
YACS : Combining Dynami
 Programming withGeneralization in Classi�er SystemsPierre Gérard1;2 and Olivier Sigaud11 Dassault Aviation, DGT/DPR/DESA78, Quai Mar
el Dassault, 92552 St-Cloud Cedex2 AnimatLab (LIP6), 8, rue du
apitaine S
ott, 75015 PARISpierre.gerard�lip6.fr, olivier.sigaud�dassault-aviation.frAbstra
t. This paper des
ribes our work on the use of anti
ipationin Learning Classi�er Systems (LCS) applied to Markov problems. Wepresent YACS1, a new kind of Anti
ipatory Classi�er System. It
allsupon
lassi�ers with a [Condition℄, an [A
tion℄ and an [Effe
t℄ part.As in the traditional LCS framework, the
lassi�er dis
overy pro
essrelies on a sele
tion and a
reation me
hanism. As in ACS, the sele
tion inYACS relies on the quality of the anti
ipation. Therefore, YACS looks for
lassi�ers whi
h anti
ipate well rather than for
lassi�ers whi
h proposean optimal a
tion. The
reation me
hanism does not rely on
lassi
algeneti
 operators but on a spe
ialization operator, whi
h is expli
itlydriven by experien
e. Likewise, the a
tion qualities of the
lassi�ers arenot
omputed by a
lassi
al bu
ket-brigade algorithm, but by a varietyof the value iteration algorithm that takes advantage of the e�e
t partof the
lassi�ers.This paper presents the latent learning pro
ess of YACS. The des
riptionof the reinfor
ement learning pro
ess is fo
ussed on the problem indu
edby the joint use of generalization and dynami
 programming methods.1 Introdu
tionOur work takes pla
e in the reinfor
ement learning framework. We model anagent whi
h a
ts on this environment and re
eives a reward and a new per
ep-tion. More pre
isely, we use the Learning Classi�er Systems (LCS) frameworkwhose prin
iples have been set down by [Holland et al., 1986℄, [Goldberg, 1989℄and [Booker et al., 1989℄.More re
ent a
hievements in this framework are due to [Wilson, 1994℄ and[Wilson, 1995℄, [Dorigo, 1994℄, [Stolzmann, 1998℄ and [Lanzi, 2000℄ among oth-ers. Most of these resear
h e�orts deal with Markov problems, i.e. problems inwhi
h the distribution of probability for getting a per
eption only depends onthe previous per
eption and a
tion. The system we present here is designed tosolve su
h problems, although we envision extending our work to non-Markovproblems in the future, as [Cli� and Ross, 1994℄ and [Lanzi, 1998℄ do.In this framework, our basi
 assumptions are the following:1 YACS stands for �Yet Another Classi�er System�

� rather than generating new
lassi�ers with random geneti
 operators andevaluating them afterwards, we drive the
lassi�er dis
overy pro
ess by ex-perien
e, slightly improving what [Dorigo, 1994℄ did;� rather than using a plain reinfor
ement learning pro
ess, the agent per-forms latent learning [Riolo, 1991℄ to use its anti
ipation
apabilities. Thislatent learning pro
ess
an take pla
e even if no reward is given by theenvironment. The joint use of latent learning and dynami
 programmingalgorithms speeds up the
onvergen
e towards an optimal behavior on
ereward sour
es are identi�ed. It has already been exploited in DynaQ+[Sutton and Barto, 1998℄;� we want to redu
e the number of
lassi�ers as mu
h as possible. So, we neverhave two
lassi�ers su
h that one is stri
tly more general than another.In the next se
tion, we present the
omponents of YACS. As both our systemand Stolzmann's ACS2 [Stolzmann, 1998℄ deal with
lassi�ers with an e�e
t part,we will highlight how the learning pro
ess detailed in se
tion 3 di�ers in bothsystems. In this se
tion, we pay a parti
ular attention to the joint use of gen-eralization and dynami
 programming. In se
tion 4, we present the preliminaryresults obtained on a very simple appli
ation.2 Features of the systemThe system we designed uses a set of di�erent
lassi�ers3. Ea
h
lassi�er is aset of ordered messages. Ea
h message is a set of ordered tokens. All
lassi�ersshare the same stru
ture and message lengths.Tokens may take dis
rete values in a range [0; NbPossibleV alues � 1℄, inwhi
h
ase they are spe
ialized token, or they may take a # value. We have twokinds of tokens: a
tion tokens and per
eption tokens. A
tion tokens are symbolsrepresenting elementary a
tions, for example the a
tivation level of a parti
u-lar engine in a robot. Per
eption tokens are symbols representing elementaryper
eptions, for example the value given by a parti
ular sensor.The system deals with two kinds of messages: a
tion and per
eption messages,
ontaining respe
tively a
tion and per
eption tokens. The range of all tokens atthe same pla
e are the same for all messages of the same kind.Two tokens are said to mat
h if at least one is a # token, or if both have thesame value. Two messages of the same kind are said to mat
h if all their tokensmat
h the
orresponding token in the other message.If every token of a per
eption message is less general or equal to the
orre-sponding tokens of a se
ond message, and if at least two
orresponding tokensare di�erent, the �rst message is more spe
ialized than the se
ond one.As in ACS [Stolzmann, 1998℄, a
lassi�er is
omposed of three parts: the[Condition℄ and the [Effe
t℄ parts are per
eption messages, the [A
tion℄ partis an a
tion message.2 Anti
ipatory Classi�er System3 A
lassi�er is never added to the
lassi�er set if another one in the set has the same[Condition℄, [A
tion℄ and [Effe
t℄ parts.

The tokens of an [Effe
t℄ part a
t as a �lter: a # in the [Effe
t℄ part isa don't
hange token and means �the elementary per
eption represented by thetoken will remain un
hanged at the next time step if the
lassi�er is �red�; anyother value is interpreted straight-forwardly. When the
ondition of a
lassi�ermat
hes a per
eption, we use the passthrough operator to predi
t the next per-
eption if the a
tion of the
lassi�er is
hosen: The passthrough operator workson per
eption tokens 4 as follows :passthrough(tp; te) = � tp if te = #te otherwiseApplying the passthrough operator on per
eption messages
onsists in applyingthe operator on their tokens.Let C be a
lassi�er with a [Condition℄ part mat
hing the [Per
eption℄ mes-sage. Then C anti
ipates the per
eption [Per
eption℄:passthrough(C:[Effe
t℄)5when the a
tion C:[A
tion℄ is performed just after [Per
eption℄ o

urs.We also use the reverse operator of passthrough - the di�eren
e operator -whi
h works on per
eption tokens 6 as follows:differen
e(t2; t1) = �# if t2 = t1t2 otherwiseGiven two su

essive per
eptions, this operator allows to
ompute what an[Effe
t℄ part should have been to predi
t
orre
tly the se
ond one if giventhe �rst.An immediate reward estimate R is asso
iated to ea
h
lassi�er.R re�e
ts theexpe
ted immediate reward if the
lassi�er is �red7. It is estimated from dire
texperien
e. Dynami
 programming algorithms like value iteration take advantageof immediate reward estimates and information provided by the [Effe
t℄ partto
ompute an optimal poli
y.Ea
h
lassi�er also keeps a tra
e T of good and bad markers memorizing pastanti
ipation mistakes and su

esses. The length of this tra
e is bounded by a�xed memory size m.When two
lassi�ers share the same [A
tion℄ part and if a [Condition℄ part ismore spe
ialized than the other one, the �rst
lassi�er is more spe
ialized thanthe other. We do not
onsider the [Effe
t℄ part of a
lassi�er to determine itsspe
ialization level be
ause a # in the [Effe
t℄ is a don't
hange token and nota don't
are token as in a [Condition℄ part.4 tp is the token of a [Per
eption℄ and te is the token of an [Effe
t℄ part.5 We use the dot symbol (.) to identify a part of a
omposed item. For example,C:[Condition℄ means �the [Condition℄ part of the
lassi�er C�; C:R means �the Restimate of the
lassi�er C� (its immediate reward estimate); t:S means �the Sestimate of the token t�. Hen
e, we always use the ��� symbol for multipli
ation.6 t2 is a token of a per
eption o

uring just after the per
eption
ontaining t17 The default R is 0.

For every
lassi�er, ea
h general token of the [Condition℄ part keeps an ex-pe
ted improvement by spe
ialization estimate S8 whi
h helps to drive the spe-
ialization pro
ess (see se
tion 3.3)The system also uses a set of every per
eption en
ountered during the lifetimeof the agent. This set only
ontains one instan
e of ea
h per
eption. It is notordered.3 The AlgorithmLike [Stolzmann, 1998℄ and [Witkowski, 1999℄, we have an [Effe
t℄ part in the
lassi�ers. The
lassi�er dis
overy pro
ess builds a set of
lassi�ers whi
h anti
i-pate well rather than
lassi�ers whi
h a
t optimally. This knowledge about statetransitions allows the system to plan its a
tions or to use a variety of the valueiteration algorithm. It be
omes able to adjust his poli
y very fast when a newreward sour
e is dis
overed.As in many other works, we divide the life-time of the agent into dis
retetime steps. During a time step, the agent a
ts as follows:1. It gets a reward and a per
eption from the environment;2. It learns about the dynami
s of its environment and the optimality of a
tions;3. It sele
ts an a
tion a

ording to what it learned;4. It a
ts
orrespondingly in the environment.The latent learning pro
ess is in
harge of dis
overing adequate
lassi�erswhi
h model the dynami
s of the environment. In ACS [Stolzmann, 1998℄ theALP9 modi�es at the same time [Condition℄ and [Effe
t℄ parts in order to re-�e
t the
hanges in the dynami
 of the environment. In YACS the [Effe
t℄ partalone provides all the information about
hanges in the environment. A spe
ial-ized token in the [Effe
t℄ part always indi
ate a
hange in the environment,regardless of the
orresponding token in the [Condition℄ part. In YACS, thelatent learning pro
ess
an be divided into two simple and separate pro
esses:� adjusting the [Effe
t℄ parts (se
tion 3.2);� dis
overing relevant [Condition℄ parts (se
tion 3.3).A [Condition℄ part may spe
ify a state of the environment even if it is notfully spe
ialized. Furthermore, the minimal set of tokens ne
essary to spe
ify astate does not ne
essarily
orrespond to the
hanging tokens of the per
eptionswhen the
lassi�er is �red. However, in ACS [Stolzmann, 1998℄, the ALP alwaysspe
ializes the [Condition℄ part and the [Effe
t℄ part at the same time, and onlywhen the
orresponding token in the per
eptions is
hanging. As a result (see[Butz et al., 2000a℄), some [Condition℄ parts may be over-spe
ialized. Splittingthe anti
ipatory learning pro
ess into two separate pro
esses helps to over
omethis problem.8 The default S is 0.5.9 Anti
ipation Learning Pro
ess

The reinfor
ement learning pro
ess takes advantage of the model of the dy-nami
s of the environment
omputed by the latent learning pro
ess. In se
tion3.5 we present a problem indu
ed when we jointly want to take advantage of gen-eralization and use dynami
 programming algorithms like value iteration, andwe propose a solution.The a
tion sele
tion uses a winner-take-all strategy (see se
tion 3.6).3.1 Getting a reward and a new per
eptionWhen the system
omes to time step t, it gets from the environment the newper
eption [Per
eption℄t and the reward value Rewardt resulting from the lastsele
ted a
tion.If the new per
eption is not present in the set of en
ountered per
eptions, it isadded. But, even if we only keep one instan
e of every en
ountered per
eption,this set
an be
ome signi�
antly large if the agent gets a lot of a elementaryper
eptions. In this
ase, it
ould be worth taking advantage of generalizationto redu
e the size of the set.As the system learns from one step temporal di�eren
es, the latent learningpro
ess relies on a memory of the last per
eption. So the system stores the lastper
eption [Per
eption℄t�1 and forgets [Per
eption℄t�2.If the [Condition℄ part of no
lassi�er mat
hes it for a parti
ular [A
tion℄message, one is added to the
lassi�er set. The [Effe
t℄ part of the new
lassi�eris set to di�eren
e([Per
eption℄t; [Per
eption℄t�1). The [Condition℄ part is su
hthat:� it mat
hes [Per
eption℄t;� it is neither more general nor more spe
ialized than any [Condition℄ part ofthe [Condition℄ part of any other
lassi�er with the same [A
tion℄ part.� it is as general as possible,
onsidering the previous
onstraints.These
onditions allow to add maximally general
lassi�ers without introdu
ingredundan
ies with already spe
ialized ones.3.2 Learning to anti
ipateThis pro
ess is the part of the latent learning pro
ess whi
h is in
harge ofdis
overing a

urate [Effe
t℄ parts. When the system learns to anti
ipate, itmay
reate some new
lassi�ers, with suitable [Effe
t℄ parts straight-forwardlysettled a

ording to experien
e. As [Witkowski, 1999℄ does, the algorithm doesnot only evaluate the
lassi�ers whi
h have been �red, but also takes advantageof experien
e to evaluate all the
lassi�ers whi
h
ould have been �red.At ea
h time step, the [DesiredEffe
t℄ message is
omputed a

ording tothe formula:[DesiredEffe
t℄ differen
e([Per
eption℄t; [Per
eption℄t�1)This message
orresponds to the anti
ipation of a
lassi�er that would haveanti
ipated well at the last time step and whose sele
tion (see se
tion 3.6) would

have driven the system to a
t as it a
tually did. Classi�ers
an be involved inthe anti
ipation learning pro
ess even if they were not a
tually sele
ted. These
lassi�ers C are su
h that C:[Condition℄mat
hes [Per
eption℄t�1 and C:[A
tion℄mat
hes [A
tion℄t�1.Let us
onsider su
h a
lassi�er C.� If C:[Predi
tion℄ equals [DesiredAnti
ipation℄, the
lassi�er would haveanti
ipated well, and we add a good marker to its tra
e T of anti
ipationmistakes and su

esses.� In either
ase, the
lassi�er C would have made an anti
ipation mistakeand we add a a bad marker to its tra
e. Moreover, if no
lassi�er did an-ti
ipate
orre
tly, we add a new
lassi�er whi
h anti
ipates well. As in[Stolzmann, 1998℄, the anti
ipation is
overed and we add a new
lassi�erwhi
h is the same as the initial one but its [Effe
t℄ part whi
h is set to the[DesiredEffe
t℄. Its tra
e T only
ontains a single good marker.Our anti
ipation
overingme
hanism
reates
lassi�ers with relevant [Effe
t℄parts by taking advantage of dire
t experien
e rather than geneti
 algorithms(GA). It di�ers from the ACS anti
ipation
overing sin
e it does only modify the[Effe
t℄ part. The anti
ipation
overing me
hanism allows to learn straightfor-wardly when an a
tion does not
hange the per
eptions of the system, withoutrequiering a dedi
ated me
hanism like the spe
i�
ation of un
hanging
ompo-nents in ACS [Stolzmann, 1999℄.3.3 Learning relevant
onditionsIn se
tion 3.2 we have explained how, while learning to anti
ipate, the sys-tem adds new
lassi�ers to adjust [Effe
t℄ parts. This se
tion explains how[Condition℄ parts are adjusted.The MutSpe
 operator The
lassi�er dis
overy problem is usually solvedby a GA using a
reation pro
ess driven by mutation and
rossover on
lassi-�ers sele
ted by their quality. operators. These blind operators do not expli
-itly take advantage of the experien
e of the agent. Dorigo's MutSpe
 operator[Dorigo, 1994℄ improves the
lassi�er dis
overy pro
ess by driving the spe
ial-ization of the
lassi�ers a

ording to its experien
e. Our purpose is to builda
lassi�er system without mutation nor
rossover operators. Like M
Callum'sU-Tree algorithm [M
Callum, 1996℄, our system starts without making any dis-tin
tion between world states, and in
rementally introdu
es experien
e drivenspe
ializations in [Condition℄ parts.At the �rst time step, the
lassi�er set
ontains one general
lassi�er for ea
hpossible a
tion. The [Condition℄ and [Effe
t℄ parts only
ontain # tokens.At ea
h time step, we add good and badmarkers in the tra
e T of anti
ipationmistakes and su
esses (see se
tion 3.2) of several
lassi�ers. This tra
e works asa FIFO list with a �nite length m. When the tra
e is full -i.e. its size equals m-,we assume that the anti
ipation a

ura
y the
lassi�er has been
he
ked enoughand

� if the tra
e of the
lassi�er only
ontains good markers, it always anti
ipatedwell and it does not need to be more spe
ialized;� if the tra
e of the
lassi�er only
ontains bad markers, and if it is not theonly one mat
hing a parti
ular per
eption of the en
ountered per
eption setfor a parti
ular a
tion, it is dis
arded;� if the tra
e of the
lassi�er
ontains good and bad makers, it sometimes an-ti
ipates well and sometimes not. The
lassi�er os
illates and its [Condition℄part needs to be spe
ialized.The spe
ialization pro
ess is designed to dis
over relevant [Condition℄ parts, ituses the MutSpe
 operator introdu
ed by [Dorigo, 1994℄. The MutSpe
 oper-ator sele
ts a joker token of the
lassi�er and produ
es one new
lassi�er forea
h possible spe
ialized value of the sele
ted token. The original
lassi�er isdis
arded.For instan
e, when the �rst token is sele
ted, and assuming that it only maytake two values (0 or 1) the
lassi�er [#|#|#|#℄ [0℄ [#|#|#|#℄ produ
es two
lassi�ers:� [0|#|#|#℄ [0℄ [#|#|#|#℄;� [1|#|#|#℄ [0℄ [#|#|#|#℄.So, if the [Condition℄ part of the original
lassi�er was mat
hing severalstates of the environment, ea
h resulting [Condition℄ part will mat
h a subsetof these states. We want YACS to be able to
hoose the token two spe
ialize insu
h a way that the two resulting subsets have an equal
ardinality, in order toredu
e the number of spe
ializations and thus the over-spe
ialization.The expe
ted improvement by spe
ialization estimate Choosing at ran-dom the token to spe
ialize as in Dorigo's original work would lead to an over-spe
ialization of the [Condition℄ parts and thus to a sub-optimal number of
lassi�ers. We improve this sele
tion by using the expe
ted improvement by spe-
ialization estimate S asso
iated to ea
h general token of ea
h [Condition℄ part.This value estimates how mu
h the spe
ialization of the token would help tosplit the state set
overed by the [Condition℄ part into several sub-sets of equal
ardinality.Let us
onsider a
lassi�er whi
h tries to anti
ipate the
onsequen
es of ana
tion in several situations. If the value of a parti
ular feature of the per
ep-tion when the
lassi�er anti
ipates well is always di�erent from the value whenit makes anti
ipation mistakes, then the [Condition℄ part must be spe
ializeda

ording to this parti
ular feature, and the estimate S will get a high value.In order to
ompute the estimates S, ea
h
lassi�er memorizes the per
eptionpre
eeding the last anti
ipation mistake [BadPer
eption℄ and the last per
ep-tion pre
eeding the last anti
ipation su

ess [GoodPer
eption℄. Ea
h time the[A
tion℄ part of a
lassi�er mat
hes [A
tiont�1℄ and its [Condition℄ part mat
hes[Per
eptiont�1℄, the [Per
eptiont℄ allows to
he
k the a

ura
y of the [Effe
t℄part.

� If the [Effe
t℄ part is
orre
t, for ea
h feature of the environment :� if a parti
ular token of [BadPer
eption℄ equals the
orresponding featureof [Per
eptiont�1℄, then the
orresponding estimate S is de
reased usinga Widrow-Ho� delta rule;� if a parti
ular token of [BadPer
eption℄ di�ers from the
orrespond-ing feature of [Per
eptiont�1℄, then the
orresponding estimate S is in-
reased using a Widrow-Ho� delta rule;� If the [Effe
t℄ part is in
orre
t, for ea
h feature of the environment :� if a parti
ular token of [GoodPer
eption℄ equals the
orresponding fea-ture of [Per
eptiont�1℄, then the
orresponding estimate S is de
reasedusing a Widrow-Ho� delta rule;� if a parti
ular token of [GoodPer
eption℄ di�ers from the
orrespond-ing feature of [Per
eptiont�1℄, then the
orresponding estimate S is in-
reased using a Widrow-Ho� delta rule;This pro
ess allows every
lassi�er to identify whi
h general token should be �rstspe
ialized in order to improve the relevan
e of the [Condition℄ part.3.4 The spe
ialization pro
essThe expe
ted improvement by spe
ialization estimates allow the
lassi�er spe
ial-ization me
hanism to be driven by experien
e and are used in the [Condition℄spe
ialization pro
ess. This estimate allows to drive spe
ialization without man-aging [Per
eption℄ marks as in ACS [Butz et al., 2000b℄.When a
lassi�er sometimes anti
ipate well and sometimes not - ie when itsanti
ipation tra
e
ontains good and badmarkers - it os
illates and its [Condition℄part needs to be spe
ialized. If su
h a
lassi�er is os
illating, thanks to the anti
-ipation
overing me
hanism, the
lassi�er set
ontains at least one other
lassi�erwith the same [Condition℄ and [A
tion℄ parts and with a di�erent [Effe
t℄ part.The spe
ialization pro
ess is very
areful : YACS waits that every
lassi�erwith the same [Condition℄ and [A
tion℄ parts has been identi�ed as an os
illating
lassi�er, and that its anti
ipation tra
e is full. At this point, these
lassi�ersele
t together the feature to spe
ialize. The estimates S
orresponding to ea
hfeature of the environment are summed among the
lassi�ers, and the featurewith the highest sum is
hosen to get spe
ialized. TheMutSpe
 operator is thenapplied to every
lassi�er.MutSpe
may
reate
lassi�ers that will never be used nor evaluated be
ausetheir [Condition℄ part mat
hes no possible per
eption. To avoid su
h
lassi�ers,we remove every
lassi�er whi
h does not mat
h any per
eption in the set ofalready en
ountered per
eptions.In this se
tion, we des
ribed how YACS performs latent learning in twoseparate pro
esses :� learning a

urate [Effe
t℄ parts by temporal di�eren
e learning;�
arefuly spe
ializing the [Condition℄ parts.

The set of
lassi�ers dis
overed by the latent learning pro
ess is a model ofthe dynami
s of the environment whi
h provides information about the statetransitions. It takes advantage of the generalization to dis
over regularities andkeep the model small.3.5 Learning to a
tIn this se
tion, we will des
ribe how YACS takes advantage of the model of theenvironment to speed up the reinfor
ement learning pro
ess. We �rst introdu
ethe value iteration algorithm and the way YACS identi�es the reward sour
es.Then we explain how the use of generalization forbids to
ompute one singlequality for ea
h
lassi�er. We �nally present two strategies that may be usedand our reasons to propose a di�erent one.Value Iteration To ba
k-propagate the reward, we use a simpli�ed variety ofvalue iteration : a dynami
 programming algorithm whi
h solves the Bellmannequations [Bellman, 1957℄ by iteratively re�ning qualities for (state, a
tion) pairsby using the formula:Q(s; a) = R(s; a) +
Xs0 T (s; a; s0)V (s0) (1)where V (s) = maxaQ(s; a) (2)Q(s; a) is the quality of a
tion a in state s.
 is the temporal dis
ount fa
tor.V (s) is the desirability value of the state s. R(s; a) is the immediate expe
tedreward when the agent performs a
tion a in state s. T(s,a,s') is the probabilityfor rea
hing state s0 when performing a
tion a in state s.As our system is designed to deal with deterministi
 environment, we donot use the transition probabilities and repla
e the expe
ted future
umulativereward Ps0 T (s; a; s0)V (s0) by maxs0V (s0) where s0 is a state anti
ipated whenthe system performs the a
tion a in state s.Learning about immediate reward The latent learning provides the infor-mation about state transitions. In order to use a dynami
 programming algo-rithm, the system
omputes the immediate expe
ted rewards
orresponding toR(s; a). At ea
h time step, the immediate reward estimates R of every
lassi-�er su
h that C:[Condition℄ mat
hes [Per
eption℄t�1 and C:[A
tion℄ mat
hes[A
tion℄t�1 are updated a

ording to the formula:R (1� �)�R+ � � CurrentRewardHere again, the algorithm updates values of
lassi�ers whi
h have not been a
-tually �red.

The generalization problem If YACS would not use generalization, it wouldbe easy to
ompute a single quality of a
tion for ea
h
lassi�er by using theformula: C:Q C:R +
 �maxC0C 0:QIn
lassi�er systems without an [Effe
t℄ part, a
lassi�er is kept when it helpsmaximizing reward on the long run, or when it is able to predi
t the reward.When we use
lassi�ers with an [Effe
t℄ part, the de
ision to keep or removea
lassi�er ony relies on its ability to predi
t the next per
eptions. It does nottake the reward into a

ount.This way of
onsidering the �tness of a
lassi�er gives rise to a new way of
onsidering generalization. A
lassi�er is too general when a joker token preventsthe anti
ipation to be a

urate, regardless of the payo�. It is too spe
ialized ifits anti
ipation ability would remain a

urate if some joker were added in its[Condition℄ part, regardless of the payo�.For example, let us
onsider a
lassi�er whi
h
ould be interpreted in a mazeenvironment as �when the agent per
ieves a wall on the north, if it tries to movenorth, nothing will
hange in its per
eptions : it will remain in the same square�.Su
h a
lassi�er is a

urate, sin
e it would not anti
ipate better if a joker token ofits [Condition℄ part was spe
ialized. It is kept and will not be further spe
ialized.The problem is that su
h an a

urate
lassi�er is not too general with respe
tto anti
ipation, but it introdu
es a kind of per
eptual aliasing sin
e it mat
hesin several di�erent situations.Be
ause of the dis
ount fa
tor (
 in formula 1), the qualities asso
iated to thestates whi
h are
lose to the goal are mu
h higher than the qualities asso
iatedto the states whi
h are far from the goal. So one
an not
ompute a single qualityfor a
lassi�er whose [Condition℄ part mat
hes a several per
eption re
ieved atdi�erent distan
es from the goal.So, as the generalization helps to dis
over regularities in the environmentinstead of simply providing a kind of sele
tive attention, some
lassi�er may be�red in several states and thus it be
omes impossible to
ompute a single qualityfor ea
h general
lassi�er.Possible Solutions In order to avoid this problem, one solution
ould be tointrodu
e the dete
tion of over-general
lassi�ers with respe
t to payo� and tospe
ialize su
h
lassi�ers. But this solution is not
oherent with our approa
h:the latent learning pro
ess, whi
h provides a model of the dynami
s of the en-vironment, must take pla
e even in the absen
e of rewards. We want to modeldynami
s of the environment with as few
lassi�ers as possible in order to redu
e
omputation time. Thus the model must take advantage of every regularities ofthe environment. So,
lassi�ers whi
h do not anti
ipate well should be furtherspe
ialized.Another solution is the use of a lookahead planning algorithm rather than avariety of the value iteration algorithm. At ea
h time step, the system would haveto build a plan starting with the
urrent per
eption. [Butz and Stolzmann, 1999℄

proposes an enhan
ement to ACS whi
h uses expli
it goals to perform bidire
tion-nal planning, but
omes out of the reinfor
emnt learning framework. A general
lassi�er used at di�erent levels of the planning pro
ess is interpreted in di�er-ent
ontexts and this should solve the problem of per
eptual aliasing introdu
edby over-general
lassi�ers with respe
t to payo� but a

urate with respe
t toanti
ipation. But as a result, the system may su�er from a la
k of rea
tivity.Storing values for every already en
ountered per
eption The solutionwe propose is to asso
iate a desirability value to ea
h spe
ialized [Per
eption℄in the already en
ountered per
eption list. YACS stores values
orresponding toV (s) in the formula 2 - one for ea
h [Per
eption℄ - instead of storing qualities
orresponding to Q(s; a) - one for ea
h [Per
eption℄/[A
tion℄ pair - as it is the
ase for Q-Learning [Watkins, 1989℄ and DynaQ+ [Sutton and Barto, 1998℄.To
ompute the quality asso
iated to a [Per
eption℄, we �rst identify all the
lassi�ers C su
h that C:[Condition℄ mat
hes [Per
eption℄. If su
h a
lassi�erwas �red, the immediate reward would be C:R and the expe
ted
umulativereward would be the value of the per
eption anti
ipated by the
lassi�er. In amore formal way, the quality Q asso
iated to a [Per
eption℄
an be updated byusing the formula :[Per
eption℄:Q maxCC:R +
 � [Per
eption℄:passthrough(C:[Effe
t℄):Qwhere C:[Condition℄ mat
hes [Per
eption℄So the system
omputes values for ea
h per
eption and takes advantage of themodel provided by the latent learning pro
ess to update these values withouta
tually experien
ing every transition. When the
lassi�er system anti
ipateswell in every situation, the agent may adapt its behavior qui
kly to new rewardsour
es.3.6 Sele
ting an a
tionWhen the system gets a [Per
eption℄ from the environment, it sele
ts all the
lassi�ers C whose [Condition℄ part mat
hes it. These
lassi�ers anti
ipate thefollowing per
eption by
omputing [Per
eption℄:passthrough(C:[Effe
t℄). Thenthey
ompute a quality by adding the immediate reward estimate C:R and thedis
ounted expe
ted reward whi
h is the value of the following per
eption muti-plied by the dis
ount fa
tor
. The sele
ted a
tion is the a
tion of the
lassi�erwith the highest quality.4 Preliminary results4.1 A simple maze problemWe use the maze problem des
ribed in �gure 1 in order to evaluate our algorithm.This maze illustrates a state transition diagramwith nine states and four possibletransitions starting from ea
h state.

West
[3]

North
[0]

East
[1]

F

0 1 2

3

6

4

7

5

8

S

[2]
SouthFig. 1. A simple maze problemThe agent is always situated in a square. It
an per
eive the abs
en
e orpresen
e of walls in ea
h
ardinal dire
tion (N, E, S and W). For instan
e, theagent per
ieves [1|0|0|1℄ in square 0 and [1|1|0|0℄ in square 2. The agent isgiven four possible a
tions: to move in any of the four
ardinal dire
tions.An experien
e is divided into several trials. For ea
h trial, the agent starts insquare S. At ea
h time step, it
an make every possible a
tion, in
luding dumba
tions like hitting a wall. When it
omes to square 6, it gets a reward of 1 andit is given the opportunity to learn about the state transition. Then a new trialstarts in square 3.This goal
an be rea
hed optimaly in 9 su

essive time steps.

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000

nb
 c

la
ss

ifi
er

s

time step

specialized
YACS

optimum

Fig. 2. Average evolution of the number of
lassi�ers

4.2 Presentation of the resultsThe results we present here have been obtained with a learning rate � of 0.1 anda memory size m of 3.Latent Learning We let the system move in the maze for 1000 time stepswithout any reward. During this time, it moves randomly and performs latentlearning to model the dynami
s of the environment. The �gure 2 shows theevolution of the average number of
lassi�ers over 1000 experiments.The �gure 3 shows the evolution of the number of
lassi�ers on a represen-tative single experiment.

0

5

10

15

20

25

30

0 200 400 600 800 1000

nb
 c

la
ss

ifi
er

s

time stepFig. 3. Evolution of the number of
lassi�ers for one experimentThe minimal number of
lassi�ers to a

urately model the whole environmentis 20. The number of fully spe
ialized
lassi�ers needed to model the dynami
sof the environment is 36. A Q-table would
onsider 64 (state; a
tion) pairs. Thenumber of
lassi�ers produ
ed by YACS
onverges arround 23.YACS �nds very a

urately regularities like �when there is a wall on the north,moving north does not produ
e any
hanges in the per
eptions�, but sometimesspe
ializes the
lassi�ers in a non optimal way in early time steps, be
ause ofsome partially representative samples of experien
e. As a result, the number of
lassi�ers may be sub-optimal.

Reinfor
ement Learning After these 1000 time steps of exploration, the sys-tem is given a reward when it rea
hes the goal. The �gure 4 shows the averagenumber of time steps the system needed to a
hieve su

esssive trials with re-ward, over 1000 experiments. The �gure 5 shows the number of time steps the

0

20

40

60

80

100

120

140

0 5 10 15

nb
 ti

m
e

st
ep

s

trialFig. 4. Average number of time step to rea
h the goal in su

essive trialssystem needed to a
hieve su

essive trials for the same single experiment as for�gure 3. The number of time steps of the �rst trial is high be
ause the systemhas not already been rewarded yet and thus has no way to �nd the optimal wayto the goal.After this �rst trial, the system has identi�ed a reward sour
e and takesadvantage of its model of the environment to qui
kly �nd the optimal path tothe goal. The agent does not immediately behave optimaly be
ause the systemdoes not perform a
omplete value iteration ea
h time step. In order to get agood rea
tivity/planning tradeo�, only one step of value iteration is performedea
h time step. As a result, the agent needs several time steps to adjust its poli
y.In the �gure 4, the average
onvergen
e looks slower be
ause the averagevalues take into a

ount several experiments like the one shown in �gure 6. Insu
h experiments, the model of the environment was not perfe
tly a

urate afterthe 1000 time steps of exploration. The system needed some more sub-optimaltrials to adjust the model.

0

20

40

60

80

100

120

140

0 5 10 15

nb
 ti

m
e

st
ep

s

trialFig. 5. Number of time steps to rea
h the goal in su

essive trials for one experi-ment.YACS was able to build an a

urate model of the environment within the 1000exploration time steps5 Dis
ussionThe results presented in se
tion 4 are en
ouraging but YACS still su�ers twomajor drawba
ks.5.1 The exploration/exploitation tradeo�In YACS, the reinfor
ement learning pro
ess works �ne only if the model pro-vided by the latent learning is
omplete and a

urate. If the
lassi�ers are notspe
ialized enough, the system may �imagine� transitions whi
h are in
orre
t inthe a
tual environment, and whi
h may prevent the system to �nd the way tothe goal. Over 1000 experiments, the system was 17 times unable to rea
h thegoal within 1000 time step after the exploration steps and the �rst trial leadingto the identi�
ation of the reward sour
e. These experiments are not taken intoa

ount in the �gures 2 and 4. This drawba
k forbids YACS to simultaneouslybuild the model while exploiting safely a partial model of the environment.5.2 The need for a generalization me
hanismHaving an e�
ient generalization me
hanism is important in the LCS approa
hsin
e generalization is one of the most original features of LCS with respe
tto basi
 reinfor
ement learning algorithms. Even if YACS is able to stop the

0

20

40

60

80

100

120

140

0 5 10 15

nb
 ti

m
e

st
ep

s

trialFig. 6. Number of time steps to rea
h the goal in su

essive trials for one experiment.YACS was not able to build an a

urate model of the environment within the 1000exploration time stepsspe
ialization pro
ess when there is no more need for more spe
ialized
lassi�ers,it still la
ks a spe
i�
 generalization pro
ess. This leads our system to sub-optimality problems:�
hoosing to spe
ialize a bad token in early time steps may lead to a sub-optimal number of
lassi�ers;� in a
hanging environment, the adaptation of YACS relies on the
ondi-tion
overing me
hanism, and leads to over-spe
ialized
lassi�ers and a sub-optimal number of
lassi�ers.A generalization me
hanism should o�er the opportunity for the system to re
on-sider early
hoi
es of tokens to spe
ialize, and to dis
over reliable and a

urate
lassi�ers.6 Con
lusion and future workOur work takes pla
e in a re
ent trend on LCS resear
h whi
h fo
uses on theuse of anti
ipation in order to improve the quality of
lassi�ers and in
reasethe learning speed. As most resear
hers in this trend [Stolzmann, 1998℄ and[Witkowski, 1999℄, we have designed YACS, a system whi
h
ombines laten-t learning and reinfor
ement learning. We have highlighted di�
ulties due togeneralization when we use latent learning through dynami
 programming al-gorithms. We also presented some experimental results whi
h were dealing with

YACS involved in a simple maze environment, but YACS is also used for biggerappli
ations as in [Sigaud, 2000℄.But YACS still la
ks a generalization pro
ess. Re
ent works like [Lanzi, 1999℄and [Butz et al., 2000b℄ has shown that this generalization
on
ern is shared byother resear
hers. [Butz et al., 2000b℄ proposes a solution using the sele
tionpressure of a GA to favor the emergen
e of reliable and general
lassi�ers inACS. Sin
e we are relu
tant to use the blind sear
h me
hanisms of GAs, we willinvestigate alternative solutions in the short term future.Referen
es[Bellman, 1957℄ Bellman, R. E. (1957). Dynami
 Programming. Prin
eton UniversityPress, Prin
eton, NJ.[Booker et al., 1989℄ Booker, L., Goldberg, D. E., and Holland, J. H. (1989). Classi�ersystems and geneti
 algorithms. Arti�
ial Intelligen
e, 40(1-3):235�282.[Butz et al., 2000a℄ Butz, M. V., Goldberg, D. E., and Stolzmann, W. (2000a). Intro-du
ing a geneti
 generalization pressure to the anti
ipatory
lassi�er system part i:Theoreti
al approa
h. In Pro
eedings of the 2000 Geneti
 and Evolutionary Compu-tation Conferen
e (GECCO 2000).[Butz et al., 2000b℄ Butz, M. V., Goldberg, D. E., and Stolzmann, W. (2000b). In-vestigating generalization in the anti
ipatory
lassi�er system. In Pro
eedings of theSixth International Conferen
e on Parallel Problem Solving from Nature.[Butz and Stolzmann, 1999℄ Butz, M. V. and Stolzmann, W. (1999). A
tion-planningin anti
ipatory
lassi�er sytems. In Pro
eedings of the 1999 Geneti
 and EvolutionaryComputation Conferen
e Workshop Program.[Cli� and Ross, 1994℄ Cli�, D. and Ross, S. (1994). Adding memory to ZCS. AdaptiveBehavior, 3(2):101�150.[Dorigo, 1994℄ Dorigo, M. (1994). Geneti
 and non-geneti
 operators in ale
sys. Evo-lutionary Computation, 1(2):151�164.[Goldberg, 1989℄ Goldberg, D. E. (1989). Geneti
 Algorithms in Sear
h, Optimization,and Ma
hine Learning. Addison Wesley.[Holland et al., 1986℄ Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard,P. R. (1986). Indu
tion. MIT Press.[Lanzi, 1998℄ Lanzi, P. L. (1998). Adding memory to XCS. In Pro
eedings of the IEEEConferen
e on Evolutionary Computation (ICEC98). IEEE Press.[Lanzi, 1999℄ Lanzi, P. L. (1999). An analysis of generalization in the XCS
lassi�ersystem. Evolutionary Computation, 2(7):125�149.[Lanzi, 2000℄ Lanzi, P. L. (2000). Toward optimal performan
e in
lassi�er systems.Evolutionary Computation Journal. in print.[M
Callum, 1996℄ M
Callum, R. A. (1996). Learning to use sele
tive attention andshort-term memory. In Maes, P., Matari
, M., Meyer, J.-A., Polla
k, J., and Wilson,S. W., (Eds.), Pro
eedings of the Fourth International Conferen
e on Simulation ofAdaptive Behavior, pages 315�324, Cambridge, MA. MIT Press.[Riolo, 1991℄ Riolo, R. L. (1991). Lookahead planning and latent learning in a
lassi�ersystem. In Meyer, J.-A. and Wilson, S. W., (Eds.), From annimals to animats: Pro-
eedings of the First International Conferen
e on Simulation of Adaptative Behavior,pages 316�326, Cambridge, MA. MIT Press.

[Sigaud, 2000℄ Sigaud, O. (2000). Using
lassi�er systems as adaptive expert systemsfor
ontrol. In Stolzmann, W., Lanzi, P.-L., and Wilson, S. W., (Eds.), LNCS : Newtrends in Classi�er Systems. Springer-Verlag.[Stolzmann, 1998℄ Stolzmann, W. (1998). Anti
ipatory
lassi�er systems. In Koza,J., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Gold-berg, D., Iba, H., and Riolo, R., (Eds.), Geneti
 Programming. Morgan KaufmannPublishers, In
., San Fran
is
o, CA.[Stolzmann, 1999℄ Stolzmann, W. (1999). Latent learning in khepera robots with an-ti
ipatory
lassi�er systems. In Pro
eedings of the 1999 Geneti
 and EvolutionaryComputation Conferen
e Workshop Program.[Sutton and Barto, 1998℄ Sutton, R. S. and Barto, A. (1998). Reinfor
ement Learning:An Introdu
tion. MIT Press.[Watkins, 1989℄ Watkins, C. J. (1989). Learning with delayed rewards. PhD thesis,Psy
hology Department, University of Cambridge, England.[Wilson, 1994℄ Wilson, S. W. (1994). ZCS, a zeroth level
lassi�er system. EvolutionaryComputation, 2(1):1�18.[Wilson, 1995℄ Wilson, S. W. (1995). Classi�er �tness based on a

ura
y. EvolutionaryComputation, 3(2):149�175.[Witkowski, 1999℄ Witkowski, C. M. (1999). Integrating unsupervised learning, mo-tivation and a
tion sele
tion in an a-life agent. In Floreano, D., Mondada, F., andNi
oud, J.-D., (Eds.), 5th European Conferen
e on Arti�
ial Life (ECAL-99), pages355�364, Lausanne. Springer.

