
Using Classi�er Systems as Adaptive ExpertSystems for ControlOlivier Sigaud1 and Pierre Gérard1;21 Dassault Aviation, DGT/DPR/ESA78, Quai Marel Dassault, 92552 St-Cloud Cedex2 AnimatLab-LIP6, 8, rue du apitaine Sott, 75015 PARISolivier.sigaud�dassault-aviation.fr pierre.gerard�lip6.frAbstrat. In omplex simulations involving several interating agents,the behavior of the overall program is di�ult to predit and ontrol. Asa onsequene, the designers have to adopt a trial-and-error strategy.In this paper we want to show that helping experts to design simulationautomata as lassi�er systems (CSs) by hand and using a semi-automatedimprovement funtionality an be a very e�ient engineering approah.Through the example of a simple multiagent simulation, we show howsimulation automata an be implemented into the CS formalism. Thenwe explain how the obtained CS an be improved either by hand orthanks to adaptive algorithms. We �rst show how giving indiations onthe non-Markov harater of the problems faed by the lassi�ers anhelp the experts to improve the ontrollers and we explain why addingmodularity in the CS formalism is important. Then we show how theadaptive algorithms inherent to Learning Classi�er Systems (LCSs) 1 anbe used in suh a ontext, we disuss our methodology and we present anexperimental study of the e�ieny of this approah. Finally, we pointto di�ulties raised by our perspetive, we present diretions for futureresearh and onlude.1 IntrodutionIn the domain of military operations, the simulations of �ghts between sever-al airrafts, whether at a tatial or a strategi sale, are beoming inreasinglyomplex. The behaviors are more and more intertwined, there are more andmore relationships between the ators in the air battle �eld, and the ombi-natorial of possible situations makes the evolution more and more di�ult toforesee. In these domains, industrial and military studies make an intensive useof simulations. The ore of these simulations are simulation automata 2, i.e. theparts of the programs whih expliitly ontrol the behavior of the agents. In1 In order to make lear that we sometimes use the Classi�er Systems formalismwithout applying learning algorithms, we will distinguish Classi�er Systems (CS) asa formalism and Learning Classi�er Systems (LCS) throughout this paper.2 We all them automata whether these programs are expliitly implemented as �nitestate mahines or not.



suh a ontext, designing an automaton for a single agent in a simulator so thatit manifests an appropriate behavior in any situation is beoming inreasinglyomplex, too. As a onsequene, the designers of automata whih ontrol theairrafts tend to adopt a trial-and-error strategy and spend more and more timeon this ativity.As a researher in the industry of defense, our mission onsists in helpingthese experts to automate this trial-and-error proess by providing to them withthe best of what adaptive tehniques an do. Our hallenge is to put into thehands of the experts a tool favoring the emergene of better solutions and mini-mizing the amount of work neessary to reonsider their design. Thus, in ontrastwith most researhers in adaptive behavior who takle small sale problems oreven toy-problems from srath, we have to takle very large sale problemswhere previously hand-rafted solutions exist.There are many tehniques and formalisms into whih adaptive simulationautomata an be designed. In our ontext, two key requirements for these teh-niques are that, as a starting point, the expert knowledge an be easily ex-pressed in the formalism and that the result of the adaptation proess is easilyunderstandable by the experts. This is not the ase, for instane, with reurren-t neural networks [Beer and Gallagher, 1991℄, despite their e�ieny. We havehosen the CS formalism beause it meets these requirements and ombines theadaptive power of both geneti algorithms [Goldberg, 1989℄ and reinforementlearning [Sutton and Barto, 1998℄.In this paper we want to show that helping experts to design simulationautomata as CSs by hand and using a semi-automated improvement funtion-ality an be a very e�ient engineering approah. We will present and disussour methodology through an example. Sine on�dentiality onerns preventsus from publishing on the domain of military simulations, we have hosen toimplement a simpler multiagent simulation for illustration purposes.The rest of the paper is organized as follows.In setion 2, we present our illustrative simulation, and we show how webuild a new simulation automaton. In setion 3, we show how one an rephrasean existing simulation automaton written as a lassial program into the CSformalism. Then we give in setion 4 some methodologial hints on how to im-prove these simulation automata by hand. In partiular, we explain how givingindiations on the non-Markov harater of the problems faed by the lassi�ersan help the experts to improve the ontrollers. In setion 4.4, we introdue theneed for modularity and present how we an split a CS into modules.In setion 5, we turn towards the use of adaptive algorithms to improve theseautomata. We brei�y present the LCS framework in general and the partiularalgorithm whih we have developed. In setion 6, we show through an empirialstudy how e�ient these adaptive algorithms an be to improve the performaneof the automata. We disuss the bene�ts of our methodology in setion 7.In setion 8, at last, we present the problems whih arise when adaptationresults in the neessity of a global reorganization rather than in minor hanges



and disuss some areas whih need further improvements. Finally, we onludein setion 9.2 An illustrative experimentIn order to present in details some methodologial aspets of our work, wewill �rst present a simulator developed for illustration purposes.We are inspired by the Robot Sheepdog Projet from [Vaughan et al., 1998℄,involving a robot driving a �ok of duks towards a target position. The algo-rithm ontrolling the robot was �rst tested in simulation and then implementedon a real robot driving a real �ok of duks. As a testbed, we will use a simulatedextension of the task to the ase where several agents share the goal mentionedabove. Sine it is neither oversimpli�ed nor too omplex, we believe that thisexperiment is a good ase-study to meet and takle the di�ulties arising whenone tries to ombine adaptive apabilities and multiagent oordination shemes,whih orresponds to our industrial problem.2.1 Desription of the problemOur simulated environment is shown in �gure 1. It inludes a irular arena, a�ok of duks and some sheepdog agents who must drive the �ok towards a targetarea. We tested all ontrollers in simulations involving three sheepdog agents andsix duks. The duks and the sheepdog agents have the same maximum veloity.The goal is ahieved as soon as all the duks are inside the target area.
Ducks

Target Area

Sheepdog Agents

Arena

Fig. 1. The arena, duks and sheepdogs isRightToFlock

isLeftToFlock

isAtGoal

isBehindFlock

isInPushingArea

isOnWay

isInRightArea
isInLeftArea

Fig. 2. Desription of the situationThe behavior of the duks results from a ombination of three tendenies.They tend:



� to keep away from the walls of the arena 3;� to join their mates when they see them, i.e. when they are within theirvisual range;� to �ee from the sheepdog agents whih are within their visual range.One the behavior of the duks is implemented, we must design the ontrollersof the sheepdog agents so that they drive the �ok towards the target area. A�rst step of this design proess onsists in �nding whih features of the simulatedenvironment are relevant to ahieve the goal of the sheepdog agents. This is whatwe present in the next setion.2.2 Desription of the pre-oneived strategyWhen one programs the sheepdog agents as simply being attrated by theenter of the �ok, it appears that, when a sheepdog agent is lose to the �okand follows it, the �ok tends to satter beause eah duk goes away from thesheepdog along a radial straight line.In order to solve this sattering problem, the strategy we adopted was todesign the behavior of the agents so that at least one agent should push the�ok towards the target area from behind, while at least one other agent shouldfollow the �ok on its left hand side and another one on its right hand side sothat the �ok would not satter while being pushed.As a result of this design, the desription of the situation given to the agentsonsists in a set of tests on their position, as shown in �gure 2. This gives us a�rst set of onditions:� isAtGoal � isOnWay� isLeftToFlok � isRightToFlok� isInLeftArea � isInRightArea� isBehindFlok � isInPushingAreaThe important point is that we de�ned pushing and guiding areas relativeto urrent position of the �ok in order to implement the pushing and guidingbehaviors.In order to oordinate the ations of the agents, we also added the followingtests on the situation of other agents:� nobodyBehindFlok � nobodyPushing� nobodyInLeftArea � nobodyInRightArea� nobodyLeftToFlok � nobodyRightToFlok� nobodyOnWay � isFlokFormedAll the behaviors of the sheepdog agents onsist in going towards a ertainpoint. In general, when the �ok is formed, the sheepdog agents reat to theenter of the �ok. But, when the �ok is sattered, they an also reat to theduk whih is losest to them or the one whih is the further from the enter of3 Therefore, if they are left on their own, they tend to go to the enter of the arena



the �ok. The name of eah behavior an be interpreted straight-forwardly. Inthe ase of the �driveXtoY� behaviors, it onsists in going behind X with respetto Y so as to push X towards Y. The overall behavior set is the following:� doNothing � goToGoalCenter� goToFlokCenter � followFlokToGoal� goBehindFlok � goToPushingPoint� goToLeftArea � goToRightArea� goToRightOfFlok � goToLeftOfFlok� driveOutmostDukToFlok � driveClosestDukToFlok� driveClosestDukToGoal � goToClosestDuk� goToOutmostDuk � goAwayFromFlokThe ontrollers of our sheepdog agents involve 16 onditions and 16 ba-si behaviors. Designing the ontroller involving these sensori-motor apabilitiesonsists in �nding a good mapping between the onditions and the behaviors.3 Rephrasing an existing program in the CS formalismAs mentioned above, we want to use a formalism into whih we an put someexpert ontrol knowledge. But we also want to use adaptive tehniques. In thisontext, the CS formalism [Holland, 1975℄ appears as a natural andidate.Sine the work of [Wilson, 1994℄, a lassial CS an be seen as omposed ofa population of rules, or lassi�ers, ontaining observations, onsisting in a setof onditions, and ations:[Condition℄! [Ation℄(Strength)The di�erent parts of the lassi�er are strings of symbols in f0; 1;#g, where#, the �don't are symbol�, means �either 0 or 1�. This formalism an be extendedfrom boolean numbers to integers without di�ulty. The [Condition℄ parts of thelassi�er are ompared with an input message assigning its truth value to eahondition at a given time step of the simulation. If the input message mathesthe [Condition℄ part of one partiular lassi�er, it an �re the orrespondingation.The omplex simulation automata implemented by experts in onventionalprograms an be formalized very straight-forwardly into the CS formalism. Aprogrammer who designs a simulation automaton must provide with two things:� methods instantiating onditions in whih the behaviors an be �red;� methods (or funtions, in the ase of funtional programming) implement-ing basi behaviors of the automaton or ombinations of basi behaviors intomore omplex ones, and omputing parameters to these behaviors (for instane,the relative position of the loation where one agent must go).In all the industrial simulators whih we have examined, the onditions areexpressed in terms of parameters desribing the situation of the agent, eitherintrinsi to their own state or relative to relevant objets in the simulation.



It is easy to rephrase suh a sequene of tests into a set of lassi�ers. Theoutput of eah ondition method makes an entry in the input message, and onedi�erent ation message must be mapped to eah possible behavior, taking intoaount the fat that a method implementing a parameterized behavior makesas many behaviors as there are possible values for the parameters. This is whatwe have desribed in setion 2.2 in the ase of our duks experiments.Adding new onditions and parameters generally onsists in onsidering newrelevant objets, whih may eventually be virtual (for instane, a position behindanother objet). As it will be emphasized later, this proess of adding new on-ditions annot be redued to merely onsidering a logial ombination of otheravailable onditions.Then the programmer must design a higher level funtion or method om-bining the onditions, the behaviors and their parameters. This funtion antake the form of a long sequene of suessive tests stating under whih ondi-tions whih behavior an be �red. Building the automaton in the CS formalismmerely onsists in designing as many lassi�ers as neessary to tell under whihonditions eah behavior should be �red. The CS in harge of ontrolling oursheepdog agents is shown on table 1.4 Improving the CS automaton by hand4.1 Reasons for not using fully automatized learning algorithmsSine CSs are well known to be a kind of adaptive tool, why should we notapply their learning algorithms as suh to the lassi�ers written by experts ?There are three main reasons.The reinforement signal may not be available To apply learning algo-rithms to CSs, one must provide to the automaton with some reinforementsignals. In partiular appliation domains, some reinforement signals may beobvious: if our agents are airrafts, every behavior whih leads to their destru-tion must be avoided, so it must be punished. Depending on the purpose of thesimulation, there may also be a goal, and agents ould be rewarded when theyreah it.But, though a simulation driven only by these e�ieny riteria ould revealinteresting solutions, it is also neessary to take into aount the neessity to de-sign realisti behaviors with respet to behaviors found in real-world situations.For instane, if we want to test the potentialities of one airraft against standardopponents, it is important that the simulated opponents at in a way as similaras possible to what a real opponent would do.Eliiting what makes a behavior realisti is well known to be very hard. Thisis generally ahieved through programming a �rst version of the automaton,observing the resulting behavior, then adding onstraints and re-iterating un-til satisfation. In this proess, the ontrol of the expert is neessary to hekwhether a proposed behavior mathes the realism requirements or not. Henethis annot be ompletely automated.



isBehindFlok isInPushingAre
a

isLeftToFlok isRightToFlok isInLeftArea isInRightArea isOnWay nobodyBehindF
lok

nobodyPushing nobodyLeftToF
lok

nobodyRightTo
Flok

nobodyOnWay isFlokFormed Ation# 1 # # # # # # # # # 1 1 goToGoalCenter# 1 # # # # # # # # # 1 1 goToFlokCenter1 # # # # # # # 1 # # # # goToPushingPoint# # 1 # # # # 1 # # # # # goBehindFlok# # 1 # # # # # 1 # # # # goBehindFlok# # # 1 # # # 1 # # # # # goBehindFlok# # # 1 # # # # 1 # # # # goBehindFlok# # 1 # 1 # # 0 0 # # 1 1 followFlokToGoal# # # 1 # 1 # 0 0 # # 1 1 followFlokToGoal# # 1 # 0 # # # # # # 1 1 goToLeftPushingPoint# # # 1 # 0 # # # # # 1 1 goToRightPushingPoint# # # # # # 1 # # # 1 # # goToRightPushingPoint# # # # # # 1 0 # 0 # # # goToRightPushingPoint# # # # # # 1 # # # 1 # # goToLeftofFlok# # # # # # 1 0 # 0 # # # goToLeftofFlok# # # # # # 1 # # 1 # # # goToLeftPushingPoint# # # # # # 1 0 # # 0 # # goToLeftPushingPoint# # # # # # 1 # # 1 # # # goToRightofFlok# # # # # # 1 0 # # 0 # # goToRightofFlok# # # # # # # # # # # # 0 driveClosestDukToFlok# # # # # # # # # # # # 0 goToOutmostDuk# # # # # # # # # # # # 0 goToClosestDuk# # # # # # # # # # # # 0 driveOutmostDukToFlok# # # # # # # # # # # # 0 goAwayFromFlokTable 1. A hand-rafted ontroller
The evolved CSs need validation One strong reason for not using a fully-automated LCS in operational ontext is that the experts want to keep ontrolof what the system is doing. It may be important that they an formally approveor rejet the solution built by the system. Partiularly, in the military domain,people are very relutant to let the system take unforeseen deisions (and wewon't blame them for that, will we?).There are two omplementary strategies to takle this onern. The �rst oneonsists in giving to the experts a ontrol on the evolution of the lassi�ers. Theseond one onsists in applying adaptive algorithms o�-line and validating theobtained ontrollers before using them in operational situations.



Experts learn from improving the system Another strong argument forletting the experts monitor the adaptation of their lassi�ers is that they mayalso learn a lot from the evolution of the lassi�ers and of the behavior of thesimulation. The LCS may propose new solutions where the automaton needsimprovement, and thus reveals weaknesses or misoneptions. This is perhapsthe main justi�ation for using adaptive programs in that ontext nowadays.The more the experts are involved in the adaptation proess, the more theylearn about the dynamis of the system.Furthermore, observing the external behavior of the system an reveal somesolutions whih are both unforeseen by the expert and more e�ient than theone they have designed. We desribe suh a ase in an experimental framework in[Sigaud and Gérard, 2000℄. In these favorable ases of emergene, it is importantthat the experts have a perfet knowledge of the underlying automaton, so thatthey an interpret what is happening.4.2 Adjusting the CS automatonAs explained in setion 3, one rephrased into the CS formalism, the lassi�ersontrolling the behavior of the automaton take the form of a module whose inputsare onditions on the environment and whose outputs are the basi behaviorsof the automaton. This module ontains a list of lassi�ers whih appears as atable. Most of the time, only a few onditions are relevant for �ring one partiularbasi behavior, so there are many more don't are symbols (�#�) than 0s and 1sin the table.In table 1, we present the ontroller that we designed in order to implementthe solution of our �ok ontrol simulator desribed in setion 2.2. It an be seenthat we only use 13 of the 16 available inputs.There are two ways of improving a simulation automaton. The �rst one is tooptimize the set of lassi�ers. As we will present in setion 5, this is what fullyautomated LCS are good at. Indeed, one the CS desription is settled, the onlything learning algorithms may do is to optimize the mapping between onditionsand ations with respet to the �tness riteria. But the way experts improve theirautomata annot be redued to this optimizing proess. From our experiene, itis lear that the key di�ulty for adjusting e�ient simulation automata onsistsmore in �nding good inputs and basi behaviors than in optimizing the mappingbetween them.Thus it seems neessary to help the experts to �nd where new onditions andations should be added before trying to optimize the mapping between them.We address this point in the next setion.4.3 Non-Markov IndiatorsIn the Markov Deision Proess (MDP) framework, an agent moves fromstate to state thanks to ations, and the distribution of probability of reahingthe next state only depends on the state of the agent and on its ation. When



this ondition, alled the Markov hypothesis, is not veri�ed, there is a hiddenstate, the agent must solve a non-Markov problem.Trying to takle non-Markov problems is hard. The algorithms whih areintended to solve the hidden state planning problem from the formal framework� see [Kaelbing et al., 1998℄ for a very lear presentation � fae a problem ofombinatorial explosion and are restrited to solving very small-size non-Markovproblems.Alternatively, some people who work in reinforement learning � for instane,[Whitehead and Lin, 1995,MCallum, 1996,Donnart, 1998,Lanzi, 1998℄ � try toadapt their algorithms to the non-Markov ase, sine it is well-known that theproof of onvergene underlying the reinforement learning algorithms are re-strited to the Markov ase [Lanzi, 2000℄.In the ase of multiagent simulations, designing the input and output of theagents so that the problem they solve is Markov is very hard, sine agents annothave a perfet knowledge of every relevant feature of all other agents and of thebehavior of these agents. Hene we are doomed to solving non-Markov problems.Some researhers [MCallum, 1993,Witkowski, 1997,Dorigo, 1994℄ have pro-posed algorithms whih pik the relevant inputs from a set given beforehand. Inthese approahes, adding a new input strongly relies on the non-Markov hara-ter of the problem: if the system reeives di�erent rewards for the same ation inwhat it onsiders as the same situation, this means that in fat the situation isnot the same, then the problem is non-Markov and one input must be added inorder to distinguish better. Thus, heking whether a problem is Markov mightbe a key fator in the improvement proess.If the problem solved by an agent is non-Markov, then there must be at leastone module of the agent whih solves a non-Markov problem. In suh a module,there must be at least one lassi�er faing a hidden state. The fewer hiddenstates there are in the problem whih an agent must solve, the easier it is to �nda good poliy, and the more e�ient the agent will be. Furthermore, improvingit with a learning algorithm will be easier.This has lead us to the intuition that giving to the experts indiations thatsome elements in their solution are faing a non-Markov problem would be veryinformative to them. And it is!Classi�ers faing a hidden state an be identi�ed by reording, for eah lassi-�er and eah state into whih it has been �red, a list of all the subsequent states.If there are several subsequent states for the same initial state, the problem isnon-Markov. We an de�ne the non-Markov rate NMR of the lassi�ers as thenumber of subsequent states divided by the number of initial states into whihit has been �red. NMR = jnon�Markov asesjjaseswhen firedjModifying by hand the lassi�ers whih have the highest non-Markov rate hasproven to result in very e�ient improvements of the automata. As long as thelassi�er ontains some �#� in its [Condition℄ part, it an be further speialized.



Interestingly, adding inputs to lassi�ers is what most fully automated LCS dowhen they rely on speialization mehanisms, but they do so by piking a newondition in a set of inputs already available. But when the [Condition℄ partis ompletely speialized, the only possible improvement onsists in adding newinputs to the global automaton. The easiest solution, here, rather than tryingto learn to solve the non-Markov problem as suh, is that the expert adds newinputs when neessary.4.4 Modular Classi�er SystemsFrom table 1, it an be seen that the representation using a basi ontrollerould be more ompat: there are a lot of �#�, whih means that eah expertlassi�er uses very few of the available inputs. As a result, the ontroller isdi�ult to design, sine any hange in the input set involves reonsidering allthe lines in the table. As it will appear in setion 6, the ontroller ould also bemore e�ient.Furthermore, the adaptive algorithms of the LCS are slow to onverge onsuh a representation, sine the searh spae is very large. Here we have onlyused 13 inputs, but simulation automata designed for industrial purpose an behuge. In the ase of simulations of military operations, some automata designedby experts to ontrol a single agent involve around 200 inputs.Representing suh automata as tables with 200 olumns would make themunreadable for experts. Hene, it seems neessary to split the automata intosmaller modules, building modular lassi�er systems (MCS).One good way of splitting a CS devoted to ful�lling a behavior into modulesis to identify several lower level behaviors whose onjuntion aheives the globalbehavior. The lower level behaviors an in turn be split into even lower levelbehaviors, or they an be represented diretly as CSs. This gives rise to a hier-arhial deomposition of the global behavior. Then, if they at on independentatuators, some of the basi level behaviors ould be run independently. If thisis not the ase, one must �nd a way to synhronize them.Among many arhitetures whih may result from these onsiderations, wehose to develop a simple one where a high level CS, or deision CS, is de-voted to monitoring the exeution of several basi behavior CSs, hoosing oneamong them at eah time step. The deision CS shares their inputs with thebehavior CSs, but it also needs an information on previous deisions. Its out-put tells whih basi behavior must be �red at a given time step. Interestingly,our arhiteture is very similar to those of [Wiering and Shmidhüber, 1997℄ and[Sun and Sessions, 2000℄, how both presented learning algorithms devoted to ap-plying adaptive algorithms to them.4.5 Modularity in our experimental set-upThe notion of role appears naturally in the strategy we presented in se-tion 2.2. In our solution, at least one agent must push the �ok from behind(playing a Pusher role) and at least one agent must guide the �ok on its



left hand side and another one on its right hand side (playing LeftGuide andRightGuide roles respetively). Therefore, we tried to modify the ontrollerpresented in table 1 so as to make an expliit use of roles. Our new arhitetureontains two kinds of omponents:� The role CS is a CS stating under whih onditions on the situation aagent hanges its role into another role. If no observation mathes, the roleremains the same. The roles are initialized so that eah agent hooses betweenFuturePusher, FutureLeftGuide and FutureRightGuide randomly, butin suh a way that eah role is assigned to at least one agent. Our role CS isshown in table 2.� The behavior CSs are CSs whih �re ations of the agent aording toonditions on the situation. There is one CS for eah role. Hene, there is onlyone behavior CS ative at a time, the one whih orresponds to the role playedby the agent.In that partiular ase, eah lower level module is seen as devoted to ahieveone partiular basi behavior, and the higher level module is seen as deidingwhih basi behavior should be �red aording to the role of the agent. The roleitself depends on the situation of the agent.
isInPushingAre
a

isInLeftArea isInRightArea isFlokFormed Former Role New Role1 # # 1 F.Pusher Pusher# 1 # 1 F.LeftGuide LeftGuide# # 1 1 F.RightGuide RightGuide1 # # 0 F.Pusher F.Pusher# 1 # 0 F.LeftGuide F.LeftGuide# # 1 0 F.RightGuide F.RightGuide1 # # 0 Pusher F.Pusher# 1 # 0 LeftGuide F.LeftGuide# # 1 0 RightGuide F.RightGuide0 # # # Pusher F.Pusher# 0 # # LeftGuide F.LeftGuide# # 0 # RightGuide F.RightGuideTable 2. The role table (F. stands for Future)We have six behaviors, eah one orresponding to the ful�llment of one par-tiular role, i.e. FuturePusherBehavior, PusherBehavior, FutureLeft-GuideBehavior, LeftGuideBehavior, FutureRightGuideBehavior andRightGuideBehavior.



As an example, the initial PusherBehavior CS is shown in table 3. Theomplete set of behavior tables an be found in [Sigaud and Gérard, 2000℄.
isInPushingAre
a

isFlokFormed isBehindFlok Ation0 1 # goToPushingPoint1 1 # goAwayFromFlok# 0 0 goBehindFlok# 0 1 driveClosestDukToFlokTable 3. The PusherBehavior table
5 Applying adaptive algorithmsUp to that point, we have shown how to rephrase an expertise into the CS for-malism. This formalism is onvenient for improving the automata sine adjustingby hand the global behavior of one automaton merely onsists in hanging somevalues into others in the lassi�ers. Using CSs in suh a way that the knowledgeof an expert is oded into a set of lassi�ers would make the reader feel that wehave re-invented a sort of expert system devoted to ontrol. But a CS is morethan an expert system. Sine adaptive algorithms an sometimes be applied toit, our framework is rather what we all an Adaptive Expert System.5.1 Learning Classi�er SystemsUp to that point, we have presented CSs as a formalism to ode an hand-rafted automaton. Rather than being done by hand, the adjustment proessan be more or less automated, using LCS algorithms. The �rst LCSs weredesigned by [Holland, 1975℄. In these initial versions, the strength of lassi�erswas modi�ed by the Buket Brigade algorithm aording to the estimated rewardreeived by the agent for �ring the lassi�er. The population of lassi�ers wasevolved thanks to a geneti algorithm (GA) � see [Goldberg, 1989℄ � using thestrength of the lassi�ers as a �tness measure. When several lassi�ers ould be�red in the same state, the strength was also used to selet the one whih wouldbe �red.A major improvement of the LCS framework was aheived by [Wilson, 1995℄in designing XCS, replaing a strength-based LCS by an auray-based one.



Reently, a new way of using the LCS framework has reeived a growinginterest [Stolzmann, 1998℄. Based on ideas of [Riolo, 1990℄, it onsists in addingin the lassi�ers an [Effet℄ part whih allows the system to use the lassi�ersfor antiipating rather than merely reating to the environment. It uses diretexperiene in order to build new lassi�ers, instead of relying on a GA. Thelassi�ers of suh LCSs ontain the following omponents:[Condition℄[Ation℄! [Effet℄ (quality parameters)The learning proess of suh LCSs an be deomposed into two omplemen-tary proesses:� latent learning onsists in building a reliable model of the dynamis of theenvironment, by ensuring that the [Effet℄ part of all lassi�ers are orret.This new part stores information about state transitions and allows lookaheadplanning. The latent learning proess an take plae at eah time step withoutany reward, hene it is very e�ient. In partiular, as [Witkowski, 1997℄ hasshown, the quality of antiipation of every lassi�er whih an be �red at a timean be updated aording to the subsequent input message, even if the lassi�erhas not atually been �red;� reinforement learning onsists in improving a poliy using the experieneof the system, so that it beomes able to hoose the optimal ation in everystate. This proess takes advantage of latent learning to onverge faster.These new approahes an be seen as replaing the blind searh performed bythe GA by an heuristi searh whih takes advantage of the previous experieneto improve the lassi�ers. As a result, they are less general sine, for instane,they are devoted to takling multi-steps problems whereas GA-based LCS analso takle single-step problems, but they are also muh more e�ient in whatthey are designed for.5.2 Our AlgorithmOur algorithm, YACS, is an instane of heuristi searh LCS based on anti-ipation. Its lassi�ers ontain the following omponents:[Condition℄[Ation℄! [Effet℄ Rwhere R estimates the immediate reward reeived by the system when thelassi�er is �red.The latent learning proess reates and deletes lassi�ers. The reation pro-ess an be split in two main parts:� the e�et overing mehanism adjusts the e�et parts by omparing su-essive observations and orreting mistakes;� the ondition speialization proess identi�es the most general of relevantonditions.



A lassi�er whih sometimes antiipates well and sometimes not is suh thatits [Condition℄ part mathes several distint states. It is too general and mustbe replaed by new lassi�ers with more speialized [Condition℄ parts.These mehanisms allow the system to onverge towards a set of auratelassi�ers antiipating orretly. We use this information about the state transi-tions in order to improve the reinforement learning proess.The �rst part of this proess onsists in estimating the immediate rewardresulting from the �ring of eah lassi�er. At eah time step, we use the re-eived reward to update an estimation of the immediate reward (R) of everylassi�er involving the last ation and the last state, even if it has not atu-ally been �red. The state transition informations and the immediate rewardestimations allow to use a Dynami Programming algorithm [Bellman, 1957℄ toompute a poliy. A more detailed desription of this algorithm an be found in[Gérard and Sigaud, 2000℄, in this volume.6 Empirial studyIn order to hek whether our role-based ontroller was more e�ient thanthe basi one, and whether it ould be improved by our learning algorithm, weonduted the following experimental study.We �rst ran 2000 experiments to get a statistially signi�ant view of theresults obtained with these ontrollers. Although the hand-rafted role-basedontrollers appeared more e�ient than the ones without roles with three sheep-dogs, we did want to hek whether it would be more or less robust with respetto the size of the agents population, sine the role-based ontrollers are designedfor a group of three sheepdogs.Therefore, we deided to test the robustness of both ontrol poliies whenthe number of sheepdog agents was inreased from three to twenty.
150

200

250

300

350

400

4 6 8 10 12 14 16 18 20

N
bS

te
ps

NbSheperds

basic architecture
role-based architecture

Fig. 3. Robustness of basi and role-based ontrollers to an inreasing numberof sheepdogs 260

280

300

320

340

360

380

4 6 8 10 12 14 16 18 20

N
bS

te
ps

NbSheperds

basic architecture
evolved

Fig. 4. Robustness of basi and evolvedontrollers to an inreasing number ofsheepdogs



The results are shown on �gure 3. Eah point in the urves represents anaverage performane over 100 trials, and eah set of 100 trials starts with thesame 100 random initial positions. We must also mention that the goal is neverreahed in less than 95 time steps, whih is the minimum time for the sheepdogagents to surround the �ok and drive it to the target area from a luky initialsituation.If a trial lasts more the 4000 time steps, it is stopped and ounted as a failure.Failures are not taken into aount in the omputation of the average, sine theirduration is arbitrary. But, sine there are very few failures, their impat on theresults is not very signi�ant. More preisely, the worst ase was four failures overthe 100 trials that give one point on the �gures. It appears that the role-basedontroller failed ten times on the 18 � 100 = 1800 trials, while the basi andlearned basi ontrollers only failed respetively �ve times and two times overthe 1800 trials. The failures happen more often with more than twelve sheepdogsin the role-based ase, whih supports our diagnosis of a lak of robustness ofthis solution.It an be seen in �gure 3 that the role-based arhiteture performs muhbetter with three sheepdogs than the basi one, but that the basi arhiteture ismore robust to an inreasing number of sheepdogs. The omplete presentation ofthis robustness study and further results are given in [Sigaud and Gérard, 2000℄.It an also be seen in �gure 4 that the ontroller obtained form applyingadaptive algorithms to the basi arhiteture during two trials performs betterthan the hand-rafted one, and is still robust.Hene, it must be highlighted that applying adaptive algorithms to our hand-rafted ontrollers results in a signi�ant improvement of the performane. Froman engineering perspetive, it means that the expert who has to design a on-troller an write a �rst draft of this ontroller before applying adaptive algo-rithms to optimize it. Hene he spends muh less time in this design, whih isvery appealing in an industrial ontext. This �nding shows that the CS formal-ism is adapted for oding ontrollers both beause the knowledge of the expertan be easily represented in it and beause applying optimization algorithms isstraight-forward in the formalism.7 Disussion7.1 Controlling the adaptationIf we want experts to ontrol the adaptation of lassi�ers, our tool shouldhighlight all the modi�ations of the initial lassi�ers and let them approve orrejet the hanges. Another way to takle the validation onern ould be to letthe expert onstrain the exploration of the state spae. Atually, what we do isa ombination of the two.The YACS system presented in [Gérard and Sigaud, 2000℄ is a ombinationof di�erent funtionalities used to improve the lassi�ers. One of them, the anti-ipation learning mehanism, improves the [Effet℄ part, another one speializes



the [Condition℄ part, and one is devoted to ombining onditions with new a-tions. Eah of these funtionalities an be swithed on or o�, depending on theuse we want to make of the LCS. Typially, in a fully automated experiment, allthe swithes are set on. In the ase where we use expert lassi�ers as a startingpoint, we set some of them o� in order to insure that the lassi�ers only getadjusted thanks to speialization. This guarantees that the system only exploresthe domain of the state spae the expert want it to explore. This is an indiretway to onstrain the adaptation proess. But in our view, this does not eliminatethe neessity of a validation of the resulting lassi�ers by the expert.7.2 Bene�ts of our methodologyLetting the experts eliit their knowledge to set the initial CS is bene�ialwith respet to using a LCS from srath with a random CS. It is well knownthat, when we use a LCS from srath, the initial exploration phase before thesystem starts to onverge an be very long even for simple problems. Using theexpert knowledge that way allows us to ut through that phase whih may beprohibitively long for our real-world appliations.Furthermore, introduing roles in our arhiteture brings several bene�ts.� It is easier to design a behavior CS devoted to ful�ll one partiular role,sine a partiular role orresponds to a speialized part of the global behavior.Hene, eah behavior CS is muh smaller than the CS presented in setion 4.2.� It is easier to design an internal reinforement signal poliy when we useroles. Generally, ful�lling a role orresponds to reahing a partiular situationwhih an be deteted by the agent, and/or to insure that some validity ondi-tions hold. Then the agents an be rewarded or punished if the �rst onditionholds or the seond one is broken. In our �ok ontrol simulation, for example,playing a FutureLeftGuide role involves reahing the leftArea while playinga LeftGuide role involves keeping the �ok formed. Hene, an agent in hargeof the left side of the �ok an be rewarded when it reahes the leftArea, be-oming a LeftGuide, and punished if the �ok is sattered, oming bak toFutureLeftGuide. We think that this is a good way of introduing interme-diate reinforement signals, in a more natural framework than in [Matari¢, 1994℄,for instane.8 Future work8.1 Global reorganizationsWe have shown that an expert must have a pre-oneption of the way bywhih his agents will solve the problem at hand in order to de�ne their inputsand behavior sets. This is only one he has implemented the agents and observedtheir behavior that he will be able to re�ne his initial oneption, making hangesin the behavior modules.



But it sometimes happens that observing the behavior of the system duringthe adaptation proess reveals a ompletely di�erent strategy to solve the prob-lem. In these ases, implementing the new solution may require new inputs, newbehaviors and new mappings between the two.These ases where a global reorganization seems neessary give a strong ar-gument for adopting a modular approah, sine some modules may remain un-hanged despite the new perspetive. But the design of a fully-automated LCSwhih would be able to takle suh global reorganizations is a very hallengingresearh goal. Therefore these ases also give a strong argument for adopting asemi-automated approah, sine the eye of the expert is neessary to identifywhen suh global redesriptions are neessary.8.2 Improving the toolIn order to get more onvenient, our tool should inlude a graphial interfae,devoted both to the design of adaptive automata and to their improvement.In order to help to improve adaptive automata, the interfae must highlightthe lassi�ers whih need to be improved aording to the non-Markov indiators.It must also let the users validate or rejet new lassi�ers.We have presented a way to use CSs as a partiular ase of expert sys-tems. Rather than expressing the knowledge of the expert diretly into the CSformalism, whih makes it hard to read, we should also use a higher level in-put/output language to translate strings of 0, 1 and # into readable assertionslike �if (param1 > 50:0) and (ondition2 holds) and (...) then atThisWay�. Forinstane, the Samuel system [Grefenstette et al., 1990℄ uses suh a language forinterfae onerns.8.3 Solving non-Markov problemsMore interestingly for the sienti� ommunity, we also want to automatemore proesses. We have shown that we an indiate to the users the lassi�erswhih have a high non-Markov rate. If a orrelation an be found between thevariability in subsequent situations and an input whih does not appear in theondition part of the lassi�er, then adding this input to the lassi�er mightsolve the missing information problem. We have to go into further investigationin this area before presenting results, but solving non-Markov problems is thenext stage in the agenda of YACS.8.4 Strutural ModularityStrutural modularity is not the kind of temporal modularity presented insetion 4.4. High level onditions an be a logial ombination of lower levelonditions. In suh ases, the omputation of the truth value of these onditionsan be rephrased into a small CS whose onditions are the lower level onesand the ation is the assertion of the truth value of the higher level one. These



modules are onneted one to another so that the output of one module makesan entry in the input message of another module. This an be a good way tobreak the omplexity of the onditions of the automata.It is interesting to use this form of modularity when one lower level modulean be re-used by several higher level modules. Our attempt to use this formof modularity in our �ok driving experiment was not suessful, but the needfor strutural modularity is not obvious in suh a problem, sine the automatonis not very ompliated. In our industrial appliations, on the ontrary, thereshould be a lot of reusable modules.Combining learning algorithms with strutural modularity raises interestingquestions. When a higher level module is reinfored, how should it share itsreinforement with lower level modules whih give its inputs ?Though we did not takle this question yet, the learning algorithm presentedin [Gérard and Sigaud, 2000℄ already measures how relevant is a partiular inputto a partiular lassi�er. We will use this information to design a struturalreinforement sharing algorithm.9 ConlusionIn this paper, we have presented an appliation of CSs to a moderately om-pliated multiagent problem.We have drawn some lessons out of this experimentson how ould CSs be used in real world domains.The main message of that paper is that using the CS formalism an be a verye�ient way to implement or rephrase simulation automata written by experts.It provides with both a lear and onise representation of the �intelligene�of the system, whih an be easily handled through a graphial interfae, anda onvenient way to adapt this intelligene through a trial-and-error proess,either by hand, automatially, or even through a mixture of the two.The seond message is that pointing out lassi�ers dealing with the non-Markov property of the problem is very helpful and gives an e�ient indiationof what must be improved in the design of the automaton. This is not a surprisesine this is at the ore of the algorithms of XCS [Wilson, 1995℄, but we proposeda new methodology to involve the experts in the improvement proess when itis neessary.10 AknowledgementsThe author wants to thank the reviewers of an early version of this paper andall the IWLCS2000 workshop attendees for valuable omments on this work.Referenes[Beer and Gallagher, 1991℄ Beer, R. D. and Gallagher, J. C. (1991). Evolving dynamineural networks for adaptive behavior. Adaptive behavior, 1(1):91�122.



[Bellman, 1957℄ Bellman, R. E. (1957). Dynami Programming. Prineton UniversityPress, Prineton, NJ.[Donnart, 1998℄ Donnart, J.-Y. (1998). Arhiteture ognitive et propriétés adaptativesd'un animat motivationnellement autonome. PhD thesis, Université Pierre et MarieCurie, Paris, Frane.[Dorigo, 1994℄ Dorigo, M. (1994). Geneti and non-geneti operators in alesys. Evo-lutionary Computation, 1(2):151�164.[Gérard and Sigaud, 2000℄ Gérard, P. and Sigaud, O. (to appear, 2000). Yas: Com-bining dynami programming with generalization in lassi�er systems. In Stolzmann,W., Lanzi, P.-L., and Wilson, S. W., (Eds.), LNCS: Proeedings of the Third Inter-national Workshop on Learning Classi�er Systems. Springer-Verlag.[Goldberg, 1989℄ Goldberg, D. E. (1989). Geneti Algorithms in Searh, Optimization,and Mahine Learning. Addison Wesley.[Grefenstette et al., 1990℄ Grefenstette, J. J., Ramsey, C. L., and Shultz, A. C. (1990).Learning sequential deision rules using simulation models and ompetition. MahineLearning, 5(4):355�381.[Holland, 1975℄ Holland, J. H. (1975). Adaptation in Natural and Arti�ial Systems.The University of Mihigan Press.[Kaelbing et al., 1998℄ Kaelbing, L. P., Littman, M. L., and Cassandra, A. R. (1998).Planning and ating in partially observable stohasti domains. Arti�ial Intelligene,101.[Lanzi, 1998℄ Lanzi, P. L. (1998). Adding memory to XCS. In Proeedings of the IEEEConferene on Evolutionary Computation (ICEC98). IEEE Press.[Lanzi, 2000℄ Lanzi, P. L. (2000). Adaptive agents with reinforement and internalmemory. In Meyer, J.-A., Wilson, S. W., Berthoz, A., Roitblat, H., and Floreano, D.,(Eds.), From Animals to Animats 6: Proeedings of the Sixth International Confereneon Simulation of Adaptive Behavior, pages 333�342, Paris. MIT Press.[Matari¢, 1994℄ Matari¢, M. J. (1994). Rewards funtions for aelerated learning.In Cohen, W. W. and Hirsh, H., (Eds.), Proeedings of the Eleventh InternationalConferene on Mahine Learning, San Franiso, CA. Morgan Kaufmann Publishers.[MCallum, 1993℄ MCallum, R. A. (1993). Overoming inomplete pereption withutile distintion memory. In Proeedings of the Tenth International Conferene onMahine Learning, pages 190�196, Amherst, MA. Morgan Kaufmann.[MCallum, 1996℄ MCallum, R. A. (1996). Learning to use seletive attention andshort-term memory. In Maes, P., Matari, M., Meyer, J.-A., Pollak, J., and Wilson,S. W., (Eds.), From Animals to Animats 4: Proeedings of the Fourth InternationalConferene on Simulation of Adaptive Behavior, pages 315�324, Cambridge, MA.MIT Press.[Riolo, 1990℄ Riolo, R. L. (1990). Lookahead planning and latent learning in a lassi�ersystem. In From Animals to Animats: Proeedings of the First International Con-ferene on Simulation of Adaptive Behavior, pages 316�326, Cambridge, MA. MITPress.[Sigaud and Gérard, 2000℄ Sigaud, O. and Gérard, P. (to appear, 2000). Being reativeby exhanging roles: an empirial study. In Hannebauer, M., Wendler, J., and Pag-ello, E., (Eds.), LNCS : Balaning reativity and Soial Deliberation in MultiagentSystems. Springer-Verlag.[Stolzmann, 1998℄ Stolzmann, W. (1998). Antiipatory lassi�er systems. In Koza,J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H.,Golberg, D. E., Iba, H., and Riolo, R., (Eds.), Geneti Programming. Morgan Kauf-mann Publishers, In., San Franiso, CA.



[Sun and Sessions, 2000℄ Sun, R. and Sessions, C. (2000). Multi-agent reinforemen-t learning with bidding for segmenting ation sequenes. In Meyer, J.-A., Wilson,S. W., Berthoz, A., Roitblat, H., and Floreano, D., (Eds.), From Animals to Ani-mats 6: Proeedings of the Sixth International Conferene on Simulation of AdaptiveBehavior, pages 317�324, Paris. MIT Press.[Sutton and Barto, 1998℄ Sutton, R. S. and Barto, A. G. (1998). Reinforement Learn-ing, an introdution. MIT Press, Cambridge, MA.[Vaughan et al., 1998℄ Vaughan, R., Stumpter, N., Frost, A., and Cameron, S. (1998).Robot sheepdog projet ahieves automati �ok ontrol. In Pfeifer, R., Blumberg,B., Meyer, J.-A., and Wilson, S. W., (Eds.), From Animals to Animats 5: roeedingsof the Fifth International Conferene on Simulation of Adaptive Behavior, pages 489�493, Cambridge, MA. MIT Press.[Whitehead and Lin, 1995℄ Whitehead, S. D. and Lin, L.-J. (1995). Reinforementlearning of non-Markov deision proesses. Arti�ial Intelligene, 73(1-2):271�306.[Wiering and Shmidhüber, 1997℄ Wiering, M. and Shmidhüber, J. (1997). HQ-learning. Adaptive Behavior, 6(2):219�246.[Wilson, 1994℄ Wilson, S. W. (1994). ZCS, a zeroth level lassi�er system. EvolutionaryComputation, 2(1):1�18.[Wilson, 1995℄ Wilson, S. W. (1995). Classi�er �tness based on auray. EvolutionaryComputation, 3(2):149�175.[Witkowski, 1997℄ Witkowski, C. M. (1997). Shemes for Learning and behaviour: ANew Expetany Model. PhD thesis, Department of Computer Siene, University ofLondon, England.


