
Being rea
tive by ex
hanging roles:an empiri
al studyOlivier Sigaud1 and Pierre Gérard1;21 Dassault Aviation, DGT/DPR/ESA78, Quai Mar
el Dassault, 92552 St-Cloud Cedex2 AnimatLab-LIP6, 8, rue du 
apitaine S
ott, 75015 PARISolivier.sigaud�dassault-aviation.fr pierre.gerard�lip6.frAbstra
t. In the multi-agent 
ommunity, the need for so
ial delibera-tion appears 
ontradi
tory with the need for rea
tivity. In this paper, wetry to show that we 
an draw the bene�ts of both being rea
tive andbeing so
ially organized thanks to what we 
all �so
ial rea
tivity�.In order to defend this 
laim, we des
ribe a simulation experiment inwhi
h several sheepdog agents have to 
oordinate their e�ort to drivea �o
k of du
ks towards a goal area. We implement rea
tive 
ontroller-s for agents in the Classi�er Systems formalism and we 
ompare theperforman
e of purely rea
tive, solipsisti
 agents whi
h are 
oordinatedimpli
itly with the performan
e of agents using roles. We show that ourrole-based agents perform better than the solipsisti
 ones, but be
ause of
onstraints on the roles of the agents, the solipsisti
 
ontrollers are morerobust and more opportunisti
. Then we show that, by ex
hanging re-a
tively their roles, a pro
ess whi
h 
an be seen as implementing a formof so
ial deliberation, role-based agents �nally outperform the solipsisti
ones. Sin
e designing by hand the rules for ex
hanging the roles proveddi�
ult, we 
on
lude by advo
ating the ne
essity of ta
kling the problemof letting the agents learn their own role ex
hange pro
esses.1 Introdu
tionDe�ning rea
tivity is di�
ult sin
e the word has several meanings whi
h are
losely related but not exa
tly equivalent. A

ording to [Kaelbing, 1990℄, rea
-tivity is a matter of responsiveness in time. In order to be rea
tive, an agentmust do the right thing at the right time. This view of rea
tivity has been oneof the early leitmotives of the rising �eld of behavior-based arti�
ial intelligen
e[Brooks, 1991,Matari¢, 1994a℄ in rea
tion to the endless planning pro
esses usedin 
lassi
al arti�
ial intelligen
e roboti
s. Sin
e the la
k of rea
tivity of the plan-ning robots prevented them from being used in dynami
 environments, it was
laimed that doing the right thing was pointless if it was not done in time.Another de�nition of rea
tivity 
omes from a more formal ba
kground. In theframework of Markov De
ision Pro
esses (MDP), the Markov hypothesis holdswhen having any information about the past experien
e does not help an agentto adopt a better behavior at the 
urrent time step. If the Markov hypothe-sis holds, the problem fa
ed by the agent is said to be a Markov problem. In



this framework, an agent is said rea
tive if it sele
ts its a
tion a

ording to itspresent situation without using any memory of the past. In a Markov problem,a rea
tive agent 
an a
t optimally. This view of rea
tivity, 
learly presented in[Colombetti and Dorigo, 1993℄, is widespread in the reinfor
ement learning 
om-munity. In this volume, [Bouzid et al., 2001℄ and [Riedmiller et al., 2001℄ presenta framework relying on that formalism.Both views of rea
tivity di�er in the fa
t that the se
ond one does not implyanything about the time that the agent spends 
hoosing its 
urrent a
tion. Butthey are 
losely related sin
e an agent whi
h makes no use of its memory 
annotmake any predi
tion about the future. Hen
e, a rea
tive agent in the se
ondsense does not spend any time in planning, it only rea
ts to its 
urrent situation.Sin
e this notion of rea
tivity is very restri
tive, it should allow any agent whi
hverify it to be rea
tive in the �rst sense, i.e. to de
ide what to do very fast, thento rea
t in time to events in its environment.Now, if an agent is rea
tive in the se
ond sense, it 
an be proven formally thatthere are situations where it will not be able to adopt an optimal behavior. Theseproblems are 
alled non-Markov problems. Ea
h time the Markov hypothesisdoes not hold, relying only on the 
urrent per
eption does not allow to sele
t thebest a
tion. Hen
e it is 
lear that adopting a rea
tive behavior means sele
tingshort-sighted a
tions, whi
h may not be suitable when long-term strategies arene
essary.Colle
tive tasks are full of su
h situations where looking for an immediatereward or pursuing an immediate goal is not the best thing that an agent maydo. For instan
e, in the Robo
up domain [Asada and Kitano, 1999℄, if an agenthas the ball and is 
lose to the goal, it may shoot rea
tively even if an opponentis likely to 
at
h the ball, whereas it might be more appropriate to give theball to a teammate who is better lo
ated. The se
ond behavior 
ould be seen asdeliberative rather than rea
tive be
ause it seems to imply that the agent knowsthat after it passes the ball, its teammate will shoot and s
ore. This exampleseems to support the view a

ording to whi
h deliberative so
ial behaviors andrea
tivity are two opposite requirements whi
h should be balan
ed in a multi-agent ar
hite
ture.In this paper we want to 
hallenge this view. We will show through an empir-i
al study that so
ial behaviors 
an be as rea
tive as solipsisti
 behaviors. In ourprevious example, giving the ball to a teammate is a behavior whi
h 
an be �redas rea
tively as shooting to the goal. The fa
t that giving the ball allows to s
orein the long term does not imply that so
ial agents have to plan in order to �ndthat su
h a behavior is more e�
ient than merely shooting. Our purpose is toshow that giving roles to the agents and applying reinfor
ement learning s
hemesthat take into a

ount long-term rewards allows them to adopt some behaviorswhi
h an external observer would 
onsider as exhibiting so
ial deliberation abil-ities, whereas these behaviors are implemented rea
tively. In parti
ular, we willshow that giving to the agents the ability to ex
hange their roles is both some-thing whi
h helps �nding better strategies and something whi
h 
an be donestraight-forwardly.



The paper is organized as follows. In the next se
tion, we des
ribe our simu-lated problem and the multi-agent strategy we designed to solve it. In se
tion 3,we present the Learning Classi�er Systems (LCS) 1 framework and how we usedit in order to implement the 
ontroller of our agents. In se
tion 4, we present thesolipsisti
 
ontroller whi
h we designed and some obvious drawba
ks of this de-sign. In se
tion 5, we show how our �rst hand-
rafted 
ontroller was signi�
antlyimproved by an expli
it use of roles, resulting in a new ar
hite
ture involving aset of behaviors devoted to the ful�llment of ea
h role, and we present the ben-e�ts whi
h 
an be drawn from su
h an ar
hite
ture. In se
tion 6, we 
omparethe results obtained with both hand-
rafted 
ontrollers through a �rst empiri
alstudy. In parti
ular, we 
ompare their robustness to 
hanges in parameters ofthe simulation. In se
tion 7, we dis
uss these results and show that the la
k ofrobustness of the role-based 
ontrollers is due to the in
apability of the agentsto ex
hange their roles. Then we present further eviden
e for the ne
essity ofletting the agents ex
hange their roles. In se
tion 8, we present a new role-based
ontroller whi
h takes this ne
essity into a

ount and show that the robustnessproblem is solved. In se
tion 9, we dis
uss our ar
hite
ture from a more multi-agent oriented stan
e, and highlight what would be ne
essary to apply it to more
ompli
ated problems. Sin
e designing by hand the rules for ex
hanging the rolesproved di�
ult, we 
on
lude in se
tion 10 by advo
ating the ne
essity of ta
klingthe problem of letting the agents learn their own role ex
hange pro
esses.2 The problem and its representationThe ne
essity of having good ben
hmarks to test and 
ompare algorithmsand ar
hite
tures is now 
entral in the multi-agent resear
h 
ommunity. TheRobo
up [Asada and Kitano, 1999℄ is su
h a ben
hmark seeming both generaland 
ompli
ated enough to a
t as a representative testbed for the entire �eld.In this volume, [Behnke and Rojas, 2001℄ and [Bredenfeld and Kobialka, 2001℄illustrate their 
on
epts in the Robo
up domain. But, if one uses ma
hine learn-ing te
hniques and adaptive 
apabilities to solve the 
omplete task, the problemseems too di�
ult. In the parti
ular 
ase of reinfor
ement learning te
hniques,the agents do not get enough feedba
k to learn everything from s
rat
h. Theresear
hers may either use these te
hniques at one parti
ular level of the game,or use them to solve parti
ular subtasks (for instan
e, the pass to a teammate[Asada et al., 1999℄).Therefore, the tenden
y in adaptive multi-agent simulations is to study mu
hsimpler appli
ation domains. The Prey/Predator pursuit domain involving sev-eral predators [Stone and Veloso, 1997℄ is su
h a ben
hmark and illustrates thistrend. But in these latter 
ases, the problem is often oversimpli�ed: the agentsmove in a grid-world, they have few possible a
tions. Hen
e, the problem la
ks1 In order to make 
lear that we sometimes use the Classi�er Systems formalismwithout applying learning algorithms, we will distinguish Classi�er Systems (CS) asa formalism and Learning Classi�er Systems (LCS) as a te
hnique throughout thispaper.



the 
ontinuous dynami
s 
hara
terizing most industrial appli
ations. Sin
e ourfo
us is on adaptive te
hniques and we have industrial appli
ations in mind,we have 
hosen to design an original appli
ation whi
h appears as a good 
om-promise between the too 
omplex Robo
up problem and the oversimpli�edPrey/Predator problem. We draw inspiration from [Vaughan et al., 1998℄, whohave presented the Robot Sheepdog Proje
t, involving a robot driving a �o
kof du
ks towards a goal position. The algorithm 
ontrolling the robot was �rsttested in simulation and then implemented on a real robot driving a real �o
kof du
ks.In this paper, we present a simulated extension of the task to the 
ase whereseveral agents share the goal mentioned above. Sin
e it is neither oversimpli�ednor too 
omplex, we believe that this experiment is a good 
ase-study to meetand ta
kle the di�
ulties arising when one tries to 
ombine adaptive 
apabilitiesand multi-agent 
oordination s
hemes.2.1 Des
ription of the problemOur simulated environment is shown in �gure 1. It in
ludes a 
ir
ular arena,a �o
k of du
ks and some sheepdog agents who must drive the �o
k towardsa goal area. We tested all 
ontrollers in simulations involving at least threesheepdog agents and six du
ks. The du
ks and the sheepdog agents have thesame maximum velo
ity. The goal is a
hieved as soon as all the du
ks are insidethe goal area.
Ducks

Target Area

Sheepdog Agents

Arena

Fig. 1. The arena, du
ks and sheepdogs isRightToFlock

isLeftToFlock

isAtGoal

isBehindFlock

isInPushingArea

isOnWay

isInRightArea
isInLeftArea

Fig. 2. Des
ription of the situationThe behavior of the du
ks results from a 
ombination of three tenden
ies.They tend:



� to keep away from the walls of the arena 2;� to join their mates when they see them, i.e. when they are within theirvisual range;� to �ee from the sheepdog agents whi
h are within their visual range.On
e the behavior of the du
ks is implemented, we must design the 
ontrollersof the sheepdog agents so that they drive the �o
k towards the goal area. A �rststep of this design pro
ess 
onsists in �nding whi
h features of the simulatedenvironment are relevant to a
hieve the goal of the sheepdog agents. This iswhat we present in the next se
tion.2.2 Des
ription of the pre-
on
eived strategyWhen one programs the sheepdog agents as simply being attra
ted by the
enter of the �o
k, it appears that, when a sheepdog agent is 
lose to the �o
kand follows it, the �o
k tends to s
atter be
ause ea
h du
k goes away from thesheepdog along a radial straight line.In order to solve this s
attering problem, the strategy we adopted was todesign the behavior of the agents so that at least one agent should push the�o
k towards the target area from behind, while at least one other agent shouldfollow the �o
k on its left hand side and another one on its right hand side sothat the �o
k would not s
atter while being pushed.2.3 Des
ription of the inputs of the sheepdogsAs a result of this design, the des
ription of the situation given to the agents
onsists of a set of tests on their position, as shown in �gure 2. This gives us a�rst set of 
onditions:� isAtGoal � isOnWay� isLeftToFlo
k � isRightToFlo
k� isInLeftArea � isInRightArea� isBehindFlo
k � isInPushingAreaThe important point is that all these position tests are relative to the positionof the �o
k rather than absolute positions with 
oordinates. But the agentsalways know where they are with respe
t to the �o
k 
enter, whi
h would notbe the 
ase with an a
tual robot having a limited vision �eld. Thus these inputsmight be thought of as delivered after treatments from a 
amera wat
hing fromabove. Furthermore, there is no noise on them, whi
h prevents us from drawingany 
on
lusion on the appli
ability of our framework in the real world.In order to 
oordinate the a
tions of the agents, we also added the followingtests on the situation of other agents:2 Therefore, if they are left on their own, they tend to go to the 
enter of the arena



� nobodyBehindFlo
k � nobodyPushing� nobodyInLeftArea � nobodyInRightArea� nobodyLeftToFlo
k � nobodyRightToFlo
k� nobodyOnWay � isFlo
kFormedHere again, the information is always perfe
tly a

urate, while it would re-quire a 
ompli
ated 
ommuni
ation proto
ol or a top-level manager to ensurethis in an a
tual roboti
 experiment.Our 
hoi
es might appear surprising to multi-agent systems designers. Butthey are sound in our industrial 
ontext. Our fo
us is on adding adaptive be-haviors 
apabilities in 
omplex simulations where engineers do not want to take
are about 
onstraints on the availability of the information if this informationis a
tually 
omputed in the simulator 3. Our 
hoi
e would be di�erent if we hadto design a multi-robot system or to meet the 
onstraining requirements of theRobo
up simulation league.2.4 Des
ription of the behaviors of the sheepdogsAll the behaviors of the sheepdog agents 
onsist in going towards a 
ertainpoint. In general, when the �o
k is formed, the sheepdog agents rea
t to the
enter of the �o
k. But, when the �o
k is s
attered, they 
an also rea
t to thedu
k whi
h is 
losest to them or the one whi
h is the further from the 
enter ofthe �o
k. The name of ea
h behavior 
an be interpreted straight-forwardly. Inthe 
ase of the �driveXtoY� behaviors, it 
onsists in going behind X with respe
tto Y so as to push X towards Y. The overall behavior set is the following:� doNothing � goToGoalCenter� goToFlo
kCenter � followFlo
kToGoal� goBehindFlo
k � goToPushingPoint� goToLeftGuidingPoint � goToRightGuidingPoint� goToRightOfFlo
k � goToLeftOfFlo
k� driveOutmostDu
kToFlo
k � driveClosestDu
kToFlo
k� driveClosestDu
kToGoal � goToClosestDu
k� goToOutmostDu
k � goAwayFromFlo
kThe 
ontrollers of our sheepdog agents involve 16 
onditions and 16 ba-si
 behaviors. Designing the 
ontroller involving these sensori-motor 
apabilities
onsists in �nding a good mapping between the 
onditions and the behaviors.3 Implementing 
ontrollers as Classi�er Systems3.1 Elements of the Learning Classi�er System frameworkAs we have some industrial appli
ations in mind, we want to use a formalisminto whi
h we 
an put some expert 
ontrol knowledge. But we also want to3 See [Sigaud and Gérard, 2001℄ for more information on the industrial side of thiswork



use adaptive te
hniques. In this 
ontext, the Learning Classi�er Systems (LCS)formalism appears as a natural 
andidate.The LCS framework designed by [Holland, 1975℄ gave rise to popular adaptivealgorithms. Sin
e the work of [Wilson, 1994℄ who simpli�ed this �rst framework,a 
lassi
al LCS 
an be seen as 
omposed of a population of rules, or 
lassi�ers,
ontaining 
onditions as a set of observations and a
tions:[Condition℄! [A
tion℄(Strength)The di�erent parts of the 
lassi�er are strings of symbols in f0; 1;#g, where# means �either 0 or 1�. The population of 
lassi�ers was generally evolvedthanks to a geneti
 algorithm (GA) � see [Goldberg, 1989℄ � using the strengthof the 
lassi�ers as a �tness measure. When several 
lassi�ers 
ould be �red inthe same state, the strength was also used to sele
t the one whi
h would be�red. In these early versions of LCSs, the quality of the 
lassi�ers was modi�edby the Bu
ket Brigade algorithm a

ording to the estimated reward re
eived bythe agent for �ring the 
lassi�er.A major improvement of the LCS framework was a
heived by [Wilson, 1995℄in designing XCS, repla
ing a strength-based LCS by an a

ura
y-based one.Re
ently, a new way of using the LCS framework has re
eived a growing in-terest [Stolzmann, 1998℄. Based on ideas of [Riolo, 1990℄, it 
onsists in adding inthe 
lassi�ers an [Effe
t℄ part whi
h allows the system to use the 
lassi�ers foranti
ipating rather than merely rea
ting to the environment. It uses dire
t expe-rien
e in order to build new 
lassi�ers, instead of relying on a geneti
 algorithm.The 
lassi�ers of su
h LCSs 
ontain the following 
omponents:[Condition℄[A
tion℄! [Effe
t℄ (quality parameters)The learning pro
ess of su
h LCSs 
an be de
omposed into two 
omplemen-tary pro
esses:� latent learning 
onsists in building a reliable model of the dynami
s of theenvironment, by ensuring that the [Effe
t℄ part of all 
lassi�ers are 
orre
t.This new part stores information about state transitions and allows lookaheadplanning. The latent learning pro
ess 
an take pla
e at ea
h time step withoutany reward, hen
e it is very e�
ient. In parti
ular, as [Witkowski, 1997℄ hasshown, the quality of anti
ipation of every 
lassi�er whi
h 
an be �red at a time
an be updated a

ording to the subsequent input message, even if the 
lassi�erhas not a
tually been �red;� reinfor
ement learning 
onsists in improving a poli
y using the experien
eof the system, so that it be
omes able to 
hoose the optimal a
tion in everystate. This pro
ess takes advantage of latent learning to 
onverge faster.These new approa
hes 
an be seen as repla
ing the blind sear
h performed bythe GA by an heuristi
 sear
h whi
h takes advantage of the previous experien
eto improve the 
lassi�ers. As a result, they are less general sin
e, for instan
e,they are devoted to ta
kling multi-steps problems whereas GA-based LCS 
analso ta
kle single-step problems, but they are also more e�
ient in what theyare designed for.



3.2 Our AlgorithmOur own 
lassi�ers 
ontain the following 
omponents:[Condition℄[A
tion℄! [Effe
t℄ Rwhere R estimates the immediate reward re
eived by the system when the
lassi�er is �red.The latent learning pro
ess 
reates and deletes 
lassi�ers. The 
reation pro-
ess 
an be split in two main parts:� the e�e
t 
overing me
hanism adjusts the e�e
t parts by 
omparing su
-
essive observations and 
orre
ting mistakes;� the 
ondition spe
ialization pro
ess identi�es the most general of relevant
onditions.A 
lassi�er whi
h sometimes anti
ipates well and sometimes not is su
h thatits [Condition℄ part mat
hes several distin
t states. It is too general and mustbe repla
ed by new 
lassi�ers with more spe
ialized [Condition℄ parts.These me
hanisms allow the system to 
onverge towards a set of a

urate
lassi�ers anti
ipating 
orre
tly. We use this information about the state transi-tions in order to improve the reinfor
ement learning pro
ess.The �rst part of this pro
ess 
onsists in estimating the immediate rewardresulting from the �ring of ea
h 
lassi�er. At ea
h time step, we use the re-
eived reward to update an estimation of the immediate reward (R) of every
lassi�er involving the last a
tion and the last state, even if it has not a
tu-ally been �red. The state transition informations and the immediate rewardestimations allow to use a Dynami
 Programming algorithm [Bellman, 1957℄ to
ompute a poli
y. A more detailed des
ription of this algorithm 
an be found in[Gérard and Sigaud, 2001℄.Rather than initializing a LCS with random 
lassi�ers or 
ompletely generalones, we �rst tried to use the CS formalism for implementing expert 
lassi�erswithout using its adaptive 
apabilities. The methodologi
al issues of our workare dis
ussed in detail in [Sigaud and Gérard, 2001℄.4 A �basi
� 
ontrollerIn table 1, we present the �rst 
ontroller that we designed in order to im-plement the solution des
ribed in se
tion 2.2. It 
an be seen that we only use13 of the 16 available inputs. Ea
h line in the table is a 
lassi�er telling to theagent what to do in a parti
ular situation. For instan
e, the �rst line says thatif the agent is in the pushing area and if there is nobody on the way of the �o
ktowards the goal and if the �o
k is formed, then the agent should go towardsthe goal 
enter.From table 1, it 
an be seen that this representation of the 
ontroller is notvery 
ompa
t: there are a lot of �#�, whi
h means that ea
h 
lassi�er uses very



isBehindFlo
k isInPushingAre
a

isLeftToFlo
k isRightToFlo
k isInLeftArea isInRightArea isOnWay nobodyBehindF
lo
k

nobodyPushing nobodyLeftToF
lo
k

nobodyRightTo
Flo
k

nobodyOnWay isFlo
kFormed A
tion# 1 # # # # # # # # # 1 1 goToGoalCenter# 1 # # # # # # # # # 1 1 goToFlo
kCenter1 # # # # # # # 1 # # # # goToPushingPoint# # 1 # # # # 1 # # # # # goBehindFlo
k# # 1 # # # # # 1 # # # # goBehindFlo
k# # # 1 # # # 1 # # # # # goBehindFlo
k# # # 1 # # # # 1 # # # # goBehindFlo
k# # 1 # 1 # # 0 0 # # 1 1 followFlo
kToGoal# # # 1 # 1 # 0 0 # # 1 1 followFlo
kToGoal# # 1 # 0 # # # # # # 1 1 goToLeftPushingPoint# # # 1 # 0 # # # # # 1 1 goToRightPushingPoint# # # # # # 1 # # # 1 # # goToRightPushingPoint# # # # # # 1 0 # 0 # # # goToRightPushingPoint# # # # # # 1 # # # 1 # # goToLeftofFlo
k# # # # # # 1 0 # 0 # # # goToLeftofFlo
k# # # # # # 1 # # 1 # # # goToLeftPushingPoint# # # # # # 1 0 # # 0 # # goToLeftPushingPoint# # # # # # 1 # # 1 # # # goToRightofFlo
k# # # # # # 1 0 # # 0 # # goToRightofFlo
k# # # # # # # # # # # # 0 driveClosestDu
kToFlo
k# # # # # # # # # # # # 0 goToOutmostDu
k# # # # # # # # # # # # 0 goToClosestDu
k# # # # # # # # # # # # 0 driveOutmostDu
kToFlo
k# # # # # # # # # # # # 0 goAwayFromFlo
kTable 1. A hand-
rafted 
ontrollerfew of the available inputs. As a result, the 
ontroller is di�
ult to design, sin
eany 
hange in the input set involves re
onsidering all the lines in the table. Asit will appear in se
tion 6, the 
ontroller 
ould also be more e�
ient.Of parti
ular interest are the �ve last 
lassi�ers, whi
h are devoted to the
ase when the �o
k is s
attered. Sin
e we had no idea of how to organize thebehaviors in su
h a 
ase, we only gave �ve possible behaviors to deal with thatsituation and let the 
ontrollers pi
k one of them at random at ea
h time step. Aswe will show in se
tion 6, this is not an e�
ient design, even though it still allowsthe sheepdogs to rea
h their goals. But this ine�
ient design also lets room forimprovement by using adaptive algorithms. Though this is not the fo
us of thispaper, in se
tion 6 we will brei�y mention that, by spe
ializing these 
lassi�ers,i.e. by adding new 
onditions on them, and by giving them di�erent probabilities



of being sele
ted, our learning algorithm was able to obtain very qui
kly a better
ontroller than the one we designed by hand.5 A role-based 
ontroller
isInPushingAre
a

isInLeftArea isInRightArea isFlo
kFormed Former Role New Role1 # # 1 F.Pusher Pusher# 1 # 1 F.LeftGuide LeftGuide# # 1 1 F.RightGuide RightGuide1 # # 0 F.Pusher F.Pusher# 1 # 0 F.LeftGuide F.LeftGuide# # 1 0 F.RightGuide F.RightGuide1 # # 0 Pusher F.Pusher# 1 # 0 LeftGuide F.LeftGuide# # 1 0 RightGuide F.RightGuide0 # # # Pusher F.Pusher# 0 # # LeftGuide F.LeftGuide# # 0 # RightGuide F.RightGuideTable 2. The role table (F. stands for Future)The notion of role appears naturally in the strategy we presented in se
-tion 2.2. In our solution, at least one agent must push the �o
k from behind(playing a Pusher role) and at least one agent must guide the �o
k on itsleft hand side and another one on its right hand side (playing LeftGuide andRightGuide roles respe
tively). Therefore we tried to modify the ar
hite
tureof the 
ontroller used in se
tion 3 so as to make an expli
it use of roles. Our newar
hite
ture 
ontains two kinds of 
omponents:� The role table is a CS stating under whi
h 
onditions on the situationa agent 
hanges its role into another role. If no observation mat
hes, the roleremains the same. The roles are initialized so that ea
h agent 
hooses betweenFuturePusher, FutureLeftGuide and FutureRightGuide randomly, butin su
h a way that ea
h role is assigned to at least one agent. Then the role of theagent evolves between FutureX and X, where X is either Pusher, LeftGuideorRightGuide. But with this 
ontroller, a pusher 
annot be
ome a lateral guidenor vi
e versa. Our role table is shown in table 2.� The behavior tables are CSs whi
h �re a
tions of the agent a

ording to
onditions on the situation. There is one table for ea
h role. Hen
e, there is only



one behavior table a
tive at a time in the 
ontroller of ea
h agent, the one whi
h
orresponds to the role played by the agent.We have six behaviors, ea
h one 
orresponding to the ful�llment of one par-ti
ular role, i.e. FuturePusherBehavior, PusherBehavior, FutureLeft-GuideBehavior, LeftGuideBehavior, FutureRightGuideBehavior andRightGuideBehavior. All these behavior tables are shown in tables from 3to 8.
isInPushingAre
a

isFlo
kFormed isBehindFlo
k A
tion0 1 # goToPushingPoint1 1 # goAwayFromFlo
k# 0 0 goBehindFlo
k# 0 1 driveClosestDu
kToFlo
kTable 3. FuturePusherBehavior
isInPushingAre
a

isBehindFlo
k nobodyOnWay nobodyLeftToF
lo
k

nobodyRightTo
Flo
k

isFlo
kFormed A
tion1 # 1 0 0 1 goToGoalCenter0 1 # # # 1 goToPushingPoint# 0 # # # 1 goBehindFlo
k# 0 # # # 0 driveOutmostDu
kToFlo
k# 1 # # # 0 goToOutmostDu
kTable 4. PusherBehavior
isLefttoFlo
k isInLeftArea isFlo
kFormed isBehindFlo
k A
tion1 0 1 # goToLeftArea0 # 1 # goToLeftofFlo
k# # 0 0 goBehindFlo
k# # 0 1 driveClosestDu
kToFlo
kTable 5. FutureLeftGuideBehavior

isLefttoFlo
k isInLeftArea nobodyPushing isFlo
kFormed A
tion1 # 0 1 followFlo
kToGoal# 1 0 1 followFlo
kToGoal0 0 # 1 goToLeftArea# # # 0 goToOutmostDu
kTable 6. LeftGuideBehaviorIntrodu
ing roles in our ar
hite
ture brings several bene�ts.� It is easier to design a behavior CS devoted to ful�ll one parti
ular role,sin
e a parti
ular role 
orresponds to a spe
ialized part of the global behavior.Hen
e, ea
h behavior table is mu
h smaller than the table 1 presented in se
tion 3.� It is easier to deal with the 
ase where the �o
k is s
attered. Sin
e ea
hagent 
an �re di�erent a
tions a

ording to its role, it is easier to �nd a good



isRighttoFlo
k isInRightArea isFlo
kFormed isBehindFlo
k A
tion1 0 1 # goToRightArea0 # 1 # goToRightofFlo
k# # 0 0 goBehindFlo
k# # 0 1 driveClosestDu
kToFlo
kTable 7. FutureRightGuideBehavior
isRighttoFlo
k isInRightArea nobodyPushing isFlo
kFormed A
tion1 # 0 1 followFlo
kToGoal# 1 0 1 followFlo
kToGoal0 0 # 1 goToRightArea# # # 0 goToClosestDu
kTable 8. RightGuideBehavior
oordination s
heme between all a
tions, with respe
t to the 
ase of the rea
tive
ontroller where we had no 
ontrol on whi
h a
tion would be �red by whi
hagent.� From a reinfor
ement learning resear
h perspe
tive, it is easier to designan internal reinfor
ement signal poli
y when we use roles. Generally, ful�lling arole 
orresponds to rea
hing a parti
ular situation whi
h 
an be dete
ted by theagent, and/or to insure that some validity 
onditions hold. Then the agents 
anbe rewarded or punished if the �rst 
ondition holds or the se
ond one is broken.In our �o
k 
ontrol simulation, for example, playing a FutureLeftGuide roleinvolves rea
hing the leftArea while playing a LeftGuide role involves keepingthe �o
k formed. Hen
e, an agent in 
harge of the left side of the �o
k 
an berewarded when it rea
hes the leftArea, be
oming a LeftGuide, and punished ifthe �o
k is s
attered, 
oming ba
k to FutureLeftGuide. We think that this isa good way of introdu
ing intermediate reinfor
ement signals, in a more naturalframework than in [Matari¢, 1994b℄, for instan
e.6 Empiri
al StudyWe �rst ran 2000 experiments to get a statisti
ally signi�
ant view of theresults obtained with these 
ontrollers. Although the hand-
rafted role-based
ontrollers appeared more e�
ient than the ones without roles with three sheep-dogs, we did want to 
he
k whether it would be more or less robust with respe
tto the size of the population of agents, sin
e the role-based 
ontrollers are de-signed for a group of three sheepdogs.Therefore, we de
ided to test the robustness of both 
ontrol poli
ies by testingthem with various sets of parameters, and parti
ularly by 
hanging the size ofthe population of sheepdogs.6.1 Robustness to an in
reasing number of sheepdogsWe �rst tested the robustness of the 
ontrollers when the number of sheepdogagents was in
reased from three to twenty.
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Fig. 3. Robustness of basi
 and role-based 
ontrollers to 3 to 20 sheepdogsThe results are shown on �gure 3. Ea
h point in the 
urves represents anaverage performan
e over 100 trials, and ea
h set of 100 trials starts with thesame 100 random initial positions. We must also mention that the goal is neverrea
hed in less than 95 time steps, whi
h is the minimum number of time stepsfor the sheepdog agents to surround the �o
k and drive it to the goal from alu
ky initial situation.If a trial lasts more than 4000 time steps, it is stopped and 
ounted as afailure. Failures are not taken into a

ount in the 
omputation of the average,sin
e their duration is arbitrary. Sin
e there are very few failures, we do notdevote a �gure to show them. Indeed, the worst 
ase was four failures over the100 trials that give one point on the �gures. It appears that the role-based
ontroller failed ten times on the 18 � 100 = 1800 trials, while the basi
 andlearned basi
 
ontrollers only failed respe
tively �ve times and two times overthe 1800 trials. The failures happen more often with more than twelve sheepdogsin the role-based 
ase, whi
h supports our diagnosis of a la
k of robustness ofthis solution.It 
an be seen in �gure 3 that the role-based ar
hite
ture performs better withthree sheepdogs than the basi
 one, but that the basi
 ar
hite
ture is more robustto an in
reasing number of sheepdogs. It 
an also be seen in �gure 4 that the
ontroller obtained from applying adaptive algorithms to the basi
 ar
hite
tureduring two trials performs better than the hand-
rafted basi
 one, and is stillrobust.6.2 Robustness to a 
hange in the behavior of the du
ksIn order to understand better the phenomena observed in se
tion 6.1, we alsotried to modify the behavior of the du
ks so as to modify the dynami
s of the
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Fig. 4. Robustness of basi
 and evolved 
ontrollers to 3 to 20 sheepdogsenvironment of the sheepdogs. We tuned the sensitivity of the du
ks with respe
tto the walls of the arena so that they would keep away from these walls onlywhen getting too 
lose to them. As a result, the �o
k tends to form anywhere inthe arena rather than only in the 
enter as in the previous 
ase. However, therepulsiveness of the walls is sensed far before the du
ks rea
h the target area. Asa result, it is not easier for the sheepdogs to drive the �o
k to the target area.We also lowered the tenden
y of the du
ks to go towards ea
h other so that the�o
k would s
atter more often. These two modi�
ations makes the job harderfor the sheepdogs.The relative performan
e of the basi
 and role-based 
ontrollers with bothkinds of du
ks 
an be seen on �gure 5. It 
an be seen that, as expe
ted, theperforman
e of the basi
 
ontroller is very sensitive to the 
hange of the behaviorof the du
ks. The performan
e is mu
h worse with the new du
ks, and tends tobe mu
h less robust to an in
rease of the number of sheepdogs. On the 
ontrary,the performan
e of the role-based 
ontroller is nearly una�e
ted by the 
hangeof du
ks, both 
urves are nearly identi
al.7 Dis
ussion of the results7.1 Explaining the resultsThe redu
ed performan
e of the basi
 ar
hite
ture when applied to the newdu
ks 
an be explained by the fa
t that the �o
k is s
attered more often. Wehave shown that it was more di�
ult to design an e�
ient strategy with thebasi
 
ontroller to deal with the 
ase where the �o
k was s
attered, sin
e thebehavior of the di�erent agents 
ould not be spe
ialized.
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Fig. 5. Robustness of both 
ontrollers to a new behavior of du
ksIn 
ontrast, the performan
e of the role-based 
ontrollers is not degraded,their e�
ien
y is not a�e
ted by the in
reasing tenden
y of the �o
k to s
atter.But why is this that the role-based 
ontrollers are less robust to an in
reasingnumber of sheepdogs than the basi
 one? From a 
loser look at a lot of simulationruns, it appeared that this 
omes from a longer time spent in the initial messysituation before the �o
k 
an get formed. At the beginning of ea
h trial, indeed,all the sheepdogs and du
ks are s
attered at random in the arena. Hen
e, themore sheepdogs there are among the du
ks, the longer it takes to the du
ks toform a �o
k.This is parti
ularly true for the role-based agents. Sin
e ea
h agent has itsown role at the beginning, it must rea
h its pushing or guiding area, even if it isby the wrong side of the �o
k. As a result, it may 
ross the �o
k and s
atter itor at least delay the movement of the du
ks towards ea
h other. Therefore, themore role-based agents there are, the more they tend to prevent the du
ks fromforming a �o
k.The basi
 agents, on the 
ontrary, organize themselves more opportunisti
allywith respe
t to their initial positions. Ea
h agent goes to the 
losest pushing ordriving area. Sin
e there are more agents, these areas are rea
hed faster and this
ompensates for the longer time spent in forming the �o
k.We 
an summarize this �nding in asserting that the basi
 
ontrollers areless tightly designed, but result in more opportunisti
 behaviors than the oneobtained with the role-based 
ontrollers.



7.2 Good reasons for ex
hanging the rolesWe have shown in se
tion 6 that our role-based 
ontroller was less robustthan the basi
 one be
ause the role of the agents were assigned from the startand the agents were not allowed to re-organize themselves opportunisti
ally.The la
k of opportunism of the role-based ar
hite
ture 
omes from the fa
tthat our hand-
rafted role table spe
i�es too narrowly the situations into whi
hone role should be ex
hanged with another one. More pre
isely, as we have said,one agent whi
h has started with a FutureX role 
an only swit
h to a X roleand ba
k, where X stands for Pusher, LeftGuide and RightGuide.Three di�erent 
onsiderations 
onvin
ed us that the agents should be ableto ex
hange their roles in order to solve their task more e�
iently.� The �rst one is that a good way of improving the performan
e of our role-based solution would be to let the agents 
hoose their initial role a

ording totheir initial position: they would 
hoose the role driving them to the 
losestguiding or pushing area. But if we do so, nothing guarantees that there will beat least one agent to play ea
h role. Then it is ne
essary that they ex
hangetheir roles in order to 
oordinate their e�orts.� The se
ond eviden
e in favor of letting the agents ex
hange their roles hasbeen found by examining some parti
ular trials. To our surprise, we dis
overedthat the 
ontrollers without roles were often manifesting an unexpe
ted strategymore e�
ient that the one we had in mind. This strategy is shown in �gure 6.

Fig. 6. An emergent strategy Fig. 7. Two guides by the same sideIt happens that two sheepdog agents are able to drive the �o
k to the targetarea. This strategy seems very robust sin
e the du
ks seldom es
ape from the
hase of the sheepdog agents. It 
an be seen as a di�erent distribution of the



roles, where two agents play new roles between pusher and guide, and the otherones may help to form the �o
k again when ne
essary.� The last one was also revealed by a 
loser examination of the behavior ofthe agents. In the situation depi
ted in �gure 7, both guides are by the sameside of the �o
k while the pusher is ready to push. If the agents 
annot ex
hangetheir roles, the agent whi
h is behind the �o
k will start pushing it and the �o
kwill s
atter, sin
e there is no guide on one side. But if the agents 
an ex
hangetheir roles, the best solution here is that the Pusher be
omes a RightGuidewhile one of the LeftGuides be
omes Pusher and 
omes behind the �o
k inorder to push. This is the kind of so
ial reorganization whi
h we will present inthe next se
tion.8 A further inquiry8.1 The new role tableIn order to 
he
k that ex
hanging the roles would allow our 
ontrollers to beboth more e�
ient than the basi
 ones and more robust than the �rst role-basedones, we designed by hand the new role table shown in table 9. The 
orrespondingbehavior tables are the same as in se
tion 5.The task was more di�
ult than what we expe
ted. The di�
ulty 
omesfrom the fa
t that nothing guarantees anymore that there will be at least oneagent to play ea
h role, while this 
ondition is ne
essary for su

ess. Thus, the
lassi�ers must be designed in su
h a way that ea
h 
hange of role from oneagent is balan
ed qui
kly by another 
hange of role from another agent whi
hwill play the dropped role. In order to do this, it appeared ne
essary to add newinputs to 
oordinate more e�
iently the roles. These input state respe
tivelywhether there is already an agent whi
h plays a Pusher, a LeftGuide and aRightGuide role or not, without taking into a

ount whether it is a Futureone or not. This gives an argument in favor of distinguishing only three rolesand two behaviors per role, as we will dis
uss in se
tion 9.On
e again, these informations about the role played by other agents are 
on-sidered as available through the simulation platform while it would require 
om-pli
ated 
ommuni
ation me
hanisms to be maintained among a team of robots.We didn't ta
kle any team state maintenan
e, as [Stone and Veloso, 1999℄ or[Tambe et al., 1999℄ do, for instan
e.The 
lassi�ers shown in table 9 
an be split into four groups.� The �rst group, up to 
lassi�er 8, deals with the starting situation. Ea
hagent is initialized with the Start role, and will only play it during one timestep. The 
lassi�ers tell whi
h role the agent should 
hoose a

ording to theirinitial lo
ation with respe
t to the pushing and guiding areas. In the 
ase whenthe agent is within the �o
k of du
ks or on its way to the goal, it 
hooses atrandom to be
ome either FutureLeftGuide or FutureRightGuide. Sin
e



isBehindFlo
k isLefttoFlo
k isRighttoFlo
k isInPushingAre
a

isInLeftArea isInRightArea isFlo
kFormed isTherePusher isThereLeftGui
de
isThereRightGu
ide
Former Role New Role1 0 0 0 # # # # # # # Start F.RightGuide2 0 0 0 # # # # # # # Start F.LeftGuide3 1 0 0 # # # # # # # Start F.Pusher4 # 1 # # # # # # # # Start F.LeftGuide5 # # 1 # # # # # # # Start F.RightGuide6 # # # 1 # # 1 # # # Start Pusher7 # # # # 1 # 1 # # # Start LeftGuide8 # # # # # 1 1 # # # Start RightGuide9 # # # 1 # # 1 # 1 1 F.Pusher Pusher10 # # # # 1 # 1 1 # 1 F.LeftGuide LeftGuide11 # # # # # 1 1 1 1 # F.RightGuide RightGuide12 # # # 1 # # 0 # 1 1 Pusher F.Pusher13 # # # 0 # # # # 1 1 Pusher F.Pusher14 # # # # 1 # 0 1 # # LeftGuide F.LeftGuide15 # # # # 0 # # 1 # # LeftGuide F.LeftGuide16 # # # # # 1 0 1 # # RightGuide F.RightGuide17 # # # # # 0 # 1 # # RightGuide F.RightGuide18 # 1 # # # # # # # # F.RightGuide F.LeftGuide19 # # 1 # # # # # # # F.LeftGuide F.RightGuide20 # # 1 # # # # # 0 # RightGuide F.Pusher21 # 1 # # # # # # # 0 LeftGuide F.Pusher22 # # 1 # # # 1 # 0 # F.RightGuide F.Pusher23 # 1 # # # # 1 # # 0 F.LeftGuide F.Pusher24 1 # 0 # # # 1 0 # # F.LeftGuide F.Pusher25 1 0 # # # # 1 0 # # F.RightGuide F.Pusher26 # # 1 # # # # 0 # # RightGuide F.Pusher27 # 1 # # # # # 0 # # LeftGuide F.Pusher28 # # # # # # # # 0 1 Pusher F.LeftGuide29 # # # # # # # # 0 1 F.Pusher F.LeftGuide30 # # # # # # # # 1 0 F.Pusher F.RightGuide31 # # # # # # # # 1 0 Pusher F.RightGuideTable 9. The new role table (F. stands for Future)



the roles are 
hosen a

ording to the initial position and these positions arerandom, nothing guarantees that the roles will be equally distributed betweenthe agents.� The se
ond and third groups of 
lassi�ers do the job whi
h was done intable 2 by our former role table. The se
ond group, from 
lassi�er 9 to 
lassi�er11, deals with the 
ase when a FutureX has rea
hed its intermediate goal andbe
omes an X, while the third group, from 
lassi�er 12 to 
lassi�er 17, deals withthe 
ase when an X has failed playing its role and 
omes ba
k to the FutureXrole.� The last group of 
lassi�ers is devoted to the ex
hanges of roles. The 
las-si�ers 18 and 19 tell that if a guiding agent is by the wrong side of the �o
k withrespe
t to its role, it should 
hange its role rather than try to 
ross the �o
kand s
atter it. The 
lassi�ers from 20 to 27 des
ribe what the guides should doin the situation des
ribed in �gure 7. Classi�ers 20 to 23 are �red if there is noguide to deal with the other side, while 
lassi�ers 24 to 27 are �red if there is nopusher. This last situation 
an o

ur either if the pusher went to the other sideas des
ribed in �gure 7, or in the initial situation if there was no agent 
hoosingthe FuturePusher or the Pusher role at the beginning. At last, the four last
lassi�ers tell what the pusher should do in the situation des
ribed in �gure 7.
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Fig. 8. Robustness of the new 
ontroller to an in
reasing number of sheepdogsThe empiri
al study of the robustness of this new 
ontroller gave the resultsshown in �gure 8. We used the �rst kind of du
ks under the 
onditions des
ribedin se
tion 6.1. Two 
urves were already given in �gure 3, we present them againfor 
omparison with the new one.



It 
an be seen that we have a
heived what we were trying to. Even if thereis still a slight rising slope and if the performan
e with three to �ve robots isnot as good as the one of the former role-based 
ontroller, the new 
ontroller isboth more robust than this former 
ontroller and more e�
ient than the basi
one. There are only three failures over 1800 trials with this 
ontroller, one withthree sheepdogs, one with �ve and one with eighteen of them.We also 
he
ked the number of times when ea
h 
lassi�er of table 9 was �red.It appears that the 
lassi�ers for ex
hanging from LeftGuide to RightGuideand vi
e versa are �red 23 times in average on 100 trials, while all the other
lassi�ers for ex
hanging the roles are �red less than 5 times. This shows that,while these 
lassi�ers are used very seldom, mu
h less than on
e per trial, theyresult in a very signi�
ant improvement of the 
ontrollers.Now, we 
an 
laim that the 
ase depi
ted on �gure 7 is parti
ularly represen-tative of the dis
ussion we raised in the introdu
tion. The results we obtainedshow that being rea
tive and solipsisti
 is ine�
ient in that parti
ular situation.It is the kind of situation where the agents must reorganize with ea
h other inorder to be more e�
ient. We have shown that this reorganization 
an be dealtwith in our rea
tive, CS-based framework, just by designing roles and by lettingthe agents ex
hange their roles. Our point was that this seemingly deliberativeso
ial behavior 
an be written as 
lassi�ers in the role table of our agents insu
h a way that they rea
t so
ially to the situation depi
ted in �gure 7 just byex
hanging their roles. This does not take more time than any other rea
tivebehavior. Here, our agents are 
learly rea
tive in the �rst sense given in theintrodu
tion, i.e. they are responsive in time, but not in the se
ond sense, sin
ethey use a memory of their former role.9 Dis
ussion from a multi-agent perspe
tiveWe have already said that our resear
h goals are dire
ted towards adap-tive behaviors more than towards multi-agent ar
hite
ture. But having adaptivemulti-agent systems also implies to design general ar
hite
ture providing �exi-bility and abstra
tion. Thus, we must improve our work with that respe
t too.Hen
eforth, we dis
uss here some obvious limitations of our ar
hite
ture from amulti-agent perspe
tive.First, another way to look at our role-based ar
hite
ture would be to 
onsiderthat there are only three roles (Pusher, LeftGuide and RightGuide), andthat the ful�llment of ea
h role involves two behaviors (FutureX and X). Inthe 
ase of our example, implementing this way to arti
ulate roles with severalbehaviors would give rise to an unne
essary 
ompli
ation of the ar
hite
ture.But in more 
ompli
ated examples, if more behaviors are ne
essary to ful�l onerole or if the ful�llment of two di�erent roles involves some 
ommon behaviors,distinguishing roles and behaviors by binding to ea
h role a set of behaviors anda way to sequentialize their a
tivation would provide a higher degree of �exibilityand abstra
tion.



Su
h a me
hanism 
an be found in ar
hite
tures devoted to solve Robo
upproblems both in [Tambe et al., 1999℄ and in [Stone and Veloso, 1999℄. The �rstshares 
loser goals with our work sin
e some of the behaviors are learned. Butthe se
ond introdu
es a higher level of organization, namely the arti
ulationbetween roles and formations, whi
h might also help improve our work.Indeed, the fa
t that having more sheepdogs to drive the �o
k results inpoorer performan
e unless we design a very robust 
ontroller is rather 
ounter-intuitive. The key point here is that our agents use the same strategy whatevertheir number. This strategy relies on the assumption that the �o
k will getformed fast, whi
h is no more valid when the number of agents in
reases. Thus,a major way for improvement would be to let the agents 
hange their strategywhen their number in
reases. For instan
e, as soon as they are as numerous asdu
ks, ea
h agent 
ould take 
are of one parti
ular du
k, rather than wait forthe �o
k to be formed. Now, using di�erent formations a

ording to the numberof agents would be a good way to implement di�erent strategies.There is no te
hni
al nor theoreti
al obsta
le to improve our ar
hite
ture inthat way. But the reader must keep in mind that our resear
h goal is the bottom-up building of a 
ontrol ar
hite
ture thanks to learning pro
esses, whi
h is moredi�
ult than just hand-
rafting 
orre
t and �exible multi-agent 
ontrollers.10 Future Work and Con
lusionEven if we have shown in a preliminary study that applying adaptive algo-rithms to our hand-
rafted 
ontrollers results in a signi�
ant improvement ofthe performan
e, we have not defended yet our 
laim that agents 
an �nd bythemselves the 
oordination s
hemes presented in table 9. Our 
laim that oursystem is still rea
tive 
an be refuted be
ause all the anti
ipation ne
essary to�nd su
h a good 
oordination s
heme has been given by the expert, rather thanlearned by the system.Our �rst fo
us was on the improvement of hand-
rafted solutions be
ause,from an engineering perspe
tive, an automated improvement of an expert 
on-troller means that the expert who designed the 
ontroller 
an rely on adaptivealgorithms to optimize it. Hen
e he spends less time in this design, whi
h is veryappealing in an industrial 
ontext. Our �rst results have shown that the 
lassi�ersystems formalism is good for 
oding 
ontrollers both be
ause some knowledgeof the expert 
an be easily represented in it and be
ause applying optimizationalgorithms is straight-forward in the formalism.But now we will have to start studying whether our algorithms are able tolearn similar role-based 
ontrollers from s
rat
h. This is not the 
ase yet with thealgorithm used here and presented in detail in [Gérard et al., 2001℄. Obtainingsu
h a result would be all the more interesting that designing by hand the roleex
hange strategy presented in se
tion 8.1 proved di�
ult and time 
onsuming.It is 
lear that the performan
e of the role ex
hange ar
hite
ture heavilydepends on the de�nition of the 
ontroller, and that this 
ontroller was di�
ultto design by hand. The point is that the behavior tables were designed �rst



and the role ex
hange table afterwards, whereas they are highly interdependent.Maybe, a di�erent set of behavior tables would have resulted in a simpler roleex
hange table. This fa
t supports the 
laim that both the behavior tables andthe role ex
hange table should be built by an automated learning pro
ess in auni�ed framework.Therefore, we are now extending the s
ope of our algorithms towards theability to build an ar
hite
ture re�e
ting the one we designed in order to imple-ment the use of roles in our �o
k 
ontrol experiment. Our algorithm will be ableto 
reate internal states when ne
essary and to let evolve the mapping betweenthese internal states and some 
onditions on the situation. Implementing rolesas internal states should give us a 
ontrol system for an agent able to 
reate andevolve its own roles. Furthermore, the agents team should be able to globallyreorganize their behaviors thanks to the adaptive pro
esses.To summarize, we presented a simulation testbed into whi
h several agentshad to solve a 
ommon task and we have shown how giving roles to the agentswas an e�
ient way to design a 
ontrol strategy. We have shown how these roles
ould be represented in the CS framework, and that su
h a way of using themgives an ability to rea
t so
ially to multi-agent situations.At last, we believe that the experimental testbed presented in this paper,though it is quite simple, is ri
h enough to raise most of the issues that we willmeet in our industrial appli
ations. As a 
on
lusion of our study, it appears thatthe framework exposed here 
an be reused for more 
ompli
ated multi-agenttasks, but it would require improvements by the multi-agent side, for instan
eif we would want to use it in the Robo
up domain. We did not try to do itbe
ause it would be too mu
h time 
onsuming while we are expe
ted to workon our industrial problems. But we 
an already infer that obsta
les to applyour framework to the design of a Robo
up team are that an organizationallevel would be ne
essary both to ensure the 
orre
t 
omputation of all teaminformation that we 
onsidered as dire
tly available in our work, and to bringall the ne
essary �exibility and abstra
tion 
apabilities whi
h are not presenttoday in our ar
hite
ture.11 A
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