
YACS : Combining Dynami Programming withGeneralization in Classi�er SystemsPierre Gérard1;2 and Olivier Sigaud11 Dassault Aviation, DGT/DPR/DESA78, Quai Marel Dassault, 92552 St-Cloud Cedex2 AnimatLab (LIP6), 8, rue du apitaine Sott, 75015 PARISpierre.gerard�lip6.fr, olivier.sigaud�dassault-aviation.frAbstrat. This paper desribes our work on the use of antiipationin Learning Classi�er Systems (LCS) applied to Markov problems. Wepresent YACS1, a new kind of Antiipatory Classi�er System. It allsupon lassi�ers with a [Condition℄, an [Ation℄ and an [Effet℄ part.As in the traditional LCS framework, the lassi�er disovery proessrelies on a seletion and a reation mehanism. As in ACS, the seletion inYACS relies on the quality of the antiipation. Therefore, YACS looks forlassi�ers whih antiipate well rather than for lassi�ers whih proposean optimal ation. The reation mehanism does not rely on lassialgeneti operators but on a speialization operator, whih is expliitlydriven by experiene. Likewise, the ation qualities of the lassi�ers arenot omputed by a lassial buket-brigade algorithm, but by a varietyof the value iteration algorithm that takes advantage of the e�et partof the lassi�ers.This paper presents the latent learning proess of YACS. The desriptionof the reinforement learning proess is foussed on the problem induedby the joint use of generalization and dynami programming methods.1 IntrodutionOur work takes plae in the reinforement learning framework. We model anagent whih ats on this environment and reeives a reward and a new perep-tion. More preisely, we use the Learning Classi�er Systems (LCS) frameworkwhose priniples have been set down by [Holland et al., 1986℄, [Goldberg, 1989℄and [Booker et al., 1989℄.More reent ahievements in this framework are due to [Wilson, 1994℄ and[Wilson, 1995℄, [Dorigo, 1994℄, [Stolzmann, 1998℄ and [Lanzi, 2000℄ among oth-ers. Most of these researh e�orts deal with Markov problems, i.e. problems inwhih the distribution of probability for getting a pereption only depends onthe previous pereption and ation. The system we present here is designed tosolve suh problems, although we envision extending our work to non-Markovproblems in the future, as [Cli� and Ross, 1994℄ and [Lanzi, 1998℄ do.In this framework, our basi assumptions are the following:1 YACS stands for �Yet Another Classi�er System�



� rather than generating new lassi�ers with random geneti operators andevaluating them afterwards, we drive the lassi�er disovery proess by ex-periene, slightly improving what [Dorigo, 1994℄ did;� rather than using a plain reinforement learning proess, the agent per-forms latent learning [Riolo, 1991℄ to use its antiipation apabilities. Thislatent learning proess an take plae even if no reward is given by theenvironment. The joint use of latent learning and dynami programmingalgorithms speeds up the onvergene towards an optimal behavior onereward soures are identi�ed. It has already been exploited in DynaQ+[Sutton and Barto, 1998℄;� we want to redue the number of lassi�ers as muh as possible. So, we neverhave two lassi�ers suh that one is stritly more general than another.In the next setion, we present the omponents of YACS. As both our systemand Stolzmann's ACS2 [Stolzmann, 1998℄ deal with lassi�ers with an e�et part,we will highlight how the learning proess detailed in setion 3 di�ers in bothsystems. In this setion, we pay a partiular attention to the joint use of gen-eralization and dynami programming. In setion 4, we present the preliminaryresults obtained on a very simple appliation.2 Features of the systemThe system we designed uses a set of di�erent lassi�ers3. Eah lassi�er is aset of ordered messages. Eah message is a set of ordered tokens. All lassi�ersshare the same struture and message lengths.Tokens may take disrete values in a range [0; NbPossibleV alues � 1℄, inwhih ase they are speialized token, or they may take a # value. We have twokinds of tokens: ation tokens and pereption tokens. Ation tokens are symbolsrepresenting elementary ations, for example the ativation level of a partiu-lar engine in a robot. Pereption tokens are symbols representing elementarypereptions, for example the value given by a partiular sensor.The system deals with two kinds of messages: ation and pereption messages,ontaining respetively ation and pereption tokens. The range of all tokens atthe same plae are the same for all messages of the same kind.Two tokens are said to math if at least one is a # token, or if both have thesame value. Two messages of the same kind are said to math if all their tokensmath the orresponding token in the other message.If every token of a pereption message is less general or equal to the orre-sponding tokens of a seond message, and if at least two orresponding tokensare di�erent, the �rst message is more speialized than the seond one.As in ACS [Stolzmann, 1998℄, a lassi�er is omposed of three parts: the[Condition℄ and the [Effet℄ parts are pereption messages, the [Ation℄ partis an ation message.2 Antiipatory Classi�er System3 A lassi�er is never added to the lassi�er set if another one in the set has the same[Condition℄, [Ation℄ and [Effet℄ parts.



The tokens of an [Effet℄ part at as a �lter: a # in the [Effet℄ part isa don't hange token and means �the elementary pereption represented by thetoken will remain unhanged at the next time step if the lassi�er is �red�; anyother value is interpreted straight-forwardly. When the ondition of a lassi�ermathes a pereption, we use the passthrough operator to predit the next per-eption if the ation of the lassi�er is hosen: The passthrough operator workson pereption tokens 4 as follows :passthrough(tp; te) = � tp if te = #te otherwiseApplying the passthrough operator on pereption messages onsists in applyingthe operator on their tokens.Let C be a lassi�er with a [Condition℄ part mathing the [Pereption℄ mes-sage. Then C antiipates the pereption [Pereption℄:passthrough(C:[Effet℄)5when the ation C:[Ation℄ is performed just after [Pereption℄ ours.We also use the reverse operator of passthrough - the di�erene operator -whih works on pereption tokens 6 as follows:differene(t2; t1) = �# if t2 = t1t2 otherwiseGiven two suessive pereptions, this operator allows to ompute what an[Effet℄ part should have been to predit orretly the seond one if giventhe �rst.An immediate reward estimate R is assoiated to eah lassi�er.R re�ets theexpeted immediate reward if the lassi�er is �red7. It is estimated from diretexperiene. Dynami programming algorithms like value iteration take advantageof immediate reward estimates and information provided by the [Effet℄ partto ompute an optimal poliy.Eah lassi�er also keeps a trae T of good and bad markers memorizing pastantiipation mistakes and suesses. The length of this trae is bounded by a�xed memory size m.When two lassi�ers share the same [Ation℄ part and if a [Condition℄ part ismore speialized than the other one, the �rst lassi�er is more speialized thanthe other. We do not onsider the [Effet℄ part of a lassi�er to determine itsspeialization level beause a # in the [Effet℄ is a don't hange token and nota don't are token as in a [Condition℄ part.4 tp is the token of a [Pereption℄ and te is the token of an [Effet℄ part.5 We use the dot symbol (.) to identify a part of a omposed item. For example,C:[Condition℄ means �the [Condition℄ part of the lassi�er C�; C:R means �the Restimate of the lassi�er C� (its immediate reward estimate); t:S means �the Sestimate of the token t�. Hene, we always use the ��� symbol for multipliation.6 t2 is a token of a pereption ouring just after the pereption ontaining t17 The default R is 0.



For every lassi�er, eah general token of the [Condition℄ part keeps an ex-peted improvement by speialization estimate S8 whih helps to drive the spe-ialization proess (see setion 3.3)The system also uses a set of every pereption enountered during the lifetimeof the agent. This set only ontains one instane of eah pereption. It is notordered.3 The AlgorithmLike [Stolzmann, 1998℄ and [Witkowski, 1999℄, we have an [Effet℄ part in thelassi�ers. The lassi�er disovery proess builds a set of lassi�ers whih antii-pate well rather than lassi�ers whih at optimally. This knowledge about statetransitions allows the system to plan its ations or to use a variety of the valueiteration algorithm. It beomes able to adjust his poliy very fast when a newreward soure is disovered.As in many other works, we divide the life-time of the agent into disretetime steps. During a time step, the agent ats as follows:1. It gets a reward and a pereption from the environment;2. It learns about the dynamis of its environment and the optimality of ations;3. It selets an ation aording to what it learned;4. It ats orrespondingly in the environment.The latent learning proess is in harge of disovering adequate lassi�erswhih model the dynamis of the environment. In ACS [Stolzmann, 1998℄ theALP9 modi�es at the same time [Condition℄ and [Effet℄ parts in order to re-�et the hanges in the dynami of the environment. In YACS the [Effet℄ partalone provides all the information about hanges in the environment. A speial-ized token in the [Effet℄ part always indiate a hange in the environment,regardless of the orresponding token in the [Condition℄ part. In YACS, thelatent learning proess an be divided into two simple and separate proesses:� adjusting the [Effet℄ parts (setion 3.2);� disovering relevant [Condition℄ parts (setion 3.3).A [Condition℄ part may speify a state of the environment even if it is notfully speialized. Furthermore, the minimal set of tokens neessary to speify astate does not neessarily orrespond to the hanging tokens of the pereptionswhen the lassi�er is �red. However, in ACS [Stolzmann, 1998℄, the ALP alwaysspeializes the [Condition℄ part and the [Effet℄ part at the same time, and onlywhen the orresponding token in the pereptions is hanging. As a result (see[Butz et al., 2000a℄), some [Condition℄ parts may be over-speialized. Splittingthe antiipatory learning proess into two separate proesses helps to overomethis problem.8 The default S is 0.5.9 Antiipation Learning Proess



The reinforement learning proess takes advantage of the model of the dy-namis of the environment omputed by the latent learning proess. In setion3.5 we present a problem indued when we jointly want to take advantage of gen-eralization and use dynami programming algorithms like value iteration, andwe propose a solution.The ation seletion uses a winner-take-all strategy (see setion 3.6).3.1 Getting a reward and a new pereptionWhen the system omes to time step t, it gets from the environment the newpereption [Pereption℄t and the reward value Rewardt resulting from the lastseleted ation.If the new pereption is not present in the set of enountered pereptions, it isadded. But, even if we only keep one instane of every enountered pereption,this set an beome signi�antly large if the agent gets a lot of a elementarypereptions. In this ase, it ould be worth taking advantage of generalizationto redue the size of the set.As the system learns from one step temporal di�erenes, the latent learningproess relies on a memory of the last pereption. So the system stores the lastpereption [Pereption℄t�1 and forgets [Pereption℄t�2.If the [Condition℄ part of no lassi�er mathes it for a partiular [Ation℄message, one is added to the lassi�er set. The [Effet℄ part of the new lassi�eris set to di�erene([Pereption℄t; [Pereption℄t�1). The [Condition℄ part is suhthat:� it mathes [Pereption℄t;� it is neither more general nor more speialized than any [Condition℄ part ofthe [Condition℄ part of any other lassi�er with the same [Ation℄ part.� it is as general as possible, onsidering the previous onstraints.These onditions allow to add maximally general lassi�ers without introduingredundanies with already speialized ones.3.2 Learning to antiipateThis proess is the part of the latent learning proess whih is in harge ofdisovering aurate [Effet℄ parts. When the system learns to antiipate, itmay reate some new lassi�ers, with suitable [Effet℄ parts straight-forwardlysettled aording to experiene. As [Witkowski, 1999℄ does, the algorithm doesnot only evaluate the lassi�ers whih have been �red, but also takes advantageof experiene to evaluate all the lassi�ers whih ould have been �red.At eah time step, the [DesiredEffet℄ message is omputed aording tothe formula:[DesiredEffet℄ differene([Pereption℄t; [Pereption℄t�1)This message orresponds to the antiipation of a lassi�er that would haveantiipated well at the last time step and whose seletion (see setion 3.6) would



have driven the system to at as it atually did. Classi�ers an be involved inthe antiipation learning proess even if they were not atually seleted. Theselassi�ers C are suh that C:[Condition℄mathes [Pereption℄t�1 and C:[Ation℄mathes [Ation℄t�1.Let us onsider suh a lassi�er C.� If C:[Predition℄ equals [DesiredAntiipation℄, the lassi�er would haveantiipated well, and we add a good marker to its trae T of antiipationmistakes and suesses.� In either ase, the lassi�er C would have made an antiipation mistakeand we add a a bad marker to its trae. Moreover, if no lassi�er did an-tiipate orretly, we add a new lassi�er whih antiipates well. As in[Stolzmann, 1998℄, the antiipation is overed and we add a new lassi�erwhih is the same as the initial one but its [Effet℄ part whih is set to the[DesiredEffet℄. Its trae T only ontains a single good marker.Our antiipation overingmehanism reates lassi�ers with relevant [Effet℄parts by taking advantage of diret experiene rather than geneti algorithms(GA). It di�ers from the ACS antiipation overing sine it does only modify the[Effet℄ part. The antiipation overing mehanism allows to learn straightfor-wardly when an ation does not hange the pereptions of the system, withoutrequiering a dediated mehanism like the spei�ation of unhanging ompo-nents in ACS [Stolzmann, 1999℄.3.3 Learning relevant onditionsIn setion 3.2 we have explained how, while learning to antiipate, the sys-tem adds new lassi�ers to adjust [Effet℄ parts. This setion explains how[Condition℄ parts are adjusted.The MutSpe operator The lassi�er disovery problem is usually solvedby a GA using a reation proess driven by mutation and rossover on lassi-�ers seleted by their quality. operators. These blind operators do not expli-itly take advantage of the experiene of the agent. Dorigo's MutSpe operator[Dorigo, 1994℄ improves the lassi�er disovery proess by driving the speial-ization of the lassi�ers aording to its experiene. Our purpose is to builda lassi�er system without mutation nor rossover operators. Like MCallum'sU-Tree algorithm [MCallum, 1996℄, our system starts without making any dis-tintion between world states, and inrementally introdues experiene drivenspeializations in [Condition℄ parts.At the �rst time step, the lassi�er set ontains one general lassi�er for eahpossible ation. The [Condition℄ and [Effet℄ parts only ontain # tokens.At eah time step, we add good and badmarkers in the trae T of antiipationmistakes and suesses (see setion 3.2) of several lassi�ers. This trae works asa FIFO list with a �nite length m. When the trae is full -i.e. its size equals m-,we assume that the antiipation auray the lassi�er has been heked enoughand



� if the trae of the lassi�er only ontains good markers, it always antiipatedwell and it does not need to be more speialized;� if the trae of the lassi�er only ontains bad markers, and if it is not theonly one mathing a partiular pereption of the enountered pereption setfor a partiular ation, it is disarded;� if the trae of the lassi�er ontains good and bad makers, it sometimes an-tiipates well and sometimes not. The lassi�er osillates and its [Condition℄part needs to be speialized.The speialization proess is designed to disover relevant [Condition℄ parts, ituses the MutSpe operator introdued by [Dorigo, 1994℄. The MutSpe oper-ator selets a joker token of the lassi�er and produes one new lassi�er foreah possible speialized value of the seleted token. The original lassi�er isdisarded.For instane, when the �rst token is seleted, and assuming that it only maytake two values (0 or 1) the lassi�er [#|#|#|#℄ [0℄ [#|#|#|#℄ produes twolassi�ers:� [0|#|#|#℄ [0℄ [#|#|#|#℄;� [1|#|#|#℄ [0℄ [#|#|#|#℄.So, if the [Condition℄ part of the original lassi�er was mathing severalstates of the environment, eah resulting [Condition℄ part will math a subsetof these states. We want YACS to be able to hoose the token two speialize insuh a way that the two resulting subsets have an equal ardinality, in order toredue the number of speializations and thus the over-speialization.The expeted improvement by speialization estimate Choosing at ran-dom the token to speialize as in Dorigo's original work would lead to an over-speialization of the [Condition℄ parts and thus to a sub-optimal number oflassi�ers. We improve this seletion by using the expeted improvement by spe-ialization estimate S assoiated to eah general token of eah [Condition℄ part.This value estimates how muh the speialization of the token would help tosplit the state set overed by the [Condition℄ part into several sub-sets of equalardinality.Let us onsider a lassi�er whih tries to antiipate the onsequenes of anation in several situations. If the value of a partiular feature of the perep-tion when the lassi�er antiipates well is always di�erent from the value whenit makes antiipation mistakes, then the [Condition℄ part must be speializedaording to this partiular feature, and the estimate S will get a high value.In order to ompute the estimates S, eah lassi�er memorizes the pereptionpreeeding the last antiipation mistake [BadPereption℄ and the last perep-tion preeeding the last antiipation suess [GoodPereption℄. Eah time the[Ation℄ part of a lassi�er mathes [Ationt�1℄ and its [Condition℄ part mathes[Pereptiont�1℄, the [Pereptiont℄ allows to hek the auray of the [Effet℄part.



� If the [Effet℄ part is orret, for eah feature of the environment :� if a partiular token of [BadPereption℄ equals the orresponding featureof [Pereptiont�1℄, then the orresponding estimate S is dereased usinga Widrow-Ho� delta rule;� if a partiular token of [BadPereption℄ di�ers from the orrespond-ing feature of [Pereptiont�1℄, then the orresponding estimate S is in-reased using a Widrow-Ho� delta rule;� If the [Effet℄ part is inorret, for eah feature of the environment :� if a partiular token of [GoodPereption℄ equals the orresponding fea-ture of [Pereptiont�1℄, then the orresponding estimate S is dereasedusing a Widrow-Ho� delta rule;� if a partiular token of [GoodPereption℄ di�ers from the orrespond-ing feature of [Pereptiont�1℄, then the orresponding estimate S is in-reased using a Widrow-Ho� delta rule;This proess allows every lassi�er to identify whih general token should be �rstspeialized in order to improve the relevane of the [Condition℄ part.3.4 The speialization proessThe expeted improvement by speialization estimates allow the lassi�er speial-ization mehanism to be driven by experiene and are used in the [Condition℄speialization proess. This estimate allows to drive speialization without man-aging [Pereption℄ marks as in ACS [Butz et al., 2000b℄.When a lassi�er sometimes antiipate well and sometimes not - ie when itsantiipation trae ontains good and badmarkers - it osillates and its [Condition℄part needs to be speialized. If suh a lassi�er is osillating, thanks to the anti-ipation overing mehanism, the lassi�er set ontains at least one other lassi�erwith the same [Condition℄ and [Ation℄ parts and with a di�erent [Effet℄ part.The speialization proess is very areful : YACS waits that every lassi�erwith the same [Condition℄ and [Ation℄ parts has been identi�ed as an osillatinglassi�er, and that its antiipation trae is full. At this point, these lassi�erselet together the feature to speialize. The estimates S orresponding to eahfeature of the environment are summed among the lassi�ers, and the featurewith the highest sum is hosen to get speialized. TheMutSpe operator is thenapplied to every lassi�er.MutSpemay reate lassi�ers that will never be used nor evaluated beausetheir [Condition℄ part mathes no possible pereption. To avoid suh lassi�ers,we remove every lassi�er whih does not math any pereption in the set ofalready enountered pereptions.In this setion, we desribed how YACS performs latent learning in twoseparate proesses :� learning aurate [Effet℄ parts by temporal di�erene learning;� arefuly speializing the [Condition℄ parts.



The set of lassi�ers disovered by the latent learning proess is a model ofthe dynamis of the environment whih provides information about the statetransitions. It takes advantage of the generalization to disover regularities andkeep the model small.3.5 Learning to atIn this setion, we will desribe how YACS takes advantage of the model of theenvironment to speed up the reinforement learning proess. We �rst introduethe value iteration algorithm and the way YACS identi�es the reward soures.Then we explain how the use of generalization forbids to ompute one singlequality for eah lassi�er. We �nally present two strategies that may be usedand our reasons to propose a di�erent one.Value Iteration To bak-propagate the reward, we use a simpli�ed variety ofvalue iteration : a dynami programming algorithm whih solves the Bellmannequations [Bellman, 1957℄ by iteratively re�ning qualities for (state, ation) pairsby using the formula:Q(s; a) = R(s; a) + Xs0 T (s; a; s0)V (s0) (1)where V (s) = maxaQ(s; a) (2)Q(s; a) is the quality of ation a in state s.  is the temporal disount fator.V (s) is the desirability value of the state s. R(s; a) is the immediate expetedreward when the agent performs ation a in state s. T(s,a,s') is the probabilityfor reahing state s0 when performing ation a in state s.As our system is designed to deal with deterministi environment, we donot use the transition probabilities and replae the expeted future umulativereward Ps0 T (s; a; s0)V (s0) by maxs0V (s0) where s0 is a state antiipated whenthe system performs the ation a in state s.Learning about immediate reward The latent learning provides the infor-mation about state transitions. In order to use a dynami programming algo-rithm, the system omputes the immediate expeted rewards orresponding toR(s; a). At eah time step, the immediate reward estimates R of every lassi-�er suh that C:[Condition℄ mathes [Pereption℄t�1 and C:[Ation℄ mathes[Ation℄t�1 are updated aording to the formula:R (1� �)�R+ � � CurrentRewardHere again, the algorithm updates values of lassi�ers whih have not been a-tually �red.



The generalization problem If YACS would not use generalization, it wouldbe easy to ompute a single quality of ation for eah lassi�er by using theformula: C:Q C:R +  �maxC0C 0:QIn lassi�er systems without an [Effet℄ part, a lassi�er is kept when it helpsmaximizing reward on the long run, or when it is able to predit the reward.When we use lassi�ers with an [Effet℄ part, the deision to keep or removea lassi�er ony relies on its ability to predit the next pereptions. It does nottake the reward into aount.This way of onsidering the �tness of a lassi�er gives rise to a new way ofonsidering generalization. A lassi�er is too general when a joker token preventsthe antiipation to be aurate, regardless of the payo�. It is too speialized ifits antiipation ability would remain aurate if some joker were added in its[Condition℄ part, regardless of the payo�.For example, let us onsider a lassi�er whih ould be interpreted in a mazeenvironment as �when the agent perieves a wall on the north, if it tries to movenorth, nothing will hange in its pereptions : it will remain in the same square�.Suh a lassi�er is aurate, sine it would not antiipate better if a joker token ofits [Condition℄ part was speialized. It is kept and will not be further speialized.The problem is that suh an aurate lassi�er is not too general with respetto antiipation, but it introdues a kind of pereptual aliasing sine it mathesin several di�erent situations.Beause of the disount fator ( in formula 1), the qualities assoiated to thestates whih are lose to the goal are muh higher than the qualities assoiatedto the states whih are far from the goal. So one an not ompute a single qualityfor a lassi�er whose [Condition℄ part mathes a several pereption reieved atdi�erent distanes from the goal.So, as the generalization helps to disover regularities in the environmentinstead of simply providing a kind of seletive attention, some lassi�er may be�red in several states and thus it beomes impossible to ompute a single qualityfor eah general lassi�er.Possible Solutions In order to avoid this problem, one solution ould be tointrodue the detetion of over-general lassi�ers with respet to payo� and tospeialize suh lassi�ers. But this solution is not oherent with our approah:the latent learning proess, whih provides a model of the dynamis of the en-vironment, must take plae even in the absene of rewards. We want to modeldynamis of the environment with as few lassi�ers as possible in order to redueomputation time. Thus the model must take advantage of every regularities ofthe environment. So, lassi�ers whih do not antiipate well should be furtherspeialized.Another solution is the use of a lookahead planning algorithm rather than avariety of the value iteration algorithm. At eah time step, the system would haveto build a plan starting with the urrent pereption. [Butz and Stolzmann, 1999℄



proposes an enhanement to ACS whih uses expliit goals to perform bidiretion-nal planning, but omes out of the reinforemnt learning framework. A generallassi�er used at di�erent levels of the planning proess is interpreted in di�er-ent ontexts and this should solve the problem of pereptual aliasing introduedby over-general lassi�ers with respet to payo� but aurate with respet toantiipation. But as a result, the system may su�er from a lak of reativity.Storing values for every already enountered pereption The solutionwe propose is to assoiate a desirability value to eah speialized [Pereption℄in the already enountered pereption list. YACS stores values orresponding toV (s) in the formula 2 - one for eah [Pereption℄ - instead of storing qualitiesorresponding to Q(s; a) - one for eah [Pereption℄/[Ation℄ pair - as it is thease for Q-Learning [Watkins, 1989℄ and DynaQ+ [Sutton and Barto, 1998℄.To ompute the quality assoiated to a [Pereption℄, we �rst identify all thelassi�ers C suh that C:[Condition℄ mathes [Pereption℄. If suh a lassi�erwas �red, the immediate reward would be C:R and the expeted umulativereward would be the value of the pereption antiipated by the lassi�er. In amore formal way, the quality Q assoiated to a [Pereption℄ an be updated byusing the formula :[Pereption℄:Q maxCC:R +  � [Pereption℄:passthrough(C:[Effet℄):Qwhere C:[Condition℄ mathes [Pereption℄So the system omputes values for eah pereption and takes advantage of themodel provided by the latent learning proess to update these values withoutatually experiening every transition. When the lassi�er system antiipateswell in every situation, the agent may adapt its behavior quikly to new rewardsoures.3.6 Seleting an ationWhen the system gets a [Pereption℄ from the environment, it selets all thelassi�ers C whose [Condition℄ part mathes it. These lassi�ers antiipate thefollowing pereption by omputing [Pereption℄:passthrough(C:[Effet℄). Thenthey ompute a quality by adding the immediate reward estimate C:R and thedisounted expeted reward whih is the value of the following pereption muti-plied by the disount fator . The seleted ation is the ation of the lassi�erwith the highest quality.4 Preliminary results4.1 A simple maze problemWe use the maze problem desribed in �gure 1 in order to evaluate our algorithm.This maze illustrates a state transition diagramwith nine states and four possibletransitions starting from eah state.
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4.2 Presentation of the resultsThe results we present here have been obtained with a learning rate � of 0.1 anda memory size m of 3.Latent Learning We let the system move in the maze for 1000 time stepswithout any reward. During this time, it moves randomly and performs latentlearning to model the dynamis of the environment. The �gure 2 shows theevolution of the average number of lassi�ers over 1000 experiments.The �gure 3 shows the evolution of the number of lassi�ers on a represen-tative single experiment.
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Reinforement Learning After these 1000 time steps of exploration, the sys-tem is given a reward when it reahes the goal. The �gure 4 shows the averagenumber of time steps the system needed to ahieve suesssive trials with re-ward, over 1000 experiments. The �gure 5 shows the number of time steps the
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