
Being reative by exhanging roles:an empirial studyOlivier Sigaud1 and Pierre Gérard1;21 Dassault Aviation, DGT/DPR/ESA78, Quai Marel Dassault, 92552 St-Cloud Cedex2 AnimatLab-LIP6, 8, rue du apitaine Sott, 75015 PARISolivier.sigaud�dassault-aviation.fr pierre.gerard�lip6.frAbstrat. In the multi-agent ommunity, the need for soial delibera-tion appears ontraditory with the need for reativity. In this paper, wetry to show that we an draw the bene�ts of both being reative andbeing soially organized thanks to what we all �soial reativity�.In order to defend this laim, we desribe a simulation experiment inwhih several sheepdog agents have to oordinate their e�ort to drivea �ok of duks towards a goal area. We implement reative ontroller-s for agents in the Classi�er Systems formalism and we ompare theperformane of purely reative, solipsisti agents whih are oordinatedimpliitly with the performane of agents using roles. We show that ourrole-based agents perform better than the solipsisti ones, but beause ofonstraints on the roles of the agents, the solipsisti ontrollers are morerobust and more opportunisti. Then we show that, by exhanging re-atively their roles, a proess whih an be seen as implementing a formof soial deliberation, role-based agents �nally outperform the solipsistiones. Sine designing by hand the rules for exhanging the roles proveddi�ult, we onlude by advoating the neessity of takling the problemof letting the agents learn their own role exhange proesses.1 IntrodutionDe�ning reativity is di�ult sine the word has several meanings whih arelosely related but not exatly equivalent. Aording to [Kaelbing, 1990℄, rea-tivity is a matter of responsiveness in time. In order to be reative, an agentmust do the right thing at the right time. This view of reativity has been oneof the early leitmotives of the rising �eld of behavior-based arti�ial intelligene[Brooks, 1991,Matari¢, 1994a℄ in reation to the endless planning proesses usedin lassial arti�ial intelligene robotis. Sine the lak of reativity of the plan-ning robots prevented them from being used in dynami environments, it waslaimed that doing the right thing was pointless if it was not done in time.Another de�nition of reativity omes from a more formal bakground. In theframework of Markov Deision Proesses (MDP), the Markov hypothesis holdswhen having any information about the past experiene does not help an agentto adopt a better behavior at the urrent time step. If the Markov hypothe-sis holds, the problem faed by the agent is said to be a Markov problem. In



this framework, an agent is said reative if it selets its ation aording to itspresent situation without using any memory of the past. In a Markov problem,a reative agent an at optimally. This view of reativity, learly presented in[Colombetti and Dorigo, 1993℄, is widespread in the reinforement learning om-munity. In this volume, [Bouzid et al., 2001℄ and [Riedmiller et al., 2001℄ presenta framework relying on that formalism.Both views of reativity di�er in the fat that the seond one does not implyanything about the time that the agent spends hoosing its urrent ation. Butthey are losely related sine an agent whih makes no use of its memory annotmake any predition about the future. Hene, a reative agent in the seondsense does not spend any time in planning, it only reats to its urrent situation.Sine this notion of reativity is very restritive, it should allow any agent whihverify it to be reative in the �rst sense, i.e. to deide what to do very fast, thento reat in time to events in its environment.Now, if an agent is reative in the seond sense, it an be proven formally thatthere are situations where it will not be able to adopt an optimal behavior. Theseproblems are alled non-Markov problems. Eah time the Markov hypothesisdoes not hold, relying only on the urrent pereption does not allow to selet thebest ation. Hene it is lear that adopting a reative behavior means seletingshort-sighted ations, whih may not be suitable when long-term strategies areneessary.Colletive tasks are full of suh situations where looking for an immediatereward or pursuing an immediate goal is not the best thing that an agent maydo. For instane, in the Roboup domain [Asada and Kitano, 1999℄, if an agenthas the ball and is lose to the goal, it may shoot reatively even if an opponentis likely to ath the ball, whereas it might be more appropriate to give theball to a teammate who is better loated. The seond behavior ould be seen asdeliberative rather than reative beause it seems to imply that the agent knowsthat after it passes the ball, its teammate will shoot and sore. This exampleseems to support the view aording to whih deliberative soial behaviors andreativity are two opposite requirements whih should be balaned in a multi-agent arhiteture.In this paper we want to hallenge this view. We will show through an empir-ial study that soial behaviors an be as reative as solipsisti behaviors. In ourprevious example, giving the ball to a teammate is a behavior whih an be �redas reatively as shooting to the goal. The fat that giving the ball allows to sorein the long term does not imply that soial agents have to plan in order to �ndthat suh a behavior is more e�ient than merely shooting. Our purpose is toshow that giving roles to the agents and applying reinforement learning shemesthat take into aount long-term rewards allows them to adopt some behaviorswhih an external observer would onsider as exhibiting soial deliberation abil-ities, whereas these behaviors are implemented reatively. In partiular, we willshow that giving to the agents the ability to exhange their roles is both some-thing whih helps �nding better strategies and something whih an be donestraight-forwardly.



The paper is organized as follows. In the next setion, we desribe our simu-lated problem and the multi-agent strategy we designed to solve it. In setion 3,we present the Learning Classi�er Systems (LCS) 1 framework and how we usedit in order to implement the ontroller of our agents. In setion 4, we present thesolipsisti ontroller whih we designed and some obvious drawbaks of this de-sign. In setion 5, we show how our �rst hand-rafted ontroller was signi�antlyimproved by an expliit use of roles, resulting in a new arhiteture involving aset of behaviors devoted to the ful�llment of eah role, and we present the ben-e�ts whih an be drawn from suh an arhiteture. In setion 6, we omparethe results obtained with both hand-rafted ontrollers through a �rst empirialstudy. In partiular, we ompare their robustness to hanges in parameters ofthe simulation. In setion 7, we disuss these results and show that the lak ofrobustness of the role-based ontrollers is due to the inapability of the agentsto exhange their roles. Then we present further evidene for the neessity ofletting the agents exhange their roles. In setion 8, we present a new role-basedontroller whih takes this neessity into aount and show that the robustnessproblem is solved. In setion 9, we disuss our arhiteture from a more multi-agent oriented stane, and highlight what would be neessary to apply it to moreompliated problems. Sine designing by hand the rules for exhanging the rolesproved di�ult, we onlude in setion 10 by advoating the neessity of taklingthe problem of letting the agents learn their own role exhange proesses.2 The problem and its representationThe neessity of having good benhmarks to test and ompare algorithmsand arhitetures is now entral in the multi-agent researh ommunity. TheRoboup [Asada and Kitano, 1999℄ is suh a benhmark seeming both generaland ompliated enough to at as a representative testbed for the entire �eld.In this volume, [Behnke and Rojas, 2001℄ and [Bredenfeld and Kobialka, 2001℄illustrate their onepts in the Roboup domain. But, if one uses mahine learn-ing tehniques and adaptive apabilities to solve the omplete task, the problemseems too di�ult. In the partiular ase of reinforement learning tehniques,the agents do not get enough feedbak to learn everything from srath. Theresearhers may either use these tehniques at one partiular level of the game,or use them to solve partiular subtasks (for instane, the pass to a teammate[Asada et al., 1999℄).Therefore, the tendeny in adaptive multi-agent simulations is to study muhsimpler appliation domains. The Prey/Predator pursuit domain involving sev-eral predators [Stone and Veloso, 1997℄ is suh a benhmark and illustrates thistrend. But in these latter ases, the problem is often oversimpli�ed: the agentsmove in a grid-world, they have few possible ations. Hene, the problem laks1 In order to make lear that we sometimes use the Classi�er Systems formalismwithout applying learning algorithms, we will distinguish Classi�er Systems (CS) asa formalism and Learning Classi�er Systems (LCS) as a tehnique throughout thispaper.



the ontinuous dynamis haraterizing most industrial appliations. Sine ourfous is on adaptive tehniques and we have industrial appliations in mind,we have hosen to design an original appliation whih appears as a good om-promise between the too omplex Roboup problem and the oversimpli�edPrey/Predator problem. We draw inspiration from [Vaughan et al., 1998℄, whohave presented the Robot Sheepdog Projet, involving a robot driving a �okof duks towards a goal position. The algorithm ontrolling the robot was �rsttested in simulation and then implemented on a real robot driving a real �okof duks.In this paper, we present a simulated extension of the task to the ase whereseveral agents share the goal mentioned above. Sine it is neither oversimpli�ednor too omplex, we believe that this experiment is a good ase-study to meetand takle the di�ulties arising when one tries to ombine adaptive apabilitiesand multi-agent oordination shemes.2.1 Desription of the problemOur simulated environment is shown in �gure 1. It inludes a irular arena,a �ok of duks and some sheepdog agents who must drive the �ok towardsa goal area. We tested all ontrollers in simulations involving at least threesheepdog agents and six duks. The duks and the sheepdog agents have thesame maximum veloity. The goal is ahieved as soon as all the duks are insidethe goal area.
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Fig. 2. Desription of the situationThe behavior of the duks results from a ombination of three tendenies.They tend:



� to keep away from the walls of the arena 2;� to join their mates when they see them, i.e. when they are within theirvisual range;� to �ee from the sheepdog agents whih are within their visual range.One the behavior of the duks is implemented, we must design the ontrollersof the sheepdog agents so that they drive the �ok towards the goal area. A �rststep of this design proess onsists in �nding whih features of the simulatedenvironment are relevant to ahieve the goal of the sheepdog agents. This iswhat we present in the next setion.2.2 Desription of the pre-oneived strategyWhen one programs the sheepdog agents as simply being attrated by theenter of the �ok, it appears that, when a sheepdog agent is lose to the �okand follows it, the �ok tends to satter beause eah duk goes away from thesheepdog along a radial straight line.In order to solve this sattering problem, the strategy we adopted was todesign the behavior of the agents so that at least one agent should push the�ok towards the target area from behind, while at least one other agent shouldfollow the �ok on its left hand side and another one on its right hand side sothat the �ok would not satter while being pushed.2.3 Desription of the inputs of the sheepdogsAs a result of this design, the desription of the situation given to the agentsonsists of a set of tests on their position, as shown in �gure 2. This gives us a�rst set of onditions:� isAtGoal � isOnWay� isLeftToFlok � isRightToFlok� isInLeftArea � isInRightArea� isBehindFlok � isInPushingAreaThe important point is that all these position tests are relative to the positionof the �ok rather than absolute positions with oordinates. But the agentsalways know where they are with respet to the �ok enter, whih would notbe the ase with an atual robot having a limited vision �eld. Thus these inputsmight be thought of as delivered after treatments from a amera wathing fromabove. Furthermore, there is no noise on them, whih prevents us from drawingany onlusion on the appliability of our framework in the real world.In order to oordinate the ations of the agents, we also added the followingtests on the situation of other agents:2 Therefore, if they are left on their own, they tend to go to the enter of the arena



� nobodyBehindFlok � nobodyPushing� nobodyInLeftArea � nobodyInRightArea� nobodyLeftToFlok � nobodyRightToFlok� nobodyOnWay � isFlokFormedHere again, the information is always perfetly aurate, while it would re-quire a ompliated ommuniation protool or a top-level manager to ensurethis in an atual roboti experiment.Our hoies might appear surprising to multi-agent systems designers. Butthey are sound in our industrial ontext. Our fous is on adding adaptive be-haviors apabilities in omplex simulations where engineers do not want to takeare about onstraints on the availability of the information if this informationis atually omputed in the simulator 3. Our hoie would be di�erent if we hadto design a multi-robot system or to meet the onstraining requirements of theRoboup simulation league.2.4 Desription of the behaviors of the sheepdogsAll the behaviors of the sheepdog agents onsist in going towards a ertainpoint. In general, when the �ok is formed, the sheepdog agents reat to theenter of the �ok. But, when the �ok is sattered, they an also reat to theduk whih is losest to them or the one whih is the further from the enter ofthe �ok. The name of eah behavior an be interpreted straight-forwardly. Inthe ase of the �driveXtoY� behaviors, it onsists in going behind X with respetto Y so as to push X towards Y. The overall behavior set is the following:� doNothing � goToGoalCenter� goToFlokCenter � followFlokToGoal� goBehindFlok � goToPushingPoint� goToLeftGuidingPoint � goToRightGuidingPoint� goToRightOfFlok � goToLeftOfFlok� driveOutmostDukToFlok � driveClosestDukToFlok� driveClosestDukToGoal � goToClosestDuk� goToOutmostDuk � goAwayFromFlokThe ontrollers of our sheepdog agents involve 16 onditions and 16 ba-si behaviors. Designing the ontroller involving these sensori-motor apabilitiesonsists in �nding a good mapping between the onditions and the behaviors.3 Implementing ontrollers as Classi�er Systems3.1 Elements of the Learning Classi�er System frameworkAs we have some industrial appliations in mind, we want to use a formalisminto whih we an put some expert ontrol knowledge. But we also want to3 See [Sigaud and Gérard, 2001℄ for more information on the industrial side of thiswork



use adaptive tehniques. In this ontext, the Learning Classi�er Systems (LCS)formalism appears as a natural andidate.The LCS framework designed by [Holland, 1975℄ gave rise to popular adaptivealgorithms. Sine the work of [Wilson, 1994℄ who simpli�ed this �rst framework,a lassial LCS an be seen as omposed of a population of rules, or lassi�ers,ontaining onditions as a set of observations and ations:[Condition℄! [Ation℄(Strength)The di�erent parts of the lassi�er are strings of symbols in f0; 1;#g, where# means �either 0 or 1�. The population of lassi�ers was generally evolvedthanks to a geneti algorithm (GA) � see [Goldberg, 1989℄ � using the strengthof the lassi�ers as a �tness measure. When several lassi�ers ould be �red inthe same state, the strength was also used to selet the one whih would be�red. In these early versions of LCSs, the quality of the lassi�ers was modi�edby the Buket Brigade algorithm aording to the estimated reward reeived bythe agent for �ring the lassi�er.A major improvement of the LCS framework was aheived by [Wilson, 1995℄in designing XCS, replaing a strength-based LCS by an auray-based one.Reently, a new way of using the LCS framework has reeived a growing in-terest [Stolzmann, 1998℄. Based on ideas of [Riolo, 1990℄, it onsists in adding inthe lassi�ers an [Effet℄ part whih allows the system to use the lassi�ers forantiipating rather than merely reating to the environment. It uses diret expe-riene in order to build new lassi�ers, instead of relying on a geneti algorithm.The lassi�ers of suh LCSs ontain the following omponents:[Condition℄[Ation℄! [Effet℄ (quality parameters)The learning proess of suh LCSs an be deomposed into two omplemen-tary proesses:� latent learning onsists in building a reliable model of the dynamis of theenvironment, by ensuring that the [Effet℄ part of all lassi�ers are orret.This new part stores information about state transitions and allows lookaheadplanning. The latent learning proess an take plae at eah time step withoutany reward, hene it is very e�ient. In partiular, as [Witkowski, 1997℄ hasshown, the quality of antiipation of every lassi�er whih an be �red at a timean be updated aording to the subsequent input message, even if the lassi�erhas not atually been �red;� reinforement learning onsists in improving a poliy using the experieneof the system, so that it beomes able to hoose the optimal ation in everystate. This proess takes advantage of latent learning to onverge faster.These new approahes an be seen as replaing the blind searh performed bythe GA by an heuristi searh whih takes advantage of the previous experieneto improve the lassi�ers. As a result, they are less general sine, for instane,they are devoted to takling multi-steps problems whereas GA-based LCS analso takle single-step problems, but they are also more e�ient in what theyare designed for.



3.2 Our AlgorithmOur own lassi�ers ontain the following omponents:[Condition℄[Ation℄! [Effet℄ Rwhere R estimates the immediate reward reeived by the system when thelassi�er is �red.The latent learning proess reates and deletes lassi�ers. The reation pro-ess an be split in two main parts:� the e�et overing mehanism adjusts the e�et parts by omparing su-essive observations and orreting mistakes;� the ondition speialization proess identi�es the most general of relevantonditions.A lassi�er whih sometimes antiipates well and sometimes not is suh thatits [Condition℄ part mathes several distint states. It is too general and mustbe replaed by new lassi�ers with more speialized [Condition℄ parts.These mehanisms allow the system to onverge towards a set of auratelassi�ers antiipating orretly. We use this information about the state transi-tions in order to improve the reinforement learning proess.The �rst part of this proess onsists in estimating the immediate rewardresulting from the �ring of eah lassi�er. At eah time step, we use the re-eived reward to update an estimation of the immediate reward (R) of everylassi�er involving the last ation and the last state, even if it has not atu-ally been �red. The state transition informations and the immediate rewardestimations allow to use a Dynami Programming algorithm [Bellman, 1957℄ toompute a poliy. A more detailed desription of this algorithm an be found in[Gérard and Sigaud, 2001℄.Rather than initializing a LCS with random lassi�ers or ompletely generalones, we �rst tried to use the CS formalism for implementing expert lassi�erswithout using its adaptive apabilities. The methodologial issues of our workare disussed in detail in [Sigaud and Gérard, 2001℄.4 A �basi� ontrollerIn table 1, we present the �rst ontroller that we designed in order to im-plement the solution desribed in setion 2.2. It an be seen that we only use13 of the 16 available inputs. Eah line in the table is a lassi�er telling to theagent what to do in a partiular situation. For instane, the �rst line says thatif the agent is in the pushing area and if there is nobody on the way of the �oktowards the goal and if the �ok is formed, then the agent should go towardsthe goal enter.From table 1, it an be seen that this representation of the ontroller is notvery ompat: there are a lot of �#�, whih means that eah lassi�er uses very
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of being seleted, our learning algorithm was able to obtain very quikly a betterontroller than the one we designed by hand.5 A role-based ontroller
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isInLeftArea isInRightArea isFlokFormed Former Role New Role1 # # 1 F.Pusher Pusher# 1 # 1 F.LeftGuide LeftGuide# # 1 1 F.RightGuide RightGuide1 # # 0 F.Pusher F.Pusher# 1 # 0 F.LeftGuide F.LeftGuide# # 1 0 F.RightGuide F.RightGuide1 # # 0 Pusher F.Pusher# 1 # 0 LeftGuide F.LeftGuide# # 1 0 RightGuide F.RightGuide0 # # # Pusher F.Pusher# 0 # # LeftGuide F.LeftGuide# # 0 # RightGuide F.RightGuideTable 2. The role table (F. stands for Future)The notion of role appears naturally in the strategy we presented in se-tion 2.2. In our solution, at least one agent must push the �ok from behind(playing a Pusher role) and at least one agent must guide the �ok on itsleft hand side and another one on its right hand side (playing LeftGuide andRightGuide roles respetively). Therefore we tried to modify the arhitetureof the ontroller used in setion 3 so as to make an expliit use of roles. Our newarhiteture ontains two kinds of omponents:� The role table is a CS stating under whih onditions on the situationa agent hanges its role into another role. If no observation mathes, the roleremains the same. The roles are initialized so that eah agent hooses betweenFuturePusher, FutureLeftGuide and FutureRightGuide randomly, butin suh a way that eah role is assigned to at least one agent. Then the role of theagent evolves between FutureX and X, where X is either Pusher, LeftGuideorRightGuide. But with this ontroller, a pusher annot beome a lateral guidenor vie versa. Our role table is shown in table 2.� The behavior tables are CSs whih �re ations of the agent aording toonditions on the situation. There is one table for eah role. Hene, there is only



one behavior table ative at a time in the ontroller of eah agent, the one whihorresponds to the role played by the agent.We have six behaviors, eah one orresponding to the ful�llment of one par-tiular role, i.e. FuturePusherBehavior, PusherBehavior, FutureLeft-GuideBehavior, LeftGuideBehavior, FutureRightGuideBehavior andRightGuideBehavior. All these behavior tables are shown in tables from 3to 8.
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isLefttoFlok isInLeftArea nobodyPushing isFlokFormed Ation1 # 0 1 followFlokToGoal# 1 0 1 followFlokToGoal0 0 # 1 goToLeftArea# # # 0 goToOutmostDukTable 6. LeftGuideBehaviorIntroduing roles in our arhiteture brings several bene�ts.� It is easier to design a behavior CS devoted to ful�ll one partiular role,sine a partiular role orresponds to a speialized part of the global behavior.Hene, eah behavior table is muh smaller than the table 1 presented in setion 3.� It is easier to deal with the ase where the �ok is sattered. Sine eahagent an �re di�erent ations aording to its role, it is easier to �nd a good



isRighttoFlok isInRightArea isFlokFormed isBehindFlok Ation1 0 1 # goToRightArea0 # 1 # goToRightofFlok# # 0 0 goBehindFlok# # 0 1 driveClosestDukToFlokTable 7. FutureRightGuideBehavior
isRighttoFlok isInRightArea nobodyPushing isFlokFormed Ation1 # 0 1 followFlokToGoal# 1 0 1 followFlokToGoal0 0 # 1 goToRightArea# # # 0 goToClosestDukTable 8. RightGuideBehavioroordination sheme between all ations, with respet to the ase of the reativeontroller where we had no ontrol on whih ation would be �red by whihagent.� From a reinforement learning researh perspetive, it is easier to designan internal reinforement signal poliy when we use roles. Generally, ful�lling arole orresponds to reahing a partiular situation whih an be deteted by theagent, and/or to insure that some validity onditions hold. Then the agents anbe rewarded or punished if the �rst ondition holds or the seond one is broken.In our �ok ontrol simulation, for example, playing a FutureLeftGuide roleinvolves reahing the leftArea while playing a LeftGuide role involves keepingthe �ok formed. Hene, an agent in harge of the left side of the �ok an berewarded when it reahes the leftArea, beoming a LeftGuide, and punished ifthe �ok is sattered, oming bak to FutureLeftGuide. We think that this isa good way of introduing intermediate reinforement signals, in a more naturalframework than in [Matari¢, 1994b℄, for instane.6 Empirial StudyWe �rst ran 2000 experiments to get a statistially signi�ant view of theresults obtained with these ontrollers. Although the hand-rafted role-basedontrollers appeared more e�ient than the ones without roles with three sheep-dogs, we did want to hek whether it would be more or less robust with respetto the size of the population of agents, sine the role-based ontrollers are de-signed for a group of three sheepdogs.Therefore, we deided to test the robustness of both ontrol poliies by testingthem with various sets of parameters, and partiularly by hanging the size ofthe population of sheepdogs.6.1 Robustness to an inreasing number of sheepdogsWe �rst tested the robustness of the ontrollers when the number of sheepdogagents was inreased from three to twenty.
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Fig. 3. Robustness of basi and role-based ontrollers to 3 to 20 sheepdogsThe results are shown on �gure 3. Eah point in the urves represents anaverage performane over 100 trials, and eah set of 100 trials starts with thesame 100 random initial positions. We must also mention that the goal is neverreahed in less than 95 time steps, whih is the minimum number of time stepsfor the sheepdog agents to surround the �ok and drive it to the goal from aluky initial situation.If a trial lasts more than 4000 time steps, it is stopped and ounted as afailure. Failures are not taken into aount in the omputation of the average,sine their duration is arbitrary. Sine there are very few failures, we do notdevote a �gure to show them. Indeed, the worst ase was four failures over the100 trials that give one point on the �gures. It appears that the role-basedontroller failed ten times on the 18 � 100 = 1800 trials, while the basi andlearned basi ontrollers only failed respetively �ve times and two times overthe 1800 trials. The failures happen more often with more than twelve sheepdogsin the role-based ase, whih supports our diagnosis of a lak of robustness ofthis solution.It an be seen in �gure 3 that the role-based arhiteture performs better withthree sheepdogs than the basi one, but that the basi arhiteture is more robustto an inreasing number of sheepdogs. It an also be seen in �gure 4 that theontroller obtained from applying adaptive algorithms to the basi arhitetureduring two trials performs better than the hand-rafted basi one, and is stillrobust.6.2 Robustness to a hange in the behavior of the duksIn order to understand better the phenomena observed in setion 6.1, we alsotried to modify the behavior of the duks so as to modify the dynamis of the
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Fig. 4. Robustness of basi and evolved ontrollers to 3 to 20 sheepdogsenvironment of the sheepdogs. We tuned the sensitivity of the duks with respetto the walls of the arena so that they would keep away from these walls onlywhen getting too lose to them. As a result, the �ok tends to form anywhere inthe arena rather than only in the enter as in the previous ase. However, therepulsiveness of the walls is sensed far before the duks reah the target area. Asa result, it is not easier for the sheepdogs to drive the �ok to the target area.We also lowered the tendeny of the duks to go towards eah other so that the�ok would satter more often. These two modi�ations makes the job harderfor the sheepdogs.The relative performane of the basi and role-based ontrollers with bothkinds of duks an be seen on �gure 5. It an be seen that, as expeted, theperformane of the basi ontroller is very sensitive to the hange of the behaviorof the duks. The performane is muh worse with the new duks, and tends tobe muh less robust to an inrease of the number of sheepdogs. On the ontrary,the performane of the role-based ontroller is nearly una�eted by the hangeof duks, both urves are nearly idential.7 Disussion of the results7.1 Explaining the resultsThe redued performane of the basi arhiteture when applied to the newduks an be explained by the fat that the �ok is sattered more often. Wehave shown that it was more di�ult to design an e�ient strategy with thebasi ontroller to deal with the ase where the �ok was sattered, sine thebehavior of the di�erent agents ould not be speialized.
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Fig. 5. Robustness of both ontrollers to a new behavior of duksIn ontrast, the performane of the role-based ontrollers is not degraded,their e�ieny is not a�eted by the inreasing tendeny of the �ok to satter.But why is this that the role-based ontrollers are less robust to an inreasingnumber of sheepdogs than the basi one? From a loser look at a lot of simulationruns, it appeared that this omes from a longer time spent in the initial messysituation before the �ok an get formed. At the beginning of eah trial, indeed,all the sheepdogs and duks are sattered at random in the arena. Hene, themore sheepdogs there are among the duks, the longer it takes to the duks toform a �ok.This is partiularly true for the role-based agents. Sine eah agent has itsown role at the beginning, it must reah its pushing or guiding area, even if it isby the wrong side of the �ok. As a result, it may ross the �ok and satter itor at least delay the movement of the duks towards eah other. Therefore, themore role-based agents there are, the more they tend to prevent the duks fromforming a �ok.The basi agents, on the ontrary, organize themselves more opportunistiallywith respet to their initial positions. Eah agent goes to the losest pushing ordriving area. Sine there are more agents, these areas are reahed faster and thisompensates for the longer time spent in forming the �ok.We an summarize this �nding in asserting that the basi ontrollers areless tightly designed, but result in more opportunisti behaviors than the oneobtained with the role-based ontrollers.



7.2 Good reasons for exhanging the rolesWe have shown in setion 6 that our role-based ontroller was less robustthan the basi one beause the role of the agents were assigned from the startand the agents were not allowed to re-organize themselves opportunistially.The lak of opportunism of the role-based arhiteture omes from the fatthat our hand-rafted role table spei�es too narrowly the situations into whihone role should be exhanged with another one. More preisely, as we have said,one agent whih has started with a FutureX role an only swith to a X roleand bak, where X stands for Pusher, LeftGuide and RightGuide.Three di�erent onsiderations onvined us that the agents should be ableto exhange their roles in order to solve their task more e�iently.� The �rst one is that a good way of improving the performane of our role-based solution would be to let the agents hoose their initial role aording totheir initial position: they would hoose the role driving them to the losestguiding or pushing area. But if we do so, nothing guarantees that there will beat least one agent to play eah role. Then it is neessary that they exhangetheir roles in order to oordinate their e�orts.� The seond evidene in favor of letting the agents exhange their roles hasbeen found by examining some partiular trials. To our surprise, we disoveredthat the ontrollers without roles were often manifesting an unexpeted strategymore e�ient that the one we had in mind. This strategy is shown in �gure 6.

Fig. 6. An emergent strategy Fig. 7. Two guides by the same sideIt happens that two sheepdog agents are able to drive the �ok to the targetarea. This strategy seems very robust sine the duks seldom esape from thehase of the sheepdog agents. It an be seen as a di�erent distribution of the



roles, where two agents play new roles between pusher and guide, and the otherones may help to form the �ok again when neessary.� The last one was also revealed by a loser examination of the behavior ofthe agents. In the situation depited in �gure 7, both guides are by the sameside of the �ok while the pusher is ready to push. If the agents annot exhangetheir roles, the agent whih is behind the �ok will start pushing it and the �okwill satter, sine there is no guide on one side. But if the agents an exhangetheir roles, the best solution here is that the Pusher beomes a RightGuidewhile one of the LeftGuides beomes Pusher and omes behind the �ok inorder to push. This is the kind of soial reorganization whih we will present inthe next setion.8 A further inquiry8.1 The new role tableIn order to hek that exhanging the roles would allow our ontrollers to beboth more e�ient than the basi ones and more robust than the �rst role-basedones, we designed by hand the new role table shown in table 9. The orrespondingbehavior tables are the same as in setion 5.The task was more di�ult than what we expeted. The di�ulty omesfrom the fat that nothing guarantees anymore that there will be at least oneagent to play eah role, while this ondition is neessary for suess. Thus, thelassi�ers must be designed in suh a way that eah hange of role from oneagent is balaned quikly by another hange of role from another agent whihwill play the dropped role. In order to do this, it appeared neessary to add newinputs to oordinate more e�iently the roles. These input state respetivelywhether there is already an agent whih plays a Pusher, a LeftGuide and aRightGuide role or not, without taking into aount whether it is a Futureone or not. This gives an argument in favor of distinguishing only three rolesand two behaviors per role, as we will disuss in setion 9.One again, these informations about the role played by other agents are on-sidered as available through the simulation platform while it would require om-pliated ommuniation mehanisms to be maintained among a team of robots.We didn't takle any team state maintenane, as [Stone and Veloso, 1999℄ or[Tambe et al., 1999℄ do, for instane.The lassi�ers shown in table 9 an be split into four groups.� The �rst group, up to lassi�er 8, deals with the starting situation. Eahagent is initialized with the Start role, and will only play it during one timestep. The lassi�ers tell whih role the agent should hoose aording to theirinitial loation with respet to the pushing and guiding areas. In the ase whenthe agent is within the �ok of duks or on its way to the goal, it hooses atrandom to beome either FutureLeftGuide or FutureRightGuide. Sine



isBehindFlok isLefttoFlok isRighttoFlok isInPushingAre
a

isInLeftArea isInRightArea isFlokFormed isTherePusher isThereLeftGui
de
isThereRightGu
ide
Former Role New Role1 0 0 0 # # # # # # # Start F.RightGuide2 0 0 0 # # # # # # # Start F.LeftGuide3 1 0 0 # # # # # # # Start F.Pusher4 # 1 # # # # # # # # Start F.LeftGuide5 # # 1 # # # # # # # Start F.RightGuide6 # # # 1 # # 1 # # # Start Pusher7 # # # # 1 # 1 # # # Start LeftGuide8 # # # # # 1 1 # # # Start RightGuide9 # # # 1 # # 1 # 1 1 F.Pusher Pusher10 # # # # 1 # 1 1 # 1 F.LeftGuide LeftGuide11 # # # # # 1 1 1 1 # F.RightGuide RightGuide12 # # # 1 # # 0 # 1 1 Pusher F.Pusher13 # # # 0 # # # # 1 1 Pusher F.Pusher14 # # # # 1 # 0 1 # # LeftGuide F.LeftGuide15 # # # # 0 # # 1 # # LeftGuide F.LeftGuide16 # # # # # 1 0 1 # # RightGuide F.RightGuide17 # # # # # 0 # 1 # # RightGuide F.RightGuide18 # 1 # # # # # # # # F.RightGuide F.LeftGuide19 # # 1 # # # # # # # F.LeftGuide F.RightGuide20 # # 1 # # # # # 0 # RightGuide F.Pusher21 # 1 # # # # # # # 0 LeftGuide F.Pusher22 # # 1 # # # 1 # 0 # F.RightGuide F.Pusher23 # 1 # # # # 1 # # 0 F.LeftGuide F.Pusher24 1 # 0 # # # 1 0 # # F.LeftGuide F.Pusher25 1 0 # # # # 1 0 # # F.RightGuide F.Pusher26 # # 1 # # # # 0 # # RightGuide F.Pusher27 # 1 # # # # # 0 # # LeftGuide F.Pusher28 # # # # # # # # 0 1 Pusher F.LeftGuide29 # # # # # # # # 0 1 F.Pusher F.LeftGuide30 # # # # # # # # 1 0 F.Pusher F.RightGuide31 # # # # # # # # 1 0 Pusher F.RightGuideTable 9. The new role table (F. stands for Future)



the roles are hosen aording to the initial position and these positions arerandom, nothing guarantees that the roles will be equally distributed betweenthe agents.� The seond and third groups of lassi�ers do the job whih was done intable 2 by our former role table. The seond group, from lassi�er 9 to lassi�er11, deals with the ase when a FutureX has reahed its intermediate goal andbeomes an X, while the third group, from lassi�er 12 to lassi�er 17, deals withthe ase when an X has failed playing its role and omes bak to the FutureXrole.� The last group of lassi�ers is devoted to the exhanges of roles. The las-si�ers 18 and 19 tell that if a guiding agent is by the wrong side of the �ok withrespet to its role, it should hange its role rather than try to ross the �okand satter it. The lassi�ers from 20 to 27 desribe what the guides should doin the situation desribed in �gure 7. Classi�ers 20 to 23 are �red if there is noguide to deal with the other side, while lassi�ers 24 to 27 are �red if there is nopusher. This last situation an our either if the pusher went to the other sideas desribed in �gure 7, or in the initial situation if there was no agent hoosingthe FuturePusher or the Pusher role at the beginning. At last, the four lastlassi�ers tell what the pusher should do in the situation desribed in �gure 7.
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Fig. 8. Robustness of the new ontroller to an inreasing number of sheepdogsThe empirial study of the robustness of this new ontroller gave the resultsshown in �gure 8. We used the �rst kind of duks under the onditions desribedin setion 6.1. Two urves were already given in �gure 3, we present them againfor omparison with the new one.



It an be seen that we have aheived what we were trying to. Even if thereis still a slight rising slope and if the performane with three to �ve robots isnot as good as the one of the former role-based ontroller, the new ontroller isboth more robust than this former ontroller and more e�ient than the basione. There are only three failures over 1800 trials with this ontroller, one withthree sheepdogs, one with �ve and one with eighteen of them.We also heked the number of times when eah lassi�er of table 9 was �red.It appears that the lassi�ers for exhanging from LeftGuide to RightGuideand vie versa are �red 23 times in average on 100 trials, while all the otherlassi�ers for exhanging the roles are �red less than 5 times. This shows that,while these lassi�ers are used very seldom, muh less than one per trial, theyresult in a very signi�ant improvement of the ontrollers.Now, we an laim that the ase depited on �gure 7 is partiularly represen-tative of the disussion we raised in the introdution. The results we obtainedshow that being reative and solipsisti is ine�ient in that partiular situation.It is the kind of situation where the agents must reorganize with eah other inorder to be more e�ient. We have shown that this reorganization an be dealtwith in our reative, CS-based framework, just by designing roles and by lettingthe agents exhange their roles. Our point was that this seemingly deliberativesoial behavior an be written as lassi�ers in the role table of our agents insuh a way that they reat soially to the situation depited in �gure 7 just byexhanging their roles. This does not take more time than any other reativebehavior. Here, our agents are learly reative in the �rst sense given in theintrodution, i.e. they are responsive in time, but not in the seond sense, sinethey use a memory of their former role.9 Disussion from a multi-agent perspetiveWe have already said that our researh goals are direted towards adap-tive behaviors more than towards multi-agent arhiteture. But having adaptivemulti-agent systems also implies to design general arhiteture providing �exi-bility and abstration. Thus, we must improve our work with that respet too.Heneforth, we disuss here some obvious limitations of our arhiteture from amulti-agent perspetive.First, another way to look at our role-based arhiteture would be to onsiderthat there are only three roles (Pusher, LeftGuide and RightGuide), andthat the ful�llment of eah role involves two behaviors (FutureX and X). Inthe ase of our example, implementing this way to artiulate roles with severalbehaviors would give rise to an unneessary ompliation of the arhiteture.But in more ompliated examples, if more behaviors are neessary to ful�l onerole or if the ful�llment of two di�erent roles involves some ommon behaviors,distinguishing roles and behaviors by binding to eah role a set of behaviors anda way to sequentialize their ativation would provide a higher degree of �exibilityand abstration.



Suh a mehanism an be found in arhitetures devoted to solve Roboupproblems both in [Tambe et al., 1999℄ and in [Stone and Veloso, 1999℄. The �rstshares loser goals with our work sine some of the behaviors are learned. Butthe seond introdues a higher level of organization, namely the artiulationbetween roles and formations, whih might also help improve our work.Indeed, the fat that having more sheepdogs to drive the �ok results inpoorer performane unless we design a very robust ontroller is rather ounter-intuitive. The key point here is that our agents use the same strategy whatevertheir number. This strategy relies on the assumption that the �ok will getformed fast, whih is no more valid when the number of agents inreases. Thus,a major way for improvement would be to let the agents hange their strategywhen their number inreases. For instane, as soon as they are as numerous asduks, eah agent ould take are of one partiular duk, rather than wait forthe �ok to be formed. Now, using di�erent formations aording to the numberof agents would be a good way to implement di�erent strategies.There is no tehnial nor theoretial obstale to improve our arhiteture inthat way. But the reader must keep in mind that our researh goal is the bottom-up building of a ontrol arhiteture thanks to learning proesses, whih is moredi�ult than just hand-rafting orret and �exible multi-agent ontrollers.10 Future Work and ConlusionEven if we have shown in a preliminary study that applying adaptive algo-rithms to our hand-rafted ontrollers results in a signi�ant improvement ofthe performane, we have not defended yet our laim that agents an �nd bythemselves the oordination shemes presented in table 9. Our laim that oursystem is still reative an be refuted beause all the antiipation neessary to�nd suh a good oordination sheme has been given by the expert, rather thanlearned by the system.Our �rst fous was on the improvement of hand-rafted solutions beause,from an engineering perspetive, an automated improvement of an expert on-troller means that the expert who designed the ontroller an rely on adaptivealgorithms to optimize it. Hene he spends less time in this design, whih is veryappealing in an industrial ontext. Our �rst results have shown that the lassi�ersystems formalism is good for oding ontrollers both beause some knowledgeof the expert an be easily represented in it and beause applying optimizationalgorithms is straight-forward in the formalism.But now we will have to start studying whether our algorithms are able tolearn similar role-based ontrollers from srath. This is not the ase yet with thealgorithm used here and presented in detail in [Gérard et al., 2001℄. Obtainingsuh a result would be all the more interesting that designing by hand the roleexhange strategy presented in setion 8.1 proved di�ult and time onsuming.It is lear that the performane of the role exhange arhiteture heavilydepends on the de�nition of the ontroller, and that this ontroller was di�ultto design by hand. The point is that the behavior tables were designed �rst



and the role exhange table afterwards, whereas they are highly interdependent.Maybe, a di�erent set of behavior tables would have resulted in a simpler roleexhange table. This fat supports the laim that both the behavior tables andthe role exhange table should be built by an automated learning proess in auni�ed framework.Therefore, we are now extending the sope of our algorithms towards theability to build an arhiteture re�eting the one we designed in order to imple-ment the use of roles in our �ok ontrol experiment. Our algorithm will be ableto reate internal states when neessary and to let evolve the mapping betweenthese internal states and some onditions on the situation. Implementing rolesas internal states should give us a ontrol system for an agent able to reate andevolve its own roles. Furthermore, the agents team should be able to globallyreorganize their behaviors thanks to the adaptive proesses.To summarize, we presented a simulation testbed into whih several agentshad to solve a ommon task and we have shown how giving roles to the agentswas an e�ient way to design a ontrol strategy. We have shown how these rolesould be represented in the CS framework, and that suh a way of using themgives an ability to reat soially to multi-agent situations.At last, we believe that the experimental testbed presented in this paper,though it is quite simple, is rih enough to raise most of the issues that we willmeet in our industrial appliations. As a onlusion of our study, it appears thatthe framework exposed here an be reused for more ompliated multi-agenttasks, but it would require improvements by the multi-agent side, for instaneif we would want to use it in the Roboup domain. We did not try to do itbeause it would be too muh time onsuming while we are expeted to workon our industrial problems. But we an already infer that obstales to applyour framework to the design of a Roboup team are that an organizationallevel would be neessary both to ensure the orret omputation of all teaminformation that we onsidered as diretly available in our work, and to bringall the neessary �exibility and abstration apabilities whih are not presenttoday in our arhiteture.11 AknowledgementsThe authors want to thank the anonymous reviewers of an early version ofthis paper who gave valuable advies to improve it and all the attendees of theECAI2000 workshop on �Balaning Reativity and Soial Deliberation in Multi-Agent Systems� who raised interesting points whih have been bene�ial to theontinuation of this work.Referenes[Asada and Kitano, 1999℄ Asada, M. and Kitano, H., (Eds.) (1999). Roboup-98: RobotSoer World Cup II. Letures Notes in Arti�ial Intelligene 1604, Springer-Verlag.
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