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Abstract. In the multi-agent community, the need for social delibera-
tion appears contradictory with the need for reactivity. In this paper, we
try to show that we can draw the benefits of both being reactive and
being socially organized thanks to what we call “social reactivity”.

In order to defend this claim, we describe a simulation experiment in
which several sheepdog agents have to coordinate their effort to drive
a flock of ducks towards a goal area. We implement reactive controller-
s for agents in the Classifier Systems formalism and we compare the
performance of purely reactive, solipsistic agents which are coordinated
implicitly with the performance of agents using roles. We show that our
role-based agents perform better than the solipsistic ones, but because of
constraints on the roles of the agents, the solipsistic controllers are more
robust and more opportunistic. Then we show that, by exchanging re-
actively their roles, a process which can be seen as implementing a form
of social deliberation, role-based agents finally outperform the solipsistic
ones. Since designing by hand the rules for exchanging the roles proved
difficult, we conclude by advocating the necessity of tackling the problem
of letting the agents learn their own role exchange processes.

1 Introduction

Defining reactivity is difficult since the word has several meanings which are
closely related but not exactly equivalent. According to [Kaelbing, 1990], reac-
tivity is a matter of responsiveness in time. In order to be reactive, an agent
must do the right thing at the right time. This view of reactivity has been one
of the early leitmotives of the rising field of behavior-based artificial intelligence
[Brooks, 1991,Matari¢, 1994a] in reaction to the endless planning processes used
in classical artificial intelligence robotics. Since the lack of reactivity of the plan-
ning robots prevented them from being used in dynamic environments, it was
claimed that doing the right thing was pointless if it was not done in time.

Another definition of reactivity comes from a more formal background. In the
framework of Markov Decision Processes (MDP), the Markov hypothesis holds
when having any information about the past experience does not help an agent
to adopt a better behavior at the current time step. If the Markov hypothe-
sis holds, the problem faced by the agent is said to be a Markov problem. In



this framework, an agent is said reactive if it selects its action according to its
present situation without using any memory of the past. In a Markov problem,
a reactive agent can act optimally. This view of reactivity, clearly presented in
[Colombetti and Dorigo, 1993], is widespread in the reinforcement learning com-
munity. In this volume, [Bouzid et al., 2001] and [Riedmiller et al., 2001] present
a framework relying on that formalism.

Both views of reactivity differ in the fact that the second one does not imply
anything about the time that the agent spends choosing its current action. But
they are closely related since an agent which makes no use of its memory cannot
make any prediction about the future. Hence, a reactive agent in the second
sense does not spend any time in planning, it only reacts to its current situation.
Since this notion of reactivity is very restrictive, it should allow any agent which
verify it to be reactive in the first sense, i.e. to decide what to do very fast, then
to react in time to events in its environment.

Now, if an agent is reactive in the second sense, it can be proven formally that
there are situations where it will not be able to adopt an optimal behavior. These
problems are called non-Markov problems. Each time the Markov hypothesis
does not hold, relying only on the current perception does not allow to select the
best action. Hence it is clear that adopting a reactive behavior means selecting
short-sighted actions, which may not be suitable when long-term strategies are
necessary.

Collective tasks are full of such situations where looking for an immediate
reward or pursuing an immediate goal is not the best thing that an agent may
do. For instance, in the ROBOCUP domain [Asada and Kitano, 1999], if an agent
has the ball and is close to the goal, it may shoot reactively even if an opponent
is likely to catch the ball, whereas it might be more appropriate to give the
ball to a teammate who is better located. The second behavior could be seen as
deliberative rather than reactive because it seems to imply that the agent knows
that after it passes the ball, its teammate will shoot and score. This example
seems to support the view according to which deliberative social behaviors and
reactivity are two opposite requirements which should be balanced in a multi-
agent architecture.

In this paper we want to challenge this view. We will show through an empir-
ical study that social behaviors can be as reactive as solipsistic behaviors. In our
previous example, giving the ball to a teammate is a behavior which can be fired
as reactively as shooting to the goal. The fact that giving the ball allows to score
in the long term does not imply that social agents have to plan in order to find
that such a behavior is more efficient than merely shooting. Our purpose is to
show that giving roles to the agents and applying reinforcement learning schemes
that take into account long-term rewards allows them to adopt some behaviors
which an external observer would consider as exhibiting social deliberation abil-
ities, whereas these behaviors are implemented reactively. In particular, we will
show that giving to the agents the ability to exchange their roles is both some-
thing which helps finding better strategies and something which can be done
straight-forwardly.



The paper is organized as follows. In the next section, we describe our simu-
lated problem and the multi-agent strategy we designed to solve it. In section 3,
we present the Learning Classifier Systems (LCS) ! framework and how we used
it in order to implement the controller of our agents. In section 4, we present the
solipsistic controller which we designed and some obvious drawbacks of this de-
sign. In section 5, we show how our first hand-crafted controller was significantly
improved by an explicit use of roles, resulting in a new architecture involving a
set of behaviors devoted to the fulfillment of each role, and we present the ben-
efits which can be drawn from such an architecture. In section 6, we compare
the results obtained with both hand-crafted controllers through a first empirical
study. In particular, we compare their robustness to changes in parameters of
the simulation. In section 7, we discuss these results and show that the lack of
robustness of the role-based controllers is due to the incapability of the agents
to exchange their roles. Then we present further evidence for the necessity of
letting the agents exchange their roles. In section 8, we present a new role-based
controller which takes this necessity into account and show that the robustness
problem is solved. In section 9, we discuss our architecture from a more multi-
agent oriented stance, and highlight what would be necessary to apply it to more
complicated problems. Since designing by hand the rules for exchanging the roles
proved difficult, we conclude in section 10 by advocating the necessity of tackling
the problem of letting the agents learn their own role exchange processes.

2 The problem and its representation

The necessity of having good benchmarks to test and compare algorithms
and architectures is now central in the multi-agent research community. The
RoBOCUP [Asada and Kitano, 1999 is such a benchmark seeming both general
and complicated enough to act as a representative testbed for the entire field.
In this volume, [Behnke and Rojas, 2001] and [Bredenfeld and Kobialka, 2001]
illustrate their concepts in the ROBOCUP domain. But, if one uses machine learn-
ing techniques and adaptive capabilities to solve the complete task, the problem
seems too difficult. In the particular case of reinforcement learning techniques,
the agents do not get enough feedback to learn everything from scratch. The
researchers may either use these techniques at one particular level of the game,
or use them to solve particular subtasks (for instance, the pass to a teammate
[Asada et al., 1999]).

Therefore, the tendency in adaptive multi-agent simulations is to study much
simpler application domains. The Prey/Predator pursuit domain involving sev-
eral predators [Stone and Veloso, 1997] is such a benchmark and illustrates this
trend. But in these latter cases, the problem is often oversimplified: the agents
move in a grid-world, they have few possible actions. Hence, the problem lacks

! In order to make clear that we sometimes use the Classifier Systems formalism
without applying learning algorithms, we will distinguish Classifier Systems (CS) as
a formalism and Learning Classifier Systems (LCS) as a technique throughout this
paper.



the continuous dynamics characterizing most industrial applications. Since our
focus is on adaptive techniques and we have industrial applications in mind,
we have chosen to design an original application which appears as a good com-
promise between the too complex ROBOCUP problem and the oversimplified
Prey/Predator problem. We draw inspiration from [Vaughan et al., 1998], who
have presented the Robot Sheepdog Project, involving a robot driving a flock
of ducks towards a goal position. The algorithm controlling the robot was first
tested in simulation and then implemented on a real robot driving a real flock
of ducks.

In this paper, we present a simulated extension of the task to the case where
several agents share the goal mentioned above. Since it is neither oversimplified
nor too complex, we believe that this experiment is a good case-study to meet
and tackle the difficulties arising when one tries to combine adaptive capabilities
and multi-agent coordination schemes.

2.1 Description of the problem

Our simulated environment is shown in figure 1. It includes a circular arena,
a flock of ducks and some sheepdog agents who must drive the flock towards
a goal area. We tested all controllers in simulations involving at least three
sheepdog agents and six ducks. The ducks and the sheepdog agents have the
same maximum velocity. The goal is achieved as soon as all the ducks are inside
the goal area.

Target Area

Ducks @

o
s

Sheepdog Agents

isLeftToFlock

isinLeftArea

isBehindFlock

Fig. 1. The arena, ducks and sheepdogs Fig. 2. Description of the situation

The behavior of the ducks results from a combination of three tendencies.
They tend:



e to keep away from the walls of the arena 2;

e to join their mates when they see them, i.e. when they are within their
visual range;

e to flee from the sheepdog agents which are within their visual range.

Once the behavior of the ducks is implemented, we must design the controllers
of the sheepdog agents so that they drive the flock towards the goal area. A first
step of this design process consists in finding which features of the simulated
environment are relevant to achieve the goal of the sheepdog agents. This is
what we present in the next section.

2.2 Description of the pre-conceived strategy

When one programs the sheepdog agents as simply being attracted by the
center of the flock, it appears that, when a sheepdog agent is close to the flock
and follows it, the flock tends to scatter because each duck goes away from the
sheepdog along a radial straight line.

In order to solve this scattering problem, the strategy we adopted was to
design the behavior of the agents so that at least one agent should push the
flock towards the target area from behind, while at least one other agent should
follow the flock on its left hand side and another one on its right hand side so
that the flock would not scatter while being pushed.

2.3 Description of the inputs of the sheepdogs

As a result of this design, the description of the situation given to the agents
consists of a set of tests on their position, as shown in figure 2. This gives us a
first set of conditions:

e isAtGoal e isOnWay
e isLeft ToFlock e isRightToFlock
o isInLeftArea e isInRightArea

¢ isBehindFlock e isInPushingArea

The important point is that all these position tests are relative to the position
of the flock rather than absolute positions with coordinates. But the agents
always know where they are with respect to the flock center, which would not
be the case with an actual robot having a limited vision field. Thus these inputs
might be thought of as delivered after treatments from a camera watching from
above. Furthermore, there is no noise on them, which prevents us from drawing
any conclusion on the applicability of our framework in the real world.

In order to coordinate the actions of the agents, we also added the following
tests on the situation of other agents:

2 Therefore, if they are left on their own, they tend to go to the center of the arena



¢ nobodyBehindFlock e nobodyPushing

e nobodyInLeftArea e nobodyInRightArea
e nobodyLeftToFlock e nobodyRightToFlock
e nobodyOnWay e isFlockFormed

Here again, the information is always perfectly accurate, while it would re-
quire a complicated communication protocol or a top-level manager to ensure
this in an actual robotic experiment.

Our choices might appear surprising to multi-agent systems designers. But
they are sound in our industrial context. Our focus is on adding adaptive be-
haviors capabilities in complex simulations where engineers do not want to take
care about constraints on the availability of the information if this information
is actually computed in the simulator 3. Our choice would be different if we had
to design a multi-robot system or to meet the constraining requirements of the
RoBOCUP simulation league.

2.4 Description of the behaviors of the sheepdogs

All the behaviors of the sheepdog agents consist in going towards a certain
point. In general, when the flock is formed, the sheepdog agents react to the
center of the flock. But, when the flock is scattered, they can also react to the
duck which is closest to them or the one which is the further from the center of
the flock. The name of each behavior can be interpreted straight-forwardly. In
the case of the “driveXtoY” behaviors, it consists in going behind X with respect
to Y so as to push X towards Y. The overall behavior set is the following:

e doNothing ¢ goToGoalCenter

e goToFlockCenter o followFlockToGoal

e goBehindFlock e goToPushingPoint

e goToLeftGuidingPoint e goToRightGuidingPoint
e goToRightOfFlock e goToLeftOfFlock

o driveOutmostDuckToFlock e driveClosestDuckToFlock
e driveClosestDuckToGoal ¢ goToClosestDuck

e goToOutmostDuck e goAwayFromFlock

The controllers of our sheepdog agents involve 16 conditions and 16 ba-
sic behaviors. Designing the controller involving these sensori-motor capabilities
consists in finding a good mapping between the conditions and the behaviors.

3 Implementing controllers as Classifier Systems

3.1 Elements of the Learning Classifier System framework

As we have some industrial applications in mind, we want to use a formalism
into which we can put some expert control knowledge. But we also want to

% See [Sigaud and Gérard, 2001] for more information on the industrial side of this
work



use adaptive techniques. In this context, the Learning Classifier Systems (LCS)
formalism appears as a natural candidate.

The LCS framework designed by [Holland, 1975] gave rise to popular adaptive
algorithms. Since the work of [Wilson, 1994] who simplified this first framework,
a classical LCS can be seen as composed of a population of rules, or classifiers,
containing conditions as a set of observations and actions:

[Condition] — [Action](Strength)

The different parts of the classifier are strings of symbols in {0, 1, #}, where
# means “either 0 or 1”. The population of classifiers was generally evolved
thanks to a genetic algorithm (GA) - see [Goldberg, 1989] — using the strength
of the classifiers as a fitness measure. When several classifiers could be fired in
the same state, the strength was also used to select the one which would be
fired. In these early versions of LCSs, the quality of the classifiers was modified
by the Bucket Brigade algorithm according to the estimated reward received by
the agent for firing the classifier.

A major improvement of the LCS framework was acheived by [Wilson, 1995]
in designing XCS, replacing a strength-based LCS by an accuracy-based one.

Recently, a new way of using the LCS framework has received a growing in-
terest [Stolzmann, 1998]. Based on ideas of [Riolo, 1990], it consists in adding in
the classifiers an [E f fect] part which allows the system to use the classifiers for
anticipating rather than merely reacting to the environment. It uses direct expe-
rience in order to build new classifiers, instead of relying on a genetic algorithm.
The classifiers of such LCSs contain the following components:

[Condition][Action] — [Ef fect] (quality parameters)

The learning process of such LCSs can be decomposed into two complemen-
tary processes:

e [atent learning consists in building a reliable model of the dynamics of the
environment, by ensuring that the [Ef fect] part of all classifiers are correct.
This new part stores information about state transitions and allows lookahead
planning. The latent learning process can take place at each time step without
any reward, hence it is very efficient. In particular, as [Witkowski, 1997] has
shown, the quality of anticipation of every classifier which can be fired at a time
can be updated according to the subsequent input message, even if the classifier
has not actually been fired;

e reinforcement learning consists in improving a policy using the experience
of the system, so that it becomes able to choose the optimal action in every
state. This process takes advantage of latent learning to converge faster.

These new approaches can be seen as replacing the blind search performed by
the GA by an heuristic search which takes advantage of the previous experience
to improve the classifiers. As a result, they are less general since, for instance,
they are devoted to tackling multi-steps problems whereas GA-based LCS can
also tackle single-step problems, but they are also more efficient in what they
are designed for.



3.2 Owur Algorithm

Our own classifiers contain the following components:
[Condition][Action] — [Ef fect] R

where R estimates the immediate reward received by the system when the
classifier is fired.

The latent learning process creates and deletes classifiers. The creation pro-
cess can be split in two main parts:

e the effect covering mechanism adjusts the effect parts by comparing suc-
cessive observations and correcting mistakes;

e the condition specialization process identifies the most general of relevant
conditions.

A classifier which sometimes anticipates well and sometimes not is such that
its [Condition] part matches several distinct states. It is too general and must
be replaced by new classifiers with more specialized [Condition] parts.

These mechanisms allow the system to converge towards a set of accurate
classifiers anticipating correctly. We use this information about the state transi-
tions in order to improve the reinforcement learning process.

The first part of this process consists in estimating the immediate reward
resulting from the firing of each classifier. At each time step, we use the re-
ceived reward to update an estimation of the immediate reward (R) of every
classifier involving the last action and the last state, even if it has not actu-
ally been fired. The state transition informations and the immediate reward
estimations allow to use a Dynamic Programming algorithm [Bellman, 1957] to
compute a policy. A more detailed description of this algorithm can be found in
[Gérard and Sigaud, 2001].

Rather than initializing a LCS with random classifiers or completely general
ones, we first tried to use the CS formalism for implementing expert classifiers
without using its adaptive capabilities. The methodological issues of our work
are discussed in detail in [Sigaud and Gérard, 2001].

4 A “basic” controller

In table 1, we present the first controller that we designed in order to im-
plement the solution described in section 2.2. It can be seen that we only use
13 of the 16 available inputs. Each line in the table is a classifier telling to the
agent what to do in a particular situation. For instance, the first line says that
if the agent is in the pushing area and if there is nobody on the way of the flock
towards the goal and if the flock is formed, then the agent should go towards
the goal center.

From table 1, it can be seen that this representation of the controller is not
very compact: there are a lot of “#”, which means that each classifier uses very



Action
goToGoalCenter
goToFlockCenter
goToPushingPoint
goBehindFlock
goBehindFlock
goBehindFlock
goBehindFlock
followFlockToGoal
followFlockToGoal
goToLeftPushingPoint
goToRightPushingPoint
goToRightPushingPoint
goToRightPushingPoint
goToLeftofFlock
goToLeftofFlock
goToLeftPushingPoint
goToLeftPushingPoint
goToRightofFlock
goToRightofFlock
driveClosest DuckToFlock
goToOutmostDuck
goToClosestDuck
driveOutmostDuckToFlock
goAwayFromFlock

FE 3k $R R 9k o3k o 3k 3k = 3k~ 3k 9k 3k 36 36 3k 3k 3k 3k 3k 35| nobodyRightToFlock

FF W FE A o3 o3 o3 ok 3 4 © o 3 ~ 3k ~ 3k 3 3| nobodyBehindFlock
FeFE IR I e S e R 34k = = = = $ 3k 9k 353k = = nobodyOnWay

FeF M FHF I F Y FH Y o o =3 = 3 = 3k 3| nobodyPushing
= FE R R 3R 3k~ 3E — o 3k © 3k 9 36 4 36 96 3k 96 3 9k 3 35| nobodyLeft ToFlock

F 3 3k 3k S 3R 3 3 3k 3k 3 3 F 3 3k 3k 3 3 3 3k 3k~ 3= 3| isBehindFlock
S Sk F 3k T 3k Sk 3k Sk 3 Sk 3 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k — —| isInPushingArea
St dh et e e F Tk — I3 = 3 = = 3k 3 | isLeft ToFlock
F 3k 3 3 S S S R S S F T~ 3k o~ 3k o~ — 3k 3k 3k 3k 35| isRightToFlock
S e S e e e e R R TR 3R 3R 3k 3k © 3k~ 3k Sk 3k 3k 3k 3k 3| isInLeft Area
S F 3 T 3k S 3 Sk Fh 3k 3 3k o 3k~ 3k 3k 3 3k 3k 3k 3 35| isInRightArea
Frde F I Fk — 2 o= e = e = T S T 3 T 3k SR 3k Sk 3k k| isOnWay
cocoococooFFH I FH I FH~ — — =3I 33~ = isFlockFormed

Table 1. A hand-crafted controller

few of the available inputs. As a result, the controller is difficult to design, since
any change in the input set involves reconsidering all the lines in the table. As
it will appear in section 6, the controller could also be more efficient.

Of particular interest are the five last classifiers, which are devoted to the
case when the flock is scattered. Since we had no idea of how to organize the
behaviors in such a case, we only gave five possible behaviors to deal with that
situation and let the controllers pick one of them at random at each time step. As
we will show in section 6, this is not an efficient design, even though it still allows
the sheepdogs to reach their goals. But this inefficient design also lets room for
improvement by using adaptive algorithms. Though this is not the focus of this
paper, in section 6 we will breifly mention that, by specializing these classifiers,
i.e. by adding new conditions on them, and by giving them different probabilities



of being selected, our learning algorithm was able to obtain very quickly a better

controller than the one we designed by hand.

5 A role-based controller

Former Role

New Role

H 4k o 3 3 — 3 $ ~ 3 3 —|isInPushingAreal
J= © 3= 3k — 3k 3k — 3k 3k — 3| isInLeftArea

© F 3 — F= 3~ 3k F — 3 3| isInRightArea
HFHHFooo oo o~ | isFlockFormed

F.Pusher
F.LeftGuide
F.RightGuide
F.Pusher
F.LeftGuide
F.RightGuide
Pusher
LeftGuide
RightGuide
Pusher
LeftGuide
RightGuide

Pusher
LeftGuide
RightGuide
F.Pusher
F.LeftGuide
F.RightGuide
F.Pusher
F.LeftGuide
F.RightGuide
F.Pusher
F.LeftGuide
F.RightGuide

Table 2. The role table (F. stands for Future)

The notion of role appears naturally in the strategy we presented in sec-
tion 2.2. In our solution, at least one agent must push the flock from behind
(playing a PUSHER role) and at least one agent must guide the flock on its
left hand side and another one on its right hand side (playing LEFTGUIDE and
RIGHTGUIDE roles respectively). Therefore we tried to modify the architecture
of the controller used in section 3 so as to make an explicit use of roles. Our new
architecture contains two kinds of components:

e The role table is a CS stating under which conditions on the situation
a agent changes its role into another role. If no observation matches, the role
remains the same. The roles are initialized so that each agent chooses between
FUTUREPUSHER, FUTURELEFTGUIDE and FUTURERIGHTGUIDE randomly, but
in such a way that each role is assigned to at least one agent. Then the role of the
agent evolves between FUTUREX and X, where X is either PUSHER, LEFTGUIDE
or RIGHTGUIDE. But with this controller, a pusher cannot become a lateral guide
nor vice versa. Our role table is shown in table 2.

o The behavior tables are CSs which fire actions of the agent according to
conditions on the situation. There is one table for each role. Hence, there is only



one behavior table active at a time in the controller of each agent, the one which
corresponds to the role played by the agent.

We have six behaviors, each one corresponding to the fulfillment of one par-
ticular role, i.e. FUTUREPUSHERBEHAVIOR, PUSHERBEHAVIOR, FUTURELEFT-
GUIDEBEHAVIOR, LEFTGUIDEBEHAVIOR, FUTURERIGHTGUIDEBEHAVIOR and
RIGHTGUIDEBEHAVIOR. All these behavior tables are shown in tables from 3

to 8.
g
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2144 Action
0 [1|#|goToPushingPoint
1 |1|#|goAwayFromFlock
#1010 |goBehindFlock
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1|#(1]0]0 |1|{goToGoalCenter
0|1 |#|#|#]|1|goToPushingPoint
#10|#|#|#|1|goBehindFlock
#10 |#|#|#|0|driveOutmostDuckToFlock
#|1|#|#|#|0|goToOutmostDuck

Table 3. FuturePusherBehavior
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1]0]|1|#|goToLeftArea
0 |#] 1 |#/|goToLeftofFlock
##0] 0 |goBehindFlock
#1#|0] 1 |driveClosest DuckToFlock

Table 5. FutureLeftGuideBehavior

Table 4. PusherBehavior

Action

3= © Fk ~|isLefttoFlock
3= © ~ 3| isInLeftArea

3 F © o| nobodyPushing
o = = ~|isFlockFormed

followFlockToGoal
followFlockToGoal
goToLeftArea

goToOutmostDuck

Table 6. Left GuideBehavior

Introducing roles in our architecture brings several benefits.

e It is easier to design a behavior CS devoted to fulfill one particular role,
since a particular role corresponds to a specialized part of the global behavior.
Hence, each behavior table is much smaller than the table 1 presented in section 3.

e It is easier to deal with the case where the flock is scattered. Since each
agent can fire different actions according to its role, it is easier to find a good
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Table 7. FutureRightGuideBehavior Table 8. RightGuideBehavior

coordination scheme between all actions, with respect to the case of the reactive
controller where we had no control on which action would be fired by which
agent.

e From a reinforcement learning research perspective, it is easier to design
an internal reinforcement signal policy when we use roles. Generally, fulfilling a
role corresponds to reaching a particular situation which can be detected by the
agent, and/or to insure that some validity conditions hold. Then the agents can
be rewarded or punished if the first condition holds or the second one is broken.
In our flock control simulation, for example, playing a FUTURELEFTGUIDE role
involves reaching the leftArea while playing a LEFTGUIDE role involves keeping
the flock formed. Hence, an agent in charge of the left side of the flock can be
rewarded when it reaches the leftArea, becoming a LEFTGUIDE, and punished if
the flock is scattered, coming back to FUTURELEFTGUIDE. We think that this is
a good way of introducing intermediate reinforcement signals, in a more natural
framework than in [Matari¢, 1994b], for instance.

6 Empirical Study

We first ran 2000 experiments to get a statistically significant view of the
results obtained with these controllers. Although the hand-crafted role-based
controllers appeared more efficient than the ones without roles with three sheep-
dogs, we did want to check whether it would be more or less robust with respect
to the size of the population of agents, since the role-based controllers are de-
signed for a group of three sheepdogs.

Therefore, we decided to test the robustness of both control policies by testing
them with various sets of parameters, and particularly by changing the size of
the population of sheepdogs.

6.1 Robustness to an increasing number of sheepdogs

We first tested the robustness of the controllers when the number of sheepdog
agents was increased from three to twenty.
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Fig. 3. Robustness of basic and role-based controllers to 3 to 20 sheepdogs

The results are shown on figure 3. Each point in the curves represents an
average performance over 100 trials, and each set of 100 trials starts with the
same 100 random initial positions. We must also mention that the goal is never
reached in less than 95 time steps, which is the minimum number of time steps
for the sheepdog agents to surround the flock and drive it to the goal from a
lucky initial situation.

If a trial lasts more than 4000 time steps, it is stopped and counted as a
failure. Failures are not taken into account in the computation of the average,
since their duration is arbitrary. Since there are very few failures, we do not
devote a figure to show them. Indeed, the worst case was four failures over the
100 trials that give one point on the figures. It appears that the role-based
controller failed ten times on the 18 x 100 = 1800 trials, while the basic and
learned basic controllers only failed respectively five times and two times over
the 1800 trials. The failures happen more often with more than twelve sheepdogs
in the role-based case, which supports our diagnosis of a lack of robustness of
this solution.

It can be seen in figure 3 that the role-based architecture performs better with
three sheepdogs than the basic one, but that the basic architecture is more robust
to an increasing number of sheepdogs. It can also be seen in figure 4 that the
controller obtained from applying adaptive algorithms to the basic architecture
during two trials performs better than the hand-crafted basic one, and is still
robust.

6.2 Robustness to a change in the behavior of the ducks

In order to understand better the phenomena observed in section 6.1, we also
tried to modify the behavior of the ducks so as to modify the dynamics of the
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environment of the sheepdogs. We tuned the sensitivity of the ducks with respect
to the walls of the arena so that they would keep away from these walls only
when getting too close to them. As a result, the flock tends to form anywhere in
the arena rather than only in the center as in the previous case. However, the
repulsiveness of the walls is sensed far before the ducks reach the target area. As
a result, it is not easier for the sheepdogs to drive the flock to the target area.
We also lowered the tendency of the ducks to go towards each other so that the
flock would scatter more often. These two modifications makes the job harder
for the sheepdogs.

The relative performance of the basic and role-based controllers with both
kinds of ducks can be seen on figure 5. It can be seen that, as expected, the
performance of the basic controller is very sensitive to the change of the behavior
of the ducks. The performance is much worse with the new ducks, and tends to
be much less robust to an increase of the number of sheepdogs. On the contrary,
the performance of the role-based controller is nearly unaffected by the change
of ducks, both curves are nearly identical.

7 Discussion of the results

7.1 Explaining the results

The reduced performance of the basic architecture when applied to the new
ducks can be explained by the fact that the flock is scattered more often. We
have shown that it was more difficult to design an efficient strategy with the
basic controller to deal with the case where the flock was scattered, since the
behavior of the different agents could not be specialized.
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Fig. 5. Robustness of both controllers to a new behavior of ducks

In contrast, the performance of the role-based controllers is not degraded,
their efficiency is not affected by the increasing tendency of the flock to scatter.

But why is this that the role-based controllers are less robust to an increasing
number of sheepdogs than the basic one? From a closer look at a lot of simulation
runs, it appeared that this comes from a longer time spent in the initial messy
situation before the flock can get formed. At the beginning of each trial, indeed,
all the sheepdogs and ducks are scattered at random in the arena. Hence, the
more sheepdogs there are among the ducks, the longer it takes to the ducks to
form a flock.

This is particularly true for the role-based agents. Since each agent has its
own role at the beginning, it must reach its pushing or guiding area, even if it is
by the wrong side of the flock. As a result, it may cross the flock and scatter it
or at least delay the movement of the ducks towards each other. Therefore, the
more role-based agents there are, the more they tend to prevent the ducks from
forming a flock.

The basic agents, on the contrary, organize themselves more opportunistically
with respect to their initial positions. Each agent goes to the closest pushing or
driving area. Since there are more agents, these areas are reached faster and this
compensates for the longer time spent in forming the flock.

We can summarize this finding in asserting that the basic controllers are
less tightly designed, but result in more opportunistic behaviors than the one
obtained with the role-based controllers.



7.2 Good reasons for exchanging the roles

We have shown in section 6 that our role-based controller was less robust
than the basic one because the role of the agents were assigned from the start
and the agents were not allowed to re-organize themselves opportunistically.

The lack of opportunism of the role-based architecture comes from the fact
that our hand-crafted role table specifies too narrowly the situations into which
one role should be exchanged with another one. More precisely, as we have said,
one agent which has started with a FUTUREX role can only switch to a X role
and back, where X stands for PUSHER, LEFTGUIDE and RIGHTGUIDE.

Three different considerations convinced us that the agents should be able
to exchange their roles in order to solve their task more efficiently.

e The first one is that a good way of improving the performance of our role-
based solution would be to let the agents choose their initial role according to
their initial position: they would choose the role driving them to the closest
guiding or pushing area. But if we do so, nothing guarantees that there will be
at least one agent to play each role. Then it is necessary that they exchange
their roles in order to coordinate their efforts.

e The second evidence in favor of letting the agents exchange their roles has
been found by examining some particular trials. To our surprise, we discovered
that the controllers without roles were often manifesting an unexpected strategy
more efficient that the one we had in mind. This strategy is shown in figure 6.
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Fig. 6. An emergent strategy Fig. 7. Two guides by the same side

It happens that two sheepdog agents are able to drive the flock to the target
area. This strategy seems very robust since the ducks seldom escape from the
chase of the sheepdog agents. It can be seen as a different distribution of the



roles, where two agents play new roles between pusher and guide, and the other
ones may help to form the flock again when necessary.

e The last one was also revealed by a closer examination of the behavior of
the agents. In the situation depicted in figure 7, both guides are by the same
side of the flock while the pusher is ready to push. If the agents cannot exchange
their roles, the agent which is behind the flock will start pushing it and the flock
will scatter, since there is no guide on one side. But if the agents can exchange
their roles, the best solution here is that the PUSHER becomes a RIGHTGUIDE
while one of the LEFTGUIDES becomes PUSHER and comes behind the flock in
order to push. This is the kind of social reorganization which we will present in
the next section.

8 A further inquiry

8.1 The new role table

In order to check that exchanging the roles would allow our controllers to be
both more efficient than the basic ones and more robust than the first role-based
ones, we designed by hand the new role table shown in table 9. The corresponding
behavior tables are the same as in section 5.

The task was more difficult than what we expected. The difficulty comes
from the fact that nothing guarantees anymore that there will be at least one
agent to play each role, while this condition is necessary for success. Thus, the
classifiers must be designed in such a way that each change of role from one
agent is balanced quickly by another change of role from another agent which
will play the dropped role. In order to do this, it appeared necessary to add new
inputs to coordinate more efficiently the roles. These input state respectively
whether there is already an agent which plays a PUSHER, a LEFTGUIDE and a
RIGHTGUIDE role or not, without taking into account whether it is a FUTURE
one or not. This gives an argument in favor of distinguishing only three roles
and two behaviors per role, as we will discuss in section 9.

Once again, these informations about the role played by other agents are con-
sidered as available through the simulation platform while it would require com-
plicated communication mechanisms to be maintained among a team of robots.
We didn’t tackle any team state maintenance, as [Stone and Veloso, 1999] or
[Tambe et al., 1999] do, for instance.

The classifiers shown in table 9 can be split into four groups.

e The first group, up to classifier 8, deals with the starting situation. Each
agent is initialized with the START role, and will only play it during one time
step. The classifiers tell which role the agent should choose according to their
initial location with respect to the pushing and guiding areas. In the case when
the agent is within the flock of ducks or on its way to the goal, it chooses at
random to become either FUTURELEFTGUIDE or FUTURERIGHTGUIDE. Since
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T |#|#|F#|#| 1 |F]| 1 |#|#|#|Start LeftGuide
8 |#|H|H#|#|#| 1| 1 |#|#|#|Start RightGuide
9 |#|#|#| L|#|#|1|#]| 1|1 |F.Pusher Pusher
10(#|#|#|#| 1 |#| 1|1 |#]| 1 |F.LeftGuide |LeftGuide
11|#|#|#|#|#| 11|11 |#|F.RightGuide|RightGuide
12|#|#|#| 1|#|#|0|#| 1| 1 {Pusher F.Pusher
13| #|#|#| 0 |#|#|#|#| 1| 1 |Pusher F.Pusher
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17\#|#|#|#|#| 0 |#] 1 |#|#|RightGuide |F.RightGuide
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25| 1|0 |#|#|#|#]| 1| 0 |#|#|F .Right Guide|F.Pusher
26|#|#| 1 |#|#|#|#| 0 |#|#|RightGuide |F.Pusher
27\ #| 1 |#|#|#|#|#| 0 | #|# |LeftGuide F.Pusher
28| #|H#|H# | #|#|#|#|#| 0| 1 |Pusher F.LeftGuide
20| # | H#|H#|#|#|#|#|#| 0| 1 |F.Pusher F.LeftGuide
30|#|#|#|#|#|#|#|#| 1 | 0 |F.Pusher F.RightGuide
31| |#|H#| #|#|#|#|#| 1| 0 |Pusher F.RightGuide
Table 9.

The new role table (F. stands for Future)




the roles are chosen according to the initial position and these positions are
random, nothing guarantees that the roles will be equally distributed between
the agents.

e The second and third groups of classifiers do the job which was done in
table 2 by our former role table. The second group, from classifier 9 to classifier
11, deals with the case when a FUTUREX has reached its intermediate goal and
becomes an X, while the third group, from classifier 12 to classifier 17, deals with
the case when an X has failed playing its role and comes back to the FUTUREX
role.

e The last group of classifiers is devoted to the exchanges of roles. The clas-
sifiers 18 and 19 tell that if a guiding agent is by the wrong side of the flock with
respect to its role, it should change its role rather than try to cross the flock
and scatter it. The classifiers from 20 to 27 describe what the guides should do
in the situation described in figure 7. Classifiers 20 to 23 are fired if there is no
guide to deal with the other side, while classifiers 24 to 27 are fired if there is no
pusher. This last situation can occur either if the pusher went to the other side
as described in figure 7, or in the initial situation if there was no agent choosing
the FUTUREPUSHER or the PUSHER role at the beginning. At last, the four last
classifiers tell what the pusher should do in the situation described in figure 7.
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Fig. 8. Robustness of the new controller to an increasing number of sheepdogs

The empirical study of the robustness of this new controller gave the results
shown in figure 8. We used the first kind of ducks under the conditions described
in section 6.1. Two curves were already given in figure 3, we present them again
for comparison with the new one.



It can be seen that we have acheived what we were trying to. Even if there
is still a slight rising slope and if the performance with three to five robots is
not as good as the one of the former role-based controller, the new controller is
both more robust than this former controller and more efficient than the basic
one. There are only three failures over 1800 trials with this controller, one with
three sheepdogs, one with five and one with eighteen of them.

We also checked the number of times when each classifier of table 9 was fired.
It appears that the classifiers for exchanging from LEFTGUIDE to RIGHTGUIDE
and vice versa are fired 23 times in average on 100 trials, while all the other
classifiers for exchanging the roles are fired less than 5 times. This shows that,
while these classifiers are used very seldom, much less than once per trial, they
result in a very significant improvement of the controllers.

Now, we can claim that the case depicted on figure 7 is particularly represen-
tative of the discussion we raised in the introduction. The results we obtained
show that being reactive and solipsistic is inefficient in that particular situation.
It is the kind of situation where the agents must reorganize with each other in
order to be more efficient. We have shown that this reorganization can be dealt
with in our reactive, CS-based framework, just by designing roles and by letting
the agents exchange their roles. Our point was that this seemingly deliberative
social behavior can be written as classifiers in the role table of our agents in
such a way that they react socially to the situation depicted in figure 7 just by
exchanging their roles. This does not take more time than any other reactive
behavior. Here, our agents are clearly reactive in the first sense given in the
introduction, i.e. they are responsive in time, but not in the second sense, since
they use a memory of their former role.

9 Discussion from a multi-agent perspective

We have already said that our research goals are directed towards adap-
tive behaviors more than towards multi-agent architecture. But having adaptive
multi-agent systems also implies to design general architecture providing flexi-
bility and abstraction. Thus, we must improve our work with that respect too.
Henceforth, we discuss here some obvious limitations of our architecture from a
multi-agent perspective.

First, another way to look at our role-based architecture would be to consider
that there are only three roles (PUSHER, LEFTGUIDE and RIGHTGUIDE), and
that the fulfillment of each role involves two behaviors (FUTUREX and X). In
the case of our example, implementing this way to articulate roles with several
behaviors would give rise to an unnecessary complication of the architecture.
But in more complicated examples, if more behaviors are necessary to fulfil one
role or if the fulfillment of two different roles involves some common behaviors,
distinguishing roles and behaviors by binding to each role a set, of behaviors and
a way to sequentialize their activation would provide a higher degree of flexibility
and abstraction.



Such a mechanism can be found in architectures devoted to solve RoBOCUP
problems both in [Tambe et al., 1999] and in [Stone and Veloso, 1999]. The first
shares closer goals with our work since some of the behaviors are learned. But
the second introduces a higher level of organization, namely the articulation
between roles and formations, which might also help improve our work.

Indeed, the fact that having more sheepdogs to drive the flock results in
poorer performance unless we design a very robust controller is rather counter-
intuitive. The key point here is that our agents use the same strategy whatever
their number. This strategy relies on the assumption that the flock will get
formed fast, which is no more valid when the number of agents increases. Thus,
a major way for improvement would be to let the agents change their strategy
when their number increases. For instance, as soon as they are as numerous as
ducks, each agent could take care of one particular duck, rather than wait for
the flock to be formed. Now, using different formations according to the number
of agents would be a good way to implement different strategies.

There is no technical nor theoretical obstacle to improve our architecture in
that way. But the reader must keep in mind that our research goal is the bottom-
up building of a control architecture thanks to learning processes, which is more
difficult than just hand-crafting correct and flexible multi-agent controllers.

10 Future Work and Conclusion

Even if we have shown in a preliminary study that applying adaptive algo-
rithms to our hand-crafted controllers results in a significant improvement of
the performance, we have not defended yet our claim that agents can find by
themselves the coordination schemes presented in table 9. Our claim that our
system is still reactive can be refuted because all the anticipation necessary to
find such a good coordination scheme has been given by the expert, rather than
learned by the system.

Our first focus was on the improvement of hand-crafted solutions because,
from an engineering perspective, an automated improvement of an expert con-
troller means that the expert who designed the controller can rely on adaptive
algorithms to optimize it. Hence he spends less time in this design, which is very
appealing in an industrial context. Our first results have shown that the classifier
systems formalism is good for coding controllers both because some knowledge
of the expert can be easily represented in it and because applying optimization
algorithms is straight-forward in the formalism.

But now we will have to start studying whether our algorithms are able to
learn similar role-based controllers from scratch. This is not the case yet with the
algorithm used here and presented in detail in [Gérard et al., 2001]. Obtaining
such a result would be all the more interesting that designing by hand the role
exchange strategy presented in section 8.1 proved difficult and time consuming.

It is clear that the performance of the role exchange architecture heavily
depends on the definition of the controller, and that this controller was difficult
to design by hand. The point is that the behavior tables were designed first



and the role exchange table afterwards, whereas they are highly interdependent.
Maybe, a different set of behavior tables would have resulted in a simpler role
exchange table. This fact supports the claim that both the behavior tables and
the role exchange table should be built by an automated learning process in a
unified framework.

Therefore, we are now extending the scope of our algorithms towards the
ability to build an architecture reflecting the one we designed in order to imple-
ment the use of roles in our flock control experiment. Our algorithm will be able
to create internal states when necessary and to let evolve the mapping between
these internal states and some conditions on the situation. Implementing roles
as internal states should give us a control system for an agent able to create and
evolve its own roles. Furthermore, the agents team should be able to globally
reorganize their behaviors thanks to the adaptive processes.

To summarize, we presented a simulation testbed into which several agents
had to solve a common task and we have shown how giving roles to the agents
was an efficient way to design a control strategy. We have shown how these roles
could be represented in the CS framework, and that such a way of using them
gives an ability to react socially to multi-agent situations.

At last, we believe that the experimental testbed presented in this paper,
though it is quite simple, is rich enough to raise most of the issues that we will
meet in our industrial applications. As a conclusion of our study, it appears that
the framework exposed here can be reused for more complicated multi-agent
tasks, but it would require improvements by the multi-agent side, for instance
if we would want to use it in the ROBOCUP domain. We did not try to do it
because it would be too much time consuming while we are expected to work
on our industrial problems. But we can already infer that obstacles to apply
our framework to the design of a ROBOCUP team are that an organizational
level would be necessary both to ensure the correct computation of all team
information that we considered as directly available in our work, and to bring
all the necessary flexibility and abstraction capabilities which are not present
today in our architecture.
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