
specialized in order to improve the relevance of the [Condition] part.

3.4 The specialization process

The expected improvement by specialization estimates allow the classifier special-
ization mechanism to be driven by experience and are used in the [Condition)
specialization process. This estimate allows to drive specialization without man-
aging [Perception] marks as in ACS [Butz et al., 2000b].

When a classifier sometimes anticipate well and sometimes not - ie when its
anticipation trace contains good and bad markers - it oscillates and its [Condition]
part needs to be specialized. If such a classifier is oscillating, thanks to the antic-
ipation covering mechanism, the classifier set contains at least one other classifier
with the same [Condition] and [Action] parts and with a different [E f fect] part.

The specialization process is very careful : YACS waits that every classifier
with the same [Condition] and [Action] parts has been identified as an oscillating
classifier, and that its anticipation trace is full. At this point, these classifiers
elect together the feature to specialize. The estimates S corresponding to each
feature of the environment are summed among the classifiers, and the feature
with the highest sum is chosen to get specialized. The MutSpec operator is then
applied to every classifier.

MutSpec may create classifiers that will never be used nor evaluated because
their [C'ondition] part matches no possible perception. To avoid such classifiers,
we remove every classifier which does not match any perception in the set of
already encountered perceptions.

In this section, we described how YACS performs latent learning in two
separate processes :

— learning accurate [E f fect] parts by temporal difference learning;
— carefuly specializing the [Condition] parts.



The set of classifiers discovered by the latent learning process is a model of
the dynamics of the environment which provides information about the state
transitions. It takes advantage of the generalization to discover regularities and
keep the model small.

3.5 Learning to act

In this section, we will describe how YACS takes advantage of the model of the
environment to speed up the reinforcement learning process. We first introduce
the value iteration algorithm and the way YACS identifies the reward sources.
Then we explain how the use of generalization forbids to compute one single
quality for each classifier. We finally present two strategies that may be used
and our reasons to propose a different one.

Value Iteration To back-propagate the reward, we use a simplified variety of
value iteration : a dynamic programming algorithm which solves the Bellmann
equations [Bellman, 1957] by iteratively refining qualities for (state, action) pairs
by using the formula:

Q(s,a) = R(s,a) +v > _T(s,a,s")V(s) (1)

ry

where
V(s) = max,Q(s,a) (2)

Q(s,a) is the quality of action a in state s. v is the temporal discount factor.
V(s) is the desirability value of the state s. R(s,a) is the immediate expected
reward when the agent performs action a in state s. T(s,a,s’) is the probability
for reaching state s’ when performing action a in state s.

As our system is designed to deal with deterministic environment, we do
not use the transition probabilities and replace the expected future cumulative
reward ), T'(s,a,s")V(s") by mazxyV (s") where s’ is a state anticipated when
the system performs the action a in state s.

Learning about immediate reward The latent learning provides the infor-
mation about state transitions. In order to use a dynamic programming algo-
rithm, the system computes the immediate expected rewards corresponding to
R(s,a). At each time step, the immediate reward estimates R of every classi-
fier such that C.[Condition] matches [Perception];—1 and C.[Action] matches
[Action];—1 are updated according to the formula:

R+ (1 - ) x R+ 3 x CurrentReward

Here again, the algorithm updates values of classifiers which have not been ac-
tually fired.



The generalization problem If YACS would not use generalization, it would
be easy to compute a single quality of action for each classifier by using the
formula:

C.Q+ C.R+~vyxmaxcC'.Q

In classifier systems without an [E f fect] part, a classifier is kept when it helps
maximizing reward on the long run, or when it is able to predict the reward.
When we use classifiers with an [Ef fect] part, the decision to keep or remove
a classifier ony relies on its ability to predict the next perceptions. It does not
take the reward into account.

This way of considering the fitness of a classifier gives rise to a new way of
considering generalization. A classifier is too general when a joker token prevents
the anticipation to be accurate, regardless of the payoff. It is too specialized if
its anticipation ability would remain accurate if some joker were added in its
[Condition] part, regardless of the payoff.

For example, let us consider a classifier which could be interpreted in a maze
environment as “when the agent percieves a wall on the north, if it tries to move
north, nothing will change in its perceptions : it will remain in the same square”.
Such a classifier is accurate, since it would not anticipate better if a joker token of
its [Condition] part was specialized. It is kept and will not be further specialized.
The problem is that such an accurate classifier is not too general with respect
to anticipation, but it introduces a kind of perceptual aliasing since it matches
in several different situations.

Because of the discount factor (v in formula 1), the qualities associated to the
states which are close to the goal are much higher than the qualities associated
to the states which are far from the goal. So one can not compute a single quality
for a classifier whose [Condition] part matches a several perception recieved at
different distances from the goal.

So, as the generalization helps to discover regularities in the environment
instead of simply providing a kind of selective attention, some classifier may be
fired in several states and thus it becomes impossible to compute a single quality
for each general classifier.

Possible Solutions In order to avoid this problem, one solution could be to
introduce the detection of over-general classifiers with respect to payoff and to
specialize such classifiers. But this solution is not coherent with our approach:
the latent learning process, which provides a model of the dynamics of the en-
vironment, must take place even in the absence of rewards. We want to model
dynamics of the environment with as few classifiers as possible in order to reduce
computation time. Thus the model must take advantage of every regularities of
the environment. So, classifiers which do not anticipate well should be further
specialized.

Another solution is the use of a lookahead planning algorithm rather than a
variety of the value iteration algorithm. At each time step, the system would have
to build a plan starting with the current perception. [Butz and Stolzmann, 1999



proposes an enhancement to ACS which uses explicit goals to perform bidirection-
nal planning, but comes out of the reinforcemnt learning framework. A general
classifier used at different levels of the planning process is interpreted in differ-
ent contexts and this should solve the problem of perceptual aliasing introduced
by over-general classifiers with respect to payoff but accurate with respect to
anticipation. But as a result, the system may suffer from a lack of reactivity.

Storing values for every already encountered perception The solution
we propose is to associate a desirability value to each specialized [Perception]
in the already encountered perception list. YACS stores values corresponding to
V(s) in the formula 2 - one for each [Perception] - instead of storing qualities
corresponding to (s, a) - one for each [Perception]/[Action] pair - as it is the
case for Q-Learning [Watkins, 1989] and DynaQ+ [Sutton and Barto, 1998].

To compute the quality associated to a [Perception], we first identify all the
classifiers C' such that C.[Condition] matches [Perception]. If such a classifier
was fired, the immediate reward would be C.R and the expected cumulative
reward would be the value of the perception anticipated by the classifier. In a
more formal way, the quality ) associated to a [Perception] can be updated by
using the formula :

[Perception].Q) < maxcC.R + v x [Perception].passthrough(C.[Ef fect]).Q

where C.[Condition] matches [Perception]

So the system computes values for each perception and takes advantage of the
model provided by the latent learning process to update these values without
actually experiencing every transition. When the classifier system anticipates
well in every situation, the agent may adapt its behavior quickly to new reward
sources.

3.6 Selecting an action

When the system gets a [Perception]| from the environment, it selects all the
classifiers C' whose [Condition] part matches it. These classifiers anticipate the
following perception by computing [Perception].passthrough(C.[Ef fect]). Then
they compute a quality by adding the immediate reward estimate C.R and the
discounted expected reward which is the value of the following perception muti-
plied by the discount factor . The selected action is the action of the classifier
with the highest quality.

4 Preliminary results

4.1 A simple maze problem

We use the maze problem described in figure 1 in order to evaluate our algorithm.
This maze illustrates a state transition diagram with nine states and four possible
transitions starting from each state.
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Fig. 1. A simple maze problem

The agent is always situated in a square. It can perceive the abscence or
presence of walls in each cardinal direction (N, E, S and W). For instance, the
agent percieves [1]0/0]1] in square 0 and [1]1]0/0] in square 2. The agent is
given four possible actions: to move in any of the four cardinal directions.

An experience is divided into several trials. For each trial, the agent starts in
square S. At each time step, it can make every possible action, including dumb
actions like hitting a wall. When it comes to square 6, it gets a reward of 1 and
it is given the opportunity to learn about the state transition. Then a new trial
starts in square 3.

This goal can be reached optimaly in 9 successive time steps.
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Fig. 2. Average evolution of the number of classifiers



4.2 Presentation of the results

The results we present here have been obtained with a learning rate 5 of 0.1 and
a memory size m of 3.

Latent Learning We let the system move in the maze for 1000 time steps
without any reward. During this time, it moves randomly and performs latent
learning to model the dynamics of the environment. The figure 2 shows the
evolution of the average number of classifiers over 1000 experiments.

The figure 3 shows the evolution of the number of classifiers on a represen-
tative single experiment.

nb classifiers

0 200 400 600 800 1000
time step

Fig. 3. Evolution of the number of classifiers for one experiment

The minimal number of classifiers to accurately model the whole environment
is 20. The number of fully specialized classifiers needed to model the dynamics
of the environment is 36. A Q-table would consider 64 (state, action) pairs. The
number of classifiers produced by YACS converges arround 23.

YACS finds very accurately regularities like “when there is a wall on the north,
moving north does not produce any changes in the perceptions”, but sometimes
specializes the classifiers in a non optimal way in early time steps, because of
some partially representative samples of experience. As a result, the number of
classifiers may be sub-optimal.



Reinforcement Learning After these 1000 time steps of exploration, the sys-
tem is given a reward when it reaches the goal. The figure 4 shows the average
number of time steps the system needed to achieve successsive trials with re-
ward, over 1000 experiments. The figure 5 shows the number of time steps the
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Fig. 4. Average number of time step to reach the goal in successive trials

system needed to achieve successive trials for the same single experiment as for
figure 3. The number of time steps of the first trial is high because the system
has not already been rewarded yet and thus has no way to find the optimal way
to the goal.

After this first trial, the system has identified a reward source and takes
advantage of its model of the environment to quickly find the optimal path to
the goal. The agent does not immediately behave optimaly because the system
does not perform a complete value iteration each time step. In order to get a
good reactivity/planning tradeoff, only one step of value iteration is performed
each time step. As a result, the agent needs several time steps to adjust its policy.

In the figure 4, the average convergence looks slower because the average
values take into account several experiments like the one shown in figure 6. In
such experiments, the model of the environment was not perfectly accurate after
the 1000 time steps of exploration. The system needed some more sub-optimal
trials to adjust the model.
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Fig. 5. Number of time steps to reach the goal in successive trials for one experi-
ment.YACS was able to build an accurate model of the environment within the 1000
exploration time steps

5 Discussion

The results presented in section 4 are encouraging but YACS still suffers two
major drawbacks.

5.1 The exploration/exploitation tradeoff

In YACS, the reinforcement learning process works fine only if the model pro-
vided by the latent learning is complete and accurate. If the classifiers are not
specialized enough, the system may “imagine” transitions which are incorrect in
the actual environment, and which may prevent the system to find the way to
the goal. Over 1000 experiments, the system was 17 times unable to reach the
goal within 1000 time step after the exploration steps and the first trial leading
to the identification of the reward source. These experiments are not taken into
account in the figures 2 and 4. This drawback forbids YACS to simultaneously
build the model while exploiting safely a partial model of the environment.

5.2 The need for a generalization mechanism

Having an efficient generalization mechanism is important in the LCS approach
since generalization is one of the most original features of LCS with respect
to basic reinforcement learning algorithms. Even if YACS is able to stop the
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Fig. 6. Number of time steps to reach the goal in successive trials for one experiment.
YACS was not able to build an accurate model of the environment within the 1000
exploration time steps

specialization process when there is no more need for more specialized classifiers,
it still lacks a specific generalization process. This leads our system to sub-
optimality problems:

— choosing to specialize a bad token in early time steps may lead to a sub-
optimal number of classifiers;

— in a changing environment, the adaptation of YACS relies on the condi-
tion covering mechanism, and leads to over-specialized classifiers and a sub-
optimal number of classifiers.

A generalization mechanism should offer the opportunity for the system to recon-
sider early choices of tokens to specialize, and to discover reliable and accurate
classifiers.

6 Conclusion and future work

Our work takes place in a recent trend on LCS research which focuses on the
use of anticipation in order to improve the quality of classifiers and increase
the learning speed. As most researchers in this trend [Stolzmann, 1998] and
[Witkowski, 1999], we have designed YACS, a system which combines laten-
t learning and reinforcement learning. We have highlighted difficulties due to
generalization when we use latent learning through dynamic programming al-
gorithms. We also presented some experimental results which were dealing with



YACS involved in a simple maze environment, but YACS is also used for bigger
applications as in [Sigaud, 2000].

But YACS still lacks a generalization process. Recent works like [Lanzi, 1999]
and [Butz et al., 2000b] has shown that this generalization concern is shared by
other researchers. [Butz et al., 2000b] proposes a solution using the selection
pressure of a GA to favor the emergence of reliable and general classifiers in
ACS. Since we are reluctant to use the blind search mechanisms of GAs, we will
investigate alternative solutions in the short term future.
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