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Abstract: This study deals with optimization of planetary rover traversability over chal-
lenging outdoor terrains. In this aim, it is necessary to simulate rover behaviour on soft
soil with a high degree of realism. The paper describes a simulation system for mobile
robots evolving on natural and unstructured surfaces. This simulator integrates the whole
dynamics of the multibody systems and complex interactions with soft ground as well as
control schemes.

1 Introduction

To improve exploration capabilities of autonomous planetary rover, complex locomotion
devices that allow terrain adaptation have to be developed. The main motivation in the
development of this software is to investigate adaptation capabilities of a high-mobility
redundantly actuated rover to complex natural surfaces. The class of systems considered
can be illustrated by the Marsokhod rover [1], or mobile robots with adaptation capabilities
[9],[6].

These robots are supposed to evolve on natural and unstructured surfaces like in planetary
or volcanic exploration, where the ground can be characterized by physical and geometrical
properties. Soil constitution can be considered as rigid (big heavy rocks or highly com-
pacted soils), or as agglomerated particles of various sizes (sand or small rocks). Its complex
geometry is modelized as slopes of various inclines and high slopes represent complex obsta-
cles like steps or rocks. Since the mechanical structure offers different locomotion modes,
an investigation of their potentialities in various ground configurations (from physical and
geometrical point of view) is needed to be able to optimize the locomotion performances,
and then to increase field of accessible rough terrains.

We have developed a simulator that take the whole dynamics of mobile robot and soft
soil into account. Interaction models between rover locomotion organs and soils are also
integrated [4]. This simulator is composed by three independent modules linked together



(see figure 1). One is dedicated to dynamics simulation of multibody systems (i.e. the
robot model), another one deals with complex interaction models, and a third one is used
to introduce control schemes. We have added a fourth one for post-computing and results
analysis trough graphs or movies. Thus, we consider each module of the simulator as a
black-box with codified inputs and outputs, and use files based communication between
each module. This modularity provides a high flexibility in the simulation implementation.

Figure 1: Simulator overview

2 Multibody system simulator

Mobile robots are considered as articulated mechanisms with locomotion organs (feet,
wheels or tracks) in contact with the ground. Thus, we can define legged, wheeled, tracked
or hybrid rovers. The simulation problem of rover dynamic behaviour on soft soils that
has to be solved consists in computing the generalized accelerations of each body when
external forces are applied on the mechanism. Forward dynamics is a classical problem in
robotics. Featherstone and al.[7] have presented an overview of equations and algorithms
for robot dynamics analysis. The most common approaches are known as Newton-Euler
and Lagrange formulations. Our simulator is based on the Lagrange formulation for kine-
matically constrained mechanisms. Lagrange multipliers are used since they are more well
adapted to mechanisms with closed-loops [3], [10].

The mechanism is defined by a set of n bodies linked together.
Each body Bi is defined by three kinds of parameters :

• kinematic: qi = [ri,pi]
t is the generalized body position vector, and hi = [ṙi,ωi]

t the
generalized body velocity with respect to the reference frame,

• Inertial: Ii is the inertia matrix and mi the mass,

• Geometrical: external shape of the bodies in contact with the ground.

ri is the position of center of mass of body Bi, pi is vector of Euler parameters for the body
orientation p = [e0, e

t]t = [e0, e1, e2, e3]
t. These parameters present the advantage to be

free of singularity and have low computational cost. Velocity vector h is a linear function
of q̇ and the time-derivative of Euler parameters [10] (ẽ is the 3x3 skew-symmetric matrix
of vector e ):

h =

[
I3 0
0 2 L

]
q̇ and L = [−e,−ẽ+ e0I3] (1)
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Each joint Lj is defined by the following set of constraint equations between the two bodies
Bi and Bj

φj(q) = 0 (2)

Then, solving the forward dynamic problem consists in writing dynamic equations for each
body considering them first as unconstrained. Kinematic constraints are then introduced
by applying forces on each body. Forces due to constraints can be defined as a linear
function involving the jacobian matrix of joint Lj and relative to bodies Bi and Bj [10] :
Fc = −Jt λ, where λ is a vector of unknown scalars called Lagrange multipliers.

M ḣ+ Jt λ = F

F = Fe + Fi + τ
(3)

F is the generalized forces vector applied on mechanism and is composed by :

• external forces (Fe) due to gravity and gyroscopic effect,

• contact forces (Fi) due to interactions between the ground and locomotion organs,

• motor torques (τ ) taken from control scheme,

M is the generalized mass-inertia matrix.
The second time-derivative of equation (2) gives an algebraic equation. It is added to
equation (3) to form the differential algebraic equations set (DAEs set):

M ḣ+ Jtλ = F

J ḣ− γ = 0
(4)

Where J is the jacobian matrix relative to velocity vector h.

J = ∂φ

∂q

[
I3 0
0 1

2
Lt

]
and γ = J̇ h (5)

Equations (4) can be written in the more compacted matrix form:

M̂ ̂̈q = F̂ and M̂ =

[
M Jt

J 0

]
̂̈q =

[
ḣ

λ

]
F̂ =

[
F

γ

]
(6)

This DAEs set could be solved by computing pseudo-inverse matrix M̂ but it is well
know that this method is not the most efficient one (the computational cost is in O(n3)).
Though, as each constraint involves only two bodies (binary link), J is a sparse matrix.

The proposed algorithm, is based on ABA’s one [7] and includes the sparse character of M̂
matrix. Taking the tree-structure topology into account allows the complexity to be linear
to the number of bodies O(n). This algorithm is described in [2] and can be summarized
as follows. The following notation is used in order to simplify the description of the tree-
structure topology: Body Bj have one or more children Bk with k ∈ {children(j)}, and Bi

is the parent body of Bj (with i < j < k). A link between two bodies is identified by the
number of his child body. (ie. link between Bj and Bk is Lk) This recursive algorithm is
divided in two steps. First, we go up through the tree (from terminal bodies to the root)
recursively to compute Me

j and Fe
j (respectively the equivalent mass-matrix and force-

vector) equations (7). They include dynamic effects of all children sub-tree on this body.
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Secondly, starting from the root of the tree and go down, each local sub-system (equations
8) is solved in equations (9).

Me
j = Mj +

∑

k

(Jjk)
tK−1

k J
j
k

Fe
j = Fj +

∑

k

(Jjk)
t K−1

k {γk − Jkk (M
e
k)
−1 Fe

k}

Kk = Jkk (M
e
k)
−1 (Jkk)

t

(7)

This system provides a more simple equations set, local to body Bi

Me
j ḣj + (Jjj)

tλj = Fe
j

Jij ḣi + J
j
j ḣj = γj

(8)

This local system (8) is solved as follows (ḣi is supposed to be known) :

λj =
(
J
j
j (M

e
j)
−1 (Jjj)

t
)−1

(
J
j
j (M

e
j)
−1 Fe

j + Jij ḣi − γj

)

ḣj = (Me
j)
−1

(
Fe
j − (Jjj)

t λ
) (9)

Systems with closed kinematic loops are more complicate to solve than tree-structured
systems. Joint variables introduced are not independent. As it is hard to determine an
independent set of variables, resolution of such systems is difficult. A classical approach
[7] considers such system as tree-structured by cutting all closed-loops and introducing
constraint equations

Φc(q) = 0 (10)

that introduce constraints forces expressed by Jtc λc. Added to the previous dynamics
equation (6): [

M̂ Jtc
Jc 0

] [ ̂̈q
λc

]
=

[
F̂

γc

]
(11)

A classical method consists in solving equation (11) for λc in the first place. This is
particularly well adapted when (n >> mc), as computational cost is in O(n mc+m3

c). (mc

is the number of closed-loops.)

Jc M̂
−1 Jtcλc = Jc M̂

−1F̂− γc (12)

The algorithm used in our simulator is based on the Augmented Lagrangian method. It
is a penalty method that reduces complexity to O(n mc +m2

c). λc is computed iteratively
(methodology and convergence condition are described by Andrade in [4]). c is the penalty
coefficient.

̂̈qk = M̂−1F̂− Jtcλ
k
c

δk = Jc ̂̈q
k
− γc

λk+1
c = λk

c + c δk
(13)

The choice of this method is motivated by its efficiency in terms of computation time.
Furthermore, Lagrange multipliers approach offers the possibility to integrate dynamically
new bodies and simplifies the integration of ground interactions. It is also well adapted for
the description of various topologies. The simulation diagram in figure 2 summarizes all
the simulation process and shows data flow between each module.
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Figure 2: Simulation diagram

3 Robot-ground interaction model

The main motivation in development of this simulator relies on the integration of interac-
tions between robot and ground. The interaction model is divided in two parts : one for
the soil dynamic behaviour, another for the contact model between the locomotion organs
and the ground.

3.1 Contact model

Locomotion organs are considered as objects, flexible or not, defined by their shape.
Ground geometry is defined by elevation map. Then, considering interactions between
an object and the ground, the model is divided in three part :

• Collision detection that provides normal force Fn

• Friction model that gives tangential force Ft

• soil and object deformation due to contact force

Collision detection is based on an elastic model of solid penetration known as compliant
contact model [12]. Solid shape is divided in elements of a basic shape like triangles. The
distance between each element and the ground is computed. If the distance is negative, a
normal force due to the deformation of soil and solid results. This force determination is
explained in the next section.
The friction model derives from Coulomb law which gives the relation between force
ratio Ft

Fn
and slipping velocity g (figure 3). Because of a discontinuity around g = 0, this

model is not adapted for slow slipping velocity. Therefore, we consider another model
which concerns evolution of the force ratio for a relative displacement X between the
locomotion organ and the ground ( Ft

Fn
= f(X)). It is a semi-empirical model based on a

precise description of friction phenomena [4]. This model allows to compute Ft for a given
Fn and g.
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Figure 3: Friction model of sandy soil

3.2 Soft soil model

As said in section 1, there are different dynamic models of soil that depend on its nature.
In this paper, we focus on a model of granular soil composed by agglomerated particles,
like a sandy soil. Granular soil has a complex behaviour. Nature of such material is not
easy to define, it can be considered as a solid or as a fluid, depending on its stress state.
Studies on granular soil have been done from a microscopic point of view. Each particle is
seen as a solid of complex shape. The application of the Newton’s law and interaction laws
between grains makes it possible to express the equation of motion of each particle. This
provides a realistic model but requires high computational resources, so it is not adapted
for this simulation. Our approach is macroscopic and interests global behaviour of granular
soil [8]. We propose a planar model that can be extend to 3D. This model is based on finite
elements approach where soil is divided in column cells. Each column interacts with its
two neighbours. The model description is divided in two separated parts: the first one is
dedicated to the soil behaviour without external solicitations, the second one concentrates
on soil behaviour under external forces due to robot interactions.

Surface-free behaviour. In this case, the soil behaviour only submitted to gravitation
field is studied. When soil slope angle α is higher than critical slope angle, an avalanche
can result from a small perturbation. Avalanche is a surface flow of the matter and could
be described using fluid dynamics equation. The computing of critical slope angle β0 is
given in [11]. Let’s consider in figure 4, a volumic element edx which weight is Wi and
sliding along a slope α. γ is its unit mass, ν its kinematic viscosity factor and g the gravity.
Friction forces between particles are considered as viscous forces. The dynamic equation
along −→x axis gives:

ẍ γ e dx = −ν ẋ γ e dx+ g sin(α) γ e dx (14)

where x is of a volumic element (fig 4). Flow velocity ẋ is extracted from the dynamic
equation:

ẍ = −ν ẋ+ g sin(α) (15)

then matter flow Φi across segment i can be computed:

Φi = γ ẋ cos(α) e =
∆Wi

∆t
(16)

The relation between mass variation ∆Wi and height variation ∆Hi due to matter flow
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across segment i can be expressed as follow:

∆Wi = (∆Hi +∆Hi−1)γ
l

2
(17)

And considering volume conservation and boundary constraints:

∆Wi = ∆Hi γ
l

2
+ ∆Wi−1 (18)

∆Hi =
2∆t

γ l
(Φi − Φi−1) (19)

Soil behaviour under robot action. Rover action on soil is mainly vertical and results
from the gravity. Vertical interaction studies are based on a triaxial test [5] which gives the
soil behaviour under vertical solicitation. This test consists in applying a vertical force F
to a soil sample laterally surrounded by an elastic and impermeable membrane submitted
to an hydrostatic pressure P0 (fig 5). Triaxial test provides a curve of soil deformation
under vertical force as show in fig 5. The mathematical model of this curve allow to
compute the normal force Fn due to robot action. The friction model defined previously,
allows to compute the tangential force Ft. The second curve of fig 5 represents volume
variation under vertical deformation. It allows to define the column matter flows toward
the adjacent columns (i− 1, i+ 1) and to compute column height variation ∆Hi.

Figure 4: Soil element in
avalanche flow
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Figure 5: Triaxial test

4 Conclusion

We proposed a simulator that allows to evaluate the dynamic behaviour of mobile robot
evolving on granular soil. The main objective is to study optimization of locomotion
modes of a mobile robot with hybrid locomotion device [6] on unstructured sandy soil.
We have investigated several locomotion modes like purely wheeled or peristaltsis ones by
evaluating the power consumption to achieve slope climbing task. These studies are to be
extend to any kind of mobile robot due to the generic model of contact. The fig 6 shows
the simulation of a wheeled vehicle climbing over a slope, and the fig 7 illustrates the
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integration of closed loops with a system representing a leg in contact with the ground. In
the future, this simulator will integrate flexible bodies like tires, tracks or any locomotion
organs and passive suspension. Other type of soil will also be added like ones composed
by agglomerated rocks, encountered in planetary or volcanic exploration.

Figure 6: A wheeled vehicle on a slope Figure 7: Simulation of a leg on a slope
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