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Genet, Stéphane and Bruno Delord. A biophysical model of
nonlinear dynamics underlying plateau potentials and calcium spikes
in Purkinje cell dendrites.J Neurophysiol88: 2430–2444, 2002;
10.1152/jn.00839.2001. Computational capabilities of Purkinje cells
(PCs) are central to the cerebellum function. Information originating
from the whole nervous system converges on their dendrites, and their
axon is the sole output of the cerebellar cortex. PC dendrites respond
to weak synaptic activation with long-lasting, low-amplitude plateau
potentials, but stronger synaptic activation can generate fast, large
amplitude calcium spikes. Pharmacological data have suggested the
involvement of only the P-type of Ca channels in both of these electric
responses. However, the mechanism allowing this Ca current to
underlie responses with such different dynamics is still unclear. This
mechanism was explored by constraining a biophysical model with
electrophysiological, Ca-imaging, and single ion channel data. A
model is presented here incorporating a simplified description of [Ca]i

regulation and three ionic currents:1) the P-type Ca current,2) a
delayed-rectifier K current, and3) a generic class of K channels
activating sharply in the sub-threshold voltage range. This model
sustains fast spikes and long-lasting plateaus terminating spontane-
ously with recovery of the resting potential. Small depolarizing, tonic
inputs turn plateaus into a stable membrane state and endow the
dendrite with bistability properties. With larger tonic inputs, the
plateau remains the unique equilibrium state, showing long traces of
transient inhibitory inputs that are called “valley potentials” because
their dynamics mirrors that of inverted, finite-duration plateaus. An-
alyzing the slow subsystem obtained by assuming instantaneous ac-
tivation of the delayed-rectifier reveals that the time course of plateaus
and valleys is controlled by the slow [Ca]i dynamics, which arises
from the high Ca-buffering capacity of PCs. A bifurcation analysis
shows that tonic currents modulate sub-threshold dynamics by dis-
placing the resting state along a hysteresis region edged by two
saddle-node bifurcations; these bifurcations mark transitions from
finite-duration plateaus to bistability and from bistability to valley
potentials, respectively. This low-dimensionality model may be intro-
duced into large-scale models to explore the role of PC dendrite
computations in the functional capabilities of the cerebellum.

I N T R O D U C T I O N

The cerebellum is one of the principal regions of the brain
implicated in adaptive control of movements (Ito 1984). The
way this nervous structure operates during acquisition of motor
skills remains, however, a matter of debate. Central to this
issue are computational capabilities of Purkinje cells (PCs),

because axons from these large neurons constitute the sole
output of the cerebellar cortex. Information originating from
nearly the entire nervous system converges onto PC dendrites
in the form of two excitatory inputs—hundreds of thousands
parallel fibers (PFs) contact the distal spiny dendrites while a
single climbing fiber (CF) establishes a distributed, powerful
synapse on the proximal smooth dendrites. The two inputs
interact through the PC dendritic tree, which is endowed with
highly nonlinear membrane properties (Llinas and Sugimori
1992).

Stimulation of PC dendrites can result in two very different
types of nonlinear calcium-dependent responses: weak stimu-
lation causes low-amplitude plateau potentials, which can last
up to several hundred milliseconds until the resting potential is
spontaneously restored, and stronger stimulation can generate
fast, large amplitude Ca spikes (Llinas and Sugimori 1980b). In
vivo, Ca spikes underlie the so-called “complex spike” evoked
by activation of the CF (Eccles et al. 1966), which results in a
generalized [Ca]i increase in the dendrites. Plateau potentials
are low-amplitude (approximately 15 mV) depolarizations
from resting potential. They exhibit a threshold behavior and
display variable duration ranging from 100 ms to several
seconds (Ekerot and Oscarsson 1981; Llinas and Sugimori
1980b, 1992). Plateaus putatively participate in dendritic com-
putations and synaptic plasticity, but these roles could not be
explored thoroughly due to an uncertain mechanism underlying
these electric signals. Several models have attempted to under-
stand this mechanism, like the large-scale, multi-compartmen-
tal PC model of De Schutter and Bower (1994). This model
sustains plateaus, but these are unconditionally stable and do
not account for spontaneous reset of experimental plateaus.
Miyasho et al. (2001) have recently proposed a modified ver-
sion of this model, which produces finite-duration plateaus, but
these are not all-or-none. Such discrepancies with experimental
plateaus are difficult to interpret, due to the complexity of
models incorporating numerous ion channel types. Yuen et al.
(1995) have adopted an opposing viewpoint by building a
simple model that sustains spikes and plateaus. However, their
model displays plateaus at unrealistic depolarized potentials
that do not spontaneously reset. Moreover, their model predicts
transition from spiking to plateaus with increasing stimuli,
whereas Llinas and Sugimori (1980b) have observed the op-
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posite transition in intracellular recordings. Thus either sim-
plistic or detailed descriptions of membrane properties have
failed to interpret the dual electroresponsiveness of PC den-
drites.

The objective of this study was to investigate the minimal
biophysical properties required to produce the dual electrore-
sponsiveness of PC dendrites. The strategy was to build up a
computationally tractable model that may subsequently be
introduced into network models of the cerebellum. For the
model presented in this paper to be conclusive, several con-
straints were imposed: 1) the model had to reproduce charac-
teristic features of plateaus, including shape, amplitude, dura-
tion, and the threshold behavior evidenced by Llinas and
Sugimori (1980b); 2) the model also reproduced landmark
electrophysiological properties such as passive membrane
properties and Ca spiking; and 3) the model was based on a
careful use of available ion channel data to avoid interpreta-
tions based on peculiar solutions of poorly constrained models.

Here we present a biophysical model that shows that plateau
potentials and calcium spikes can both be generated by the
same underlying currents: the P-type Ca current, a delayed
rectifier K current and a sub-threshold, generic K current that
lumps together the set of low-voltage activated K currents
described in PCs (Gruol et al. 1989, 1991; Jacquin and Gruol
1999; Midtgaard 1995; Midtgaard et al. 1993; Wang et al.
1991). The plateaus of the model give a correct quantitative fit
for experimental plateaus. Besides, a yet unobserved form of
inverted plateau, or “valley potential,” emerges as a natural
property of the saddle-node bifurcation underlying the exis-
tence of plateaus. A robustness analysis proves that the results
are not dependent on the particular set of parameters used in
the simulations. Availability of this reliable, simplified model
sets the stage for future studies on the role of PC dendrites
computations in information processing in the cerebellum.

D E N D R I T I C M O D E L

Electric properties of the membrane

The present study examines an isopotential, single-compart-
ment model of a dendrite with radius Rd (centimeters) (Fig. 1).
In mature PCs, P-type Ca channels sustain more than 90% of
dendritic Ca currents (Kaneda et al. 1990; Usowicz et al.

1992), and the dendritic membrane is devoid of voltage-depen-
dent Na channels (Llinas and Sugimori 1992; Stuart and
Haüsser 1994). The model, therefore incorporated the P-type
Ca conductance as the unique voltage-dependent inward con-
ductance. The situation is less clear regarding outward conduc-
tances. In 1989, Gähwiler and Llano identified two types of K
conductances with single-channel recordings from PCs. One
had properties reminiscent of the delayed-rectifier, while the
other was suggested to correspond to a large-conductance,
Ca-dependent K channel (or “BK-type” channel, see Hille
1992). Gruol and collaborators later extended these findings.
On the one hand, they correlated activity of the delayed recti-
fier to the repolarization phase of spikes (Gruol et al. 1991); we
therefore incorporated a delayed rectifier potassium conduc-
tance (Kdr) in our model, which was adapted from the model of
Yuen et al. (1995). On the other hand, Jacquin and Gruol
(1999) showed that the Ca-dependent K conductance presents
significant sub-threshold voltage activation at Ca concentra-
tions as low as 100 nM. Gruol et al. (1991) found four more K
channel types that still have not been clearly identified. How-
ever, Midtgaard (1995) has reviewed experimental evidence
suggesting that several sub-threshold, inactivating conduc-
tances may participate in synaptic integration in PCs dendrites
(Midtgaard 1995; Midtgaard et al. 1993). Following the same
direction, Wang et al. (1991) characterized a fast-inactivating
(� � 100 ms) A-type conductance, but the existence of a
conductance inactivating on the second time scale was sug-
gested by Midtgaard (1995). All in all, a precise identification
of sub-threshold K conductances is still lacking. However, as
they all activate in a critical voltage range between �50 and
�30 mV, which is more negative than the activation threshold
for the Kdr channel (Gruol et al. 1991), we have lumped these
currents into a generic IKsub, embedded with voltage activation
at sub-threshold potentials.

In the present model, dynamics of the membrane potential,
V (in millivolts), obeyed the differential equation

C
dV

dt
� ��ICa � IKdr � IKsub � ILeak� � Idc � I� (1)

where C (�Fcm�2) stands for the specific membrane capaci-
tance; Ileak is a leakage current, and I� and Idc, respectively,
denote phasic and tonic currents injected into the model. The
different ionic currents (expressed as nAcm�2 densities) were
derived from Ohm’s law according to the Hodgkin-Huxley
(HH) formalism

ICa � gCas�V � ECa� (2a)

IKsub � gKsubu
3�V � EKsub� (2b)

IKdr � gKdr n
4�V � EKdr� (2c)

ILeak � gLeak�V � ELeak� (2d)

where ECa, EKsub, and EKdr represent Nernst potentials and gCa,
gKsub, and gKdr correspond to maximum channel conductance
(�Scm�2). In the HH formulation, actual conductance are
given by the product of these maximum conductance by volt-
age- (and possibly [Ca]i-) dependent gating variables, which
are dimensionless functions defined on the range [0,1]; s stands
for the activation variable of the Ca current and u and n for that
of the sub-threshold and delayed-rectifier K currents, respec-
tively. These variables obey the general differential equation

FIG. 1. Membrane of the dendritic model is comprised of a constant leak-
age conductance and 3 voltage-dependent conductances: gCa is a high-thresh-
old, P-type Ca conductance, gKdr is a classical delayed-rectifier, and gKsub is a
low-threshold K conductance. As Ca channels open, Ca2� ions entering the
dendrite distribute uniformly into a shell of cytoplasm, inside which they
combine with an endogenous buffer and are pumped into an inner core; the Ca
concentration in the core is kept at a low basal value, [Ca]b. [Ca]i changes in
the cytoplasm modify the value of the electromotive force on Ca2� ions across
the membrane.
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dp

dt
� �p��V� � p�/�p�V�, p � s, u, n (3)

where �p(V) is the relaxation time and p�(V) is the equilibrium
value of variable p. As P-type channels activate very fast
(Regan 1991), we equated s to its equilibrium value s� in Eq.
2a. The same assumption was made for IKsub, whose activation
variable u was described by its equilibrium value u�. As
spiking requires delayed activation of ICa and IKdr, the latter
current was assumed to activate with a classical, bell-shaped
time constant (Hille 1992)

�n�V� � �n0 � �n1/�exp��V � V� n�/k� n	 � c� n/exp��V � V� n�/k� n	�
�1 (4)

The different parameters appearing in this equation have the
following units: �n0 and �n1 are in milliseconds, c� n is dimen-
sionless, and V� n and k� n are in millivolts. Full HH description
of membrane currents implicated unnecessarily complicated
calculations given the experimental uncertainty on rates of
(in)activation of these currents. Steady-state values of voltage-
sensitive gates were therefore described with Boltzmann func-
tions

p��V� � �1 � exp���V � Vp�/kp	�
�1 (5)

where Vp (in millivolts) and kp (in millivolts), respectively,
stand for the half-activation potential and activation slope of
gating variable p. Equation 2b deserves special comments. The
body of results presented in this paper was obtained with the
generic IKsub described in Eq. 2b. However, the various sub-
threshold conductances lumped in IKsub must display some
heterogeneity in their activation function. We therefore inves-
tigated the robustness of the results to variations in gKsub, Vu,
and ku. Moreover, some of these conductances exhibit Ca-
dependence or inactivation as noted above, which led to the
possibility that these properties may challenge conclusions
derived from the crude description of IKsub. We therefore
considered alternative schemes introducing these properties.
To model A-type conductances (Midtgaard 1995; Wang et al.
1991), simulations were run with IKsub multiplied by an inac-
tivation variable h, whose dynamics obeyed Eq. 3, with the
time constant (�h) left as a freely adjustable parameter. Other
simulations were run with activation of gKsub depending on
[Ca]i to mimic the BK-type K conductance of Gruol et al.
(1991). Sensitivity of BK channels to [Ca]i consists in a shift of
their activation range toward more negative potentials with
increasing concentrations of the cation (Hille 1992). Jacquin
and Gruol’s (1999) data on this shift were fitted by the follow-
ing equation for the half-activation potential of gKsub

V��Ca� � 3 � 102 exp����Ca	i � KdCa�/kCa	/

�1 � exp����Ca	i � KdCa�/kCa	� � 102 (6)

which was substituted into Eq. 5.

Internal dendritic calcium regulation

Ca-imaging techniques have revealed large [Ca]i increases
in PC dendrites on activation of their excitatory synapses
(Callaway et al. 1995; Miyakawa et al. 1992). These concen-
tration changes modify the Nernst potential (mV) of Ca ions

ECa �
RT

2F
ln

�Ca	o

�Ca	i

(7)

and the magnitude of Ca currents at a given membrane poten-
tial (see Eq. 2a); R is the gas constant (JK�1M�1), T is the
absolute temperature (K), and F is the Faraday constant
(CM�1). Limited knowledge of the numerous processes in-
volved in [Ca]i regulation hindered elaboration of a faithful
model of this concentration effect. A number of simplifying
assumptions were thus made to derive a simple model of [Ca]i
dynamics coherent with the low resting Ca level in neurons and
calcium imaging data. First, lateral diffusion of Ca along the
dendrite was neglected as the cation diffuses slowly within
neurons (Hille 1992). Second, Terasaki et al. (1994) have
shown that the endoplasmic reticulum extends in PCs from the
soma up to the very tip of dendrites and even inside spines. Ca
entering the dendrites is therefore compelled to distribute
within a thin shell of cytoplasm beneath the membrane; its
thickness was taken as � 
 0.3 �m. We assumed that Ca can
exchange between this shell and the inner dendritic core (Fig.
1); [Ca]i in the core was fixed to value [Ca]b. This naive
representation was aimed at providing a simple formalism for
the complicated processes of calcium diffusion and pumping
into the ER. Besides, PCs have a high Ca-buffering capacity
(Fierro and Llano 1996), which must markedly slow down
[Ca]i dynamics, according to the modeling work of Sala and
Hernandez-Cruz (1990). In consequence, we have introduced,
in the model, an immobile calcium buffer with fixed concen-
tration [B]T. With these assumptions, the balance equation of
Ca in the sub-membrane shell can be written

d�Ca	i

dt
� � �

10�9RdICa

F��2Rd � ��
�

2k�Rd � ����Ca	i � �Ca	b�

��2Rd � ��
(8)

The rightmost term in Eq. 8 corresponds to the Ca exchange
between the cytoplasm and the inner core of the dendrite, the
calcium concentration being kept constant at value [Ca]b in the
latter compartment; this process has a time constant �(2Rd �
�)/[2k(Rd � �)], where k corresponds to a one-dimensional
diffusion constant (cms�1). � (�Ms�1) denotes a sink term
accounting for the binding of Ca to the buffer. This process
was described by a first order reaction

Ca � B-|0
k1

k2

Ca�B

with dissociation constant Kd 
 k2/k1 (�M). Introducing the
total buffer concentration [B]T 
 [Ca-B] � [B] (�M), the sink
term is written

� �
d�B	

dt
� k1�Kd��B	T � �B	� � �Ca	i�B		 (9)

Binding of Ca ions to the buffer was assumed to be fast with
respect to the overall evolution time of [Ca]i. The free buffer
concentration, [B], could therefore be equated to its equilib-
rium value at each point in time

�B	 �
�B	T

1 � �Ca	i/Kd

(10)

Applying the chain rule of differentiation to Eq. 10 leads to

� �
d�B	

d�Ca	i

d�Ca	i

dt
� �

�B	T/Kd

�1 � �Ca	i/Kd�
2

d�Ca	i

dt
(11)

This expression was substituted for Ð into Eq. 8 to obtain
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d�Ca	i

dt
� ��1 �

�B	T/Kd

�1 � �Ca	i/Kd�
2��1

� � 10�9Rd

��2Rd � ��F
ICa �

2k�Rd � ��

��2Rd � ��
��Ca	i � �Ca	b�� (12)

Basic parametric values were as follows: C 
 1 �Fcm�2, T 

298 K, F 
 96, 500 Cmol�1, R 
 8.32 JK�1mol�1, Rd 
 5 �
10�5 cm, [B]T 
 150 �M, Kd 
 1 �M, [Ca]b 
 50 nM, [Ca]o 

1.1 mM, � 
 3 � 10�5 cm, k 
 0.01 cms�1, gleak 
 20 �Scm�2,
gCa 
 600 �Scm�2, gKsub 
 30 �Scm�2, gKdr 
 4,200 �Scm�2,
ELeak 
 �60 mV, EKsub 
 �95 mV, EKdr 
 �95 mV, Vs 
 �22
mV, Vu 
 �44.5 mV, Vn 
 �25 mV, ks 
 4.53 mV, ku 
 3 mV,
kn 
 11.5 mV, �n0 
 0.2 ms, �n1 
 4.15 ms, c�n 
 0.6, k�n 
 17
mV, V�n 
 �22.5 mV; gKsub inactivation: Vh 
 �50 mV, kh 

8 mV; Ca-dependence of gKsub: KdCa 
 10 nM, kCa 
 200 nM.

Analytical and numerical methods

To simplify the typography, we introduce the following
notation

x1 � V, x2 � �Ca	i, x3 � n

Defining vector X(t) 
 [x1(t), x2(t), x3(t)]T, we can rewrite Eqs.
1, 12, and 3 written explicitly for n as

dX

dt
� F�X, �� (13)

where

F�X, �� � �F1�X, ��, F2�X, ��, F3�X, ��	T (14)

F1, F2, and F3, respectively, stand for the right-hand side of
differential Eqs. 1, 12, and 3; � is the vector of parameters of
the model (� dimension is not specified as alternative models
had different numbers of parameters). One-dimensional bifur-
cations, when parameter Idc was varied, were studied as fol-
lows.

Let X� (�) denotes an hyperbolic equilibrium point of system
(Eq. 13), i.e., a point satisfying

F�X���, �	 � 0 (15)

at which location the linearization of vector field F[X(�)] has
no eigenvalue with zero real part. Bifurcations of X(�) arise

when the Jacobean matrix of system Eq. 13,
	F

	X
, evaluated at

X(�) is singular

det�	F

	X��X���	 � 0 (16)

Depending on the value of other parameters, limit cycles
emerged at critical Idc values from Hopf or homoclinic bifur-
cation. Hopf bifurcation arose when a pair of complex eigen-
values of the linearization of vector field F[X(�)] crossed the
imaginary axis at nonzero speed. Homoclinic bifurcations were
either at saddle-node (the point of coalescence of a stable and
an unstable branch in the bifurcation diagram) or at regular
saddle (on an unstable branch turning back from a stable
branch).

Equation 13 was numerically studied with XPP, Matlab, and
Maple V software. Numerical integration in the time-domain

was carried out with the stiff-robust method CVODE imple-
mented in XPP. Bifurcation diagrams were built with the
AUTO part of XPP. Plateau and valley potentials were quan-
tified to study the particular influence of the different param-
eters of the model. Duration of a plateau (or valley) was
defined arbitrarily as the time elapsed between the end of its
triggering stimulus and the inflection point in the potential
decay at the end of plateaus (valleys); plateaus and valleys of
duration �100 ms were discarded because they could not be
distinguished by visual inspection from passive exponential
relaxation to steady states. Potential of a plateau (or valley)
was defined as the mean potential within its duration. Calcium
variation for plateaus and valleys was calculated as the time
integral of [Ca]i changes from the resting concentration of the
cation caused by the stimulus. The plateaus maximum and
valleys minimum calcium reached after stimulation were also
computed.

R E S U L T S

Dual electroresponsiveness of the model: plateaus and
spikes

Figure 2 illustrates membrane voltage and [Ca]i responses of
the model to square pulses of depolarizing current that simu-
lated activation of excitatory synapses on the dendrite. Figure
2A shows how a large current step (I� 
 575 nAcm�2)
triggered a train of fast Ca spikes, each of them accompanied
by a distinct [Ca]i transient. The amplitude of the spikes
decreased slightly during the first 300 ms of the pulse, but the
model settled hereafter into a regular firing mode with a fre-
quency of approximately 10 Hz. The firing abruptly ceased at
the pulse offset and V recovered to its resting value at �58.3
mV. [Ca]i did not fully relax to its resting level between spikes,
resulting in a slow increase of the baseline level that culmi-
nated at 2.5 �M within 0.3 s after onset of the pulse. Spike-
induced [Ca]i transients developed with increasing amplitude
as the envelope progressively saturated the buffer (Kd 
 1
�M). Calcium relaxation dynamics were accordingly much
slower below 1 �M, compared with higher concentrations;
thus [Ca]i rapidly fell to 1 �M after the end of the stimulus
pulse, but subsequently stayed elevated above its resting level
(96 nM) for more than a second after the end of pulse. These
features of calcium dynamics correspond very well with optical
signals from PCs loaded with Ca-sensitive dyes (see e.g.,
Lev-Ram et al. 1992; Miakawa et al. 1992; Midtgaard et al.
1993).

The range of voltages sub-threshold to Ca spikes was ex-
plored with small amplitude current pulses, which unraveled
complex dynamical properties. Figure 2B illustrates three sam-
ples obtained with 100-ms-duration pulses of different ampli-
tude. With I� 
 100 nAcm�2, the voltage response was
dominated by passive properties of the membrane; V decayed
exponentially at the end of pulse. This decay was profoundly
modified when larger pulses activated nonlinear properties of
the membrane. I� 
 115 nAcm�2 brought the membrane
potential to �49 mV, from which V recovered to its resting
value after a triangular plateau response of 250 ms duration.
Increasing I� to 130 nAcm�2 caused a further (approximately
1.5 mV) depolarization at the end of the stimulus. From then
on, and instead of repolarizing as before, V underwent a slow
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upward deflection to �45 mV, from which it produced a
rectangular plateau of approximately 800 ms duration. V
slowly drifted toward more negative values during the plateau,
and below �49 mV, the model abruptly repolarized with
kinetics similar to the triangular plateau. Close resemblance of
this repolarizing phase between the two pulses as well as high
sensitivity of the response to small current changes implied a
voltage threshold in both the triggering and the spontaneous
reset of plateaus.

Figure 2B (bottom) displays the time course of [Ca]i during
the above-mentioned voltage responses. [Ca]i did not increase
significantly from its resting value during the passive response.
A very limited increase (peak approximately 150 nM) accom-
panied the triangular plateau, which can be related to the
virtual absence of significant [Ca]i changes reported during
short-duration, triangular plateaus (Miyakawa et al. 1992). On
the contrary, [Ca]i increased up to five times its resting value
during the rectangular plateau. This result corresponds well
with data from Callaway et al. (1995; see Fig. 10) that show
marked [Ca]i increases during long duration, rectangular pla-
teaus.

Faced with such different responses, we investigated the
range of possible behaviors of the model by means of the
bifurcation theory. Figure 2C illustrates the bifurcation dia-
gram obtained by varying the intensity of a tonic current
delivered to the model. From left to right, one first encounters
a Idc range where the resting state is a globally stable attractor
(bottomsolid branch). Just above the zero current axis, a nar-
row current region is found, where this state coexists with
another stable, depolarized state (topsolid branch). In this
region of hysteresis, the resting state is separated from the
excited one by an unstable (dashed) branch. We found that the
hysteresis region laid in the range  
 [5.85,42.76] of tonic
inputs (nAcm�2). With larger currents, the excited state branch
exchanged stability at 561.3 nAcm�2, where a limit cycle
appeared. Classical algebraic criteria allowed us to show that
this limit cycle arose from a Hopf bifurcation (see Mattheij and
Molenaar 1996). The new oscillatory branch was unstable and
became stable at a turning point (555.6 nAcm�2), demonstrat-
ing the subcritical nature of the bifurcation. Thus stable oscil-
lations of the membrane potential started with finite amplitude
and corresponded to the regular firing of fast Ca spikes illus-

FIG. 2. Spikes and plateaus in the dendritic model. A: V and [Ca]i time course during the train of Ca spikes triggered by a long
depolarizing pulse (I� 
 575 nAcm�2). B: sub-threshold responses to brief (100 ms) depolarizing pulses with varied amplitude.
The passive response (*), triangular plateau (‚), and rectangular plateau (�), respectively, correspond to I� 
 100, 115, and 130
nAcm�2. Note the different [Ca]i scale compared with A. C: bifurcation diagram obtained by varying Idc. Steady and periodic
solutions are respectively depicted as thin and thick lines, stable and unstable solutions as solid and dashed lines. Throughout the
text,  denotes the current domain where the resting state coexists with an excited, plateau state. D: Ca spikes frequency/Idc curve
reveals low frequency of discharge.
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trated in Fig. 2A. The slope of the limit cycle frequency/Idc
curve decreased rapidly with increasing currents (Fig. 2D), and
the relation became close to linear above 700 nAcm�2. Idc 

103 nAcm�2, that is about twice the bifurcation current, led
only to a 35-Hz frequency, indicating that the model predicted
low frequency firing. Compilation of published traces of Ca
spike discharge in intracellular recording gives a frequency
range of approximately 5–30 Hz (see e.g., Llinas and Sugimori
1980b), which corresponds well with this result.

The  range computed above corresponded to a current
domain where the model exhibited bistability. However, the
bifurcation parameter in Fig. 2C was Idc. With Idc 
 0, phasic
inputs failed to switch the membrane to the excited state (Fig.
2B). This proved that the origin of the spontaneous reset of
plateaus was not to be found in the bistability of the model. The
following section investigates the mechanism of this reset.

Mechanism of spontaneously resetting plateaus

The ionic basis of spontaneously resetting plateaus (Fig. 2B)
was difficult to determine from the full equation system, owing
to its three-dimensionality. We therefore attempted to simplify
this system. It was tempting to remove gKdr from the model,
because this conductance never activated more than 5% of its
maximum value during plateaus. However, in the range [�50,
�40] mV, gKdr and gKsub were of the same order of magnitude,
suggesting that plateau generation involved the two K conduc-
tances. This was confirmed by zeroing either of the two K
conductances (Fig. 3). With gKsub suppressed (gKdr left un-
changed), the model lost its capacity to sustain plateaus; but it
could still fire Ca spikes, showing that spikes arose from
interaction between ICa and IKdr. When gKdr was suppressed
(gKsub left unchanged), the model lost its ability to sustain
either Ca spikes or sub-threshold plateaus. Instead, current
pulses switched the membrane to a highly depolarized stable
potential (approximately 52 mV). This result reproduced the
large plateau at 55 mV observed by Llinas and Sugimori
(1980a) after blocking K conductances with tetraethylammo-
nium remarkably well.

The above results show that the three active currents inter-
acted strongly during plateaus. Nevertheless, the n variable
evolved on a much faster time-scale than V and [Ca]i during
plateaus. This suggested that plateaus could be studied by
considering the slow sub-system formed by the two latter
variables. We therefore set n 
 n�(V) in the full system to
obtain a degenerate system with V and [Ca]i as variables.
Figure 4A plots trajectories of the variables of this two-dimen-
sional model in response to a 100-ms depolarizing pulse (I� 

130 nAcm�2). The V and [Ca]i traces closely matched those
illustrated for the full model with the same pulse in Fig. 2B.
Figure 4B displays the instantaneous I/V relation of the reduced
model (i.e., at fixed [Ca]i) at three different times, before and
during the plateau, marked by vertical dashed lines in Fig. 4A.
Intersections of these curves with the V axis were not true
equilibria of the reduced model, but equilibria of the V differ-
ential equation for given instantaneous values of [Ca]i. As
such, location of V-equilibria along the V axis evolved in time
with [Ca]i changes. Three V-equilibria were found prior to the
stimulus (Fig. 4B, curve labeled with an asterisk). The left
(approximately �58.3 mV) and right ones (�42.1 mV) were
stable (F) and corresponded, respectively, to the resting state
and to an excited state of the model. The middle equilibrium
point (E) was unstable (stability can be assessed from the sign
of the local slope of the I/V). Figure 4A plots the time evolution
of the voltage of the unstable and excited V-equilibria, super-
imposed on the membrane voltage trace. The current pulse
depolarized the membrane beyond the unstable equilibrium
and the model switched toward the excited state. However, due
to the slow [Ca]i increase occurring during the early part of the
plateau, the driving force of ICa diminished progressively,
resulting in a slow upward shift of the I/V (Fig. 4B). This shift
forced the unstable and excited states to approach each other
until they coalesced (Fig. 4B, �) at the instant marked by a
triangle in Fig. 4A. The model was then forced to recover its
resting state, as it was the only equilibrium point left. Full
recovery of the resting state was granted by the fact that, as
[Ca]i rediminished, the excited and unstable states reappeared
only after V had decayed under the unstable V-equilibrium.

As the reduced model was two-dimensional, the above fea-
tures were best captured in the ([Ca]i, V) plane. Figure 4C
illustrates two significant trajectories of the reduced model in
this plane and depicts the nullclines. A 100-nAcm�2 pulse
resulted in a 8-mV transient depolarization, accompanied by a
moderate [Ca]i increase (peak approximately 150 nM). With
I� 
 130 nAcm�2, membrane voltage was made to cross the
V-nullcline, which it did nearly horizontally owing to the slow
rate of [Ca]i evolution. From then on, the trajectory turned
leftward to follow the right-most branch of the V-nullcline. In
this region, the overall dynamics of the model were governed
by the slow [Ca]i dynamics; this part of the trajectory corre-
sponded to the plateau part of the response. The trajectory
eventually went beyond the local maximum of the V-nullcline,
crossed the [Ca]i nullcline, and finally returned to the resting
state; this last phase of the trajectory corresponded to the rapid
plateau decay.

Figure 4D quantifies properties of spontaneously resetting
plateaus as a function of I� (100-ms-duration pulses). Nonlin-
ear membrane properties began to activate at 110 nAcm�2 and
led to the triangular plateaus illustrated in Fig. 2B. Their mean

FIG. 3. Mixed activation of IKsub and IKdr during finite-duration plateaus. A
100-ms pulse (I� 
 130 nAcm�2) was used to trigger a plateau with sponta-
neous reset in the full model. The same pulse triggers a Ca spike in the model
devoid of gKsub. Without gKdr, the pulse switches the model to a stable plateau
state at a highly depolarized level (onset of the 3 pulses was shifted for clarity
of the graph).
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potential, duration, [Ca]i peak, and [Ca]i deviation all increased
steeply up to I� 
 125 nAcm�2. Beyond this value, plateau
potentials became largely insensitive to I� and adopted a
stereotyped rectangular form. Thus rectangular plateaus were
characterized by a uniform amplitude (approximately �46
mV) and duration (�800 ms), which translated into nearly
constant [Ca]i peak (�550 nM) and deviation (�450 nMs).

According to the above analysis, spontaneously resetting
plateaus reflected the excitability of the resting state of the
model. Looking at Fig. 4C, one recognizes an homology be-

tween geometrical properties of this point and that of the
resting state in Fitzhugh-Nagumo’s model (in the parameter
range where it has an excitable resting state, see Murray 1993).
This analogy suggests that finite-duration plateaus triggered by
phasic currents represent genuine action potentials, with a
much slower time course and lower amplitude than fast Ca
spikes. However, these spike-like plateaus were obtained with-
out tonic currents. In our model, Idc was able to shift the
operating regime of the dendrite in response to phasic inputs
with respect to the hysteresis region (Fig. 2C). We therefore

FIG. 4. Mechanism of spontaneously resetting plateaus in the model with Idc 
 0. Graphs illustrate the dynamics of the
2-dimensional system derived from the model by assuming instantaneous activation of IKdr. A: time course of V and [Ca]i in
response to a 100-ms depolarizing pulse (I� 
 130 nAcm�2); traces faithfully reproduce those obtained with the full model with
the same stimulation (Fig. 2C). B: instantaneous dendritic I/V relation at the 3 times marked by dashed vertical lines in A. Before
the pulse (*), the I/V intersects the 0-current axis at 3 points, which represent pseudo-equilibrium voltages (or V-equilibrium) (F,
stable; E, unstable). Voltages of the middle (dashed) and right (solid) V-equilibrium are superimposed on the V trace in A.
Depolarization above the middle (saddle) point brings the system toward the right (plateau) equilibrium. As [Ca]i increases, ICa

decreases, which shifts the I/V relation upward. This brings the 2 right equilibrium points closer, until they coalesce (‚), and V is
then forced to return to its resting value. Note that, after reaching a maximum (�), [Ca]i decreases and allows the saddle and plateau
points to reappear; but V has already decayed under the saddle voltage at this time and the dendrite keeps repolarizing. C: phase
plane analysis. Trajectory of the plateau illustrated in A (outer trajectory) and a passive response (inner trajectory) to a smaller,
100-nAcm�2 pulse are displayed in the (V, [Ca]i) plane. Graph also displays the [Ca]i-nullcline (d[Ca]i/dt 
 0) and V-nullcline
(dV/dt 
 0), which intersect at a stable state (solid dot) corresponding to the resting potential. From this point, a trajectory must
be driven by an injected current across the unstable middle branch of the V-nullcline to form a rectangular plateau. D: quantitative
analysis of resetting plateaus as a function of I� (100-ms-duration pulse). Steep region on the left of curves corresponds to triangular
plateaus, while the flat part corresponds to rectangular plateaus.
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investigated model properties at different levels of depolarizing
tonic currents.

Stable plateaus

Figure 5 illustrates how feeding the model with Idc 
 25
nAcm�2 (laying at the center of ) modified responses to
phasic inputs. A 35-nAcm�2, 100-ms duration pulse triggered
a transient depolarization that decayed passively after the
pulse. But I� 
 100 nAcm�2 switched the dendrite to �45
mV, this excited state being maintained indefinitely after the
pulse. The transient 4-mV hyperpolarization triggered by a

�35-nAcm�2 negative pulse, delivered at time t 
 1.5 s,
demonstrates the stability of this plateau. However, the model
could be switched back to its unexcited state by a �100-
nAcm�2 pulse.

The origin of these features is more evident in Fig. 5B,
which illustrates how the tonic input modified nullclines of the
reduced two-dimensional model. Idc had shifted the V-nullcline
upward, resulting in a saddle-node bifurcation. This led to the
appearance of two additional equilibrium points in contrast
with the zero tonic input diagram (Fig. 4C). The right most
equilibrium corresponded to a plateau state of the membrane
and was stable, like the resting state. The central point was a
saddle, whose stable manifold separated the basins of attraction
of the resting and plateau states and therefore acted as a
threshold between the two stable states (dashed curve in Fig.
5B). Thus perturbations of the resting state that stayed to the
left of the stable manifold eventually died away; perturbations
of the plateau state that stayed to the right of the stable
manifold also died away. But any perturbation from one of the
stable states, large enough to cross the stable manifold, brought
the model over to the other state. In these conditions, the
dendrite behaved like a switch between the resting and plateau
states, as was suggested by Yuen et al. (1995). However, the
model of these authors predicted very depolarized potentials
for stable plateaus (�0 mV), whereas the ones obtained in our
reduced (Fig. 5A) and full models (Fig. 2C) were clearly
sub-threshold, consistent with experimental observations (Lli-
nas and Sugimori 1980b).

Valley potentials

A third kind of dynamical behavior was obtained with Idc
larger than the upper bound of the  range. With such tonic
inputs, the model had a globally stable attractor, corresponding
to a stable plateau state. Whatever initial conditions, the den-
drite eventually converged to this state because the lower stable
branch in the bifurcation diagram had vanished. Thus short
inhibitory inputs could not switch off the dendrite to a de-
excited state as they did previously. Figure 6A shows, however,
that the plateau exhibited complex dynamical responses to such
brief inputs. Thus a �50-nAcm�2, 100-ms duration pulse
resulted in a transient passive hyperpolarization. Increasing the
intensity to �75 nAcm�2 turned this passive response into a
triangular, inverted plateau of approximately 150 ms duration.
Further increase of I� to �100 nAcm�2 lengthened this re-
sponse to 1 s. Comparison with Fig. 2B shows how the time
course of V and [Ca]i during these responses mirrored dynam-
ics of the variables during spontaneously resetting plateaus.
These inverted plateaus were therefore termed “valley poten-
tials.” The shape of rectangular valleys was robust to increases
in I� as can be seen from the trace with the �150-nAcm�2

pulse. This shows that the model could produce a stereotyped
trace of past inhibitory inputs. However, Fig. 6A suggests that
such traces could take place only following inhibitory inputs
with a magnitude sufficient to bring V under a threshold located
around �50 mV. This threshold behavior can be understood in
Fig. 6B, which plots trajectories of the reduced model in the
([Ca]i, V) plane. The resting and saddle points had coalesced,
leaving the plateau as the unique steady state. As V evolved
faster than [Ca]i, the vector field was nearly horizontal in the
portion of the plane considered, except near branches of the

FIG. 5. Stable plateau in the reduced model with Idc 
 25 nAcm�2. A: V
and [Ca]i responses to brief (100 ms) depolarizing pulses. With I� 
 35
nAcm�2 (*), the model returns to its resting state, while I� 
 100 nAcm�2 (‚,
�) switches the model to a plateau state. Stability of the plateau is illustrated
by the transient hyperpolarization triggered by a small hyperpolarizing pulse
(�, I� 
 �35 nAcm�2). The dendrite can be, however, switched off to its
resting state by a larger pulse (‚, I� 
 �100 nAcm�2). B: phase plane
representation reveals the origin of this threshold behavior. Traces shown in A
(thin lines) are displayed in the (V, [Ca]i) plane, together with the V- and
[Ca]i-nullclines of the system (thick traces). Reduced model has 2 stable
attractors (resting and plateau states, F) and an unstable equilibrium (saddle,
E). Starting from 1 of the 2 stable points, a trajectory must cross the stable
manifold of the saddle (dashed line) to converge to the other stable point.
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V-nullcline, where the field was tilted vertically. This impli-
cates that model dynamics were controlled by the [Ca]i differ-
ential equation in these regions. Thus with growing pulse
amplitude, perturbations approached the U-shaped region of
the V-nullcline where their relaxation was slowed down by
[Ca]i dynamics (i.e., triangular valleys). Perturbations that
were just large enough to cross the middle branch of the
V-nullcline induced rectangular valleys; the slow phase of
these valleys corresponded to the part of the trajectory that ran
along the middle branch of the V-nullcline. With larger pulses,
perturbations could even cross the left branch of the V-nullcline.
These trajectories were quickly brought back toward the U-
shaped region of the V-nullcline, thereby producing a peak
hyperpolarization followed by a stereotyped valley potential.

Figure 6C summarizes characteristics of valley potentials as
a function of I�. From 75 to 90 nAcm�2, phasic inputs trig-
gered triangular valleys at more hyperpolarized levels and with
growing duration. The minimum [Ca]i reached and integrated
[Ca]i diminution continuously decreased with increasing hy-
perpolarizing phasic inputs. I� 
 90 nAcm�2 represented a
threshold value, above which rectangular valley potentials
adopted stereotyped characteristics (mean level approximately
�53 mV, 1 s duration; [Ca]i peak at 250 nM and [Ca]i
deviation of 0.5 �Ms).

Global behavior

The previous sections have shown that the plateaus with
spontaneous reset, which could be triggered by a brief depo-
larizing pulse (Figs. 1 and 3), were transformed into infinite-
duration plateaus by injecting a tonic current laying in the 
range (Fig. 5). It is apparent from this result that Idc was able
to modulate the length of plateaus in the model. This property
of tonic currents was analyzed in details. In Fig. 7A, on the left
of the  region, are displayed four examples of curves relating
the duration of a plateau triggered by a depolarizing pulse to
the magnitude of the applied Idc. The pulse duration was 100
ms in all cases, and I� had the following amplitudes (nAcm�2):
150 (�), 200 (�), 250 (�), and 300 (�). Figure 7A shows that
hyperpolarizing tonic currents prevented the pulses from trig-
gering plateau potentials, down to a critical Idc value where
plateaus emerged with a triangular shape. This critical current
value was more negative when I� was large, ranging from
about �100 nAcm�2 for I� 
 300 nAcm�2 to �25 nAcm�2

for I� 
 150 nAcm�2. Whatever the value of I�, reducing the
magnitude of the tonic hyperpolarizing current from the critical
value increased sharply the duration of triangular plateaus, up
to a point where plateaus adopted a rectangular shape; this
change of shape occurred at the Idc values where the curves

FIG. 6. Valley potentials in the reduced model with Idc 
 50 nAcm�2. A: responses to 100-ms hyperpolarizing pulses from the
stable plateau potential (I� 
 *, �50; ‚, �75; �, �100; and �, �150 nAcm�2, see bottom traces). Mirroring plateaus (compare
to Fig. 2A), increasing magnitude of hyperpolarizing pulses turn a passive response into triangular and rectangular responses. B:
representation in the phase plane illustrates changes in the nullclines intersections. Single equilibrium point left corresponds to the
plateau state (F). This point is excitable, and trajectories that cross the middle branch of the V-nullcline form rectangular valleys
(f and �). C: quantitative analysis of resetting valley potentials as a function of I�.
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exhibit a slope discontinuity. The curves for the 250 and 300
nAcm�2 had to be interrupted at Idc 
 �30 and �70 nAcm�2,
respectively, because the pulses triggered Ca spikes with hy-
perpolarizing Idc below these values. The curves for the two
smaller pulses could be extended up to the lower bound of the
 region, where the plateau duration became infinite. Overall,
Fig. 7A shows that the duration of plateaus in the model could
be made to cover an infinite range by varying Idc between
approximately �100 nAcm�2 and the lower bound of .
Experimental plateaus have been reported to range from close
to zero duration plateaus (nearly passive responses) to plateaus
lasting for several seconds (Ekerot and Oscarsson 1981; Llinas
and Sugimori 1992). These latter, long-lasting plateaus may

reflect the reset of otherwise stable plateaus by the spontaneous
activation of inhibitory synapses; however, no experimental
evidence of our knowledge can support or refute this interpre-
tation at the current time. Interestingly, the onset of Ca spikes
from plateau potentials predicted from Fig. 7A as the phasic
input magnitude increases is clearly evident in the voltage
traces illustrated by Llinas and Sugimori (1992).

Figure 7A also illustrates the influence of Idc on the duration
of valley potentials on the right of the  region. The 100-ms
pulses used to generate these valley duration/Idc curves had the
following magnitudes (nAcm�2): –100 (� ), �150 (ƒ), �200
(‚), and �300 (�). The valley duration decreased as Idc
increased, and valleys with the longest duration were found

FIG. 7. Global behavior of the model. A: duration of plateaus and valleys as a function of Idc. Plateaus and valleys were triggered
by 100-ms pulses with the following I� value (nAcm�2). Plateaus: 300 (�), 250 (�), 200 (�), 150 (�); valleys: –100 (�), �150
(ƒ), �200 (‚), �300 (�). B–D: origin of the influence of Idc on the duration of sub-threshold responses. By assuming that [Ca]i

and n are at equilibrium at each point in time, the full model was reduced to a 1-dimensional model with variable V. B: subset of
constant dV/dt curves of the 1-dimensional model in the (Idc, V) plane; the value of the potential derivative (mVs�1) is indicated
by a label on each curve. C and D: compare the time course of typical sub-threshold responses in the full model (thick lines) and
in the 1-dimensional model (thin lines): triangular plateau (C, top, Idc 
 �25 and I� 
 155), rectangular plateau (C, bottom, Idc 

0 and I� 
 155), triangular valley (D, top, Idc 
 75 and I� 
 �155), and rectangular valley (D, bottom, Idc 
 50 and I� 
 �155).
All currents are in nAcm�2, and the pulse duration was 100 ms in each case. Vertical lines in B display the corresponding
trajectories of the 1-dimensional model in the (Idc, V) plane. Arrows indicate the direction of repolarization toward the steady state
(resting state for plateaus and plateau state for valleys). Graphs evidence how sequence of slow/fast/slow values of the voltage-time
derivative can account for the shape of plateaus and valleys.
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near  like the longest plateaus. In contrast to plateaus, the
duration of valleys varied smoothly with Idc. In summary,
pulses with an appropriate magnitude could trigger plateaus
and valleys within a range of Idc values spanning almost seven
times the width of the  region.

Figure 7A shows, through variations in Idc, that the shape of
plateaus and valleys was sensitive to the membrane potential.
We devised a qualitative understanding of this influence from
a geometrical representation of the model dynamics similar to
the method of isoclines (see, e.g., Mattheij and Molenaar
1996). This approach consisted of generating a one-dimen-
sional approximation of the full model by extending to the
[Ca]i variable the rapid equilibrium approximation made for
the n variable (notice that zeroing the time derivative in Eq. 12
leaves an algebraic equation that cannot be solved explicitly for
[Ca]i in terms of V; strictly speaking, the one-dimensional
model was actually a differential algebraic system of equa-
tions). Stimulation parameters were adjusted for the full model
to produce typical sub-threshold responses (thick curves in Fig.
7, C and D): a triangular plateau (C,top), a rectangular plateau
(C, bottom), a rectangular valley (D,top), and a triangular
valley (D, bottom). Trajectories were also computed for the
one-dimensional model with the same stimulus parameters and
are illustrated as thin curves in Fig. 7, C and D. These trajec-
tories are also represented in the (Idc, V) plane as vertical bars
in Fig. 7B, together with a subset of constant potential deriv-
ative curves of the one-dimensional model. Each of these
curves indicates the locus of points in the (Idc, V) plane where
the derivative of state variable, V, of the one-dimensional
model has a given value (see labels).

The one-dimensional model reproduced qualitatively the
shape of either triangular or rectangular plateaus and valleys in
the full model. The only difference between the two models
was that all active sub-threshold responses had a shorter dura-
tion in the one-dimensional model than in the full one, due to
the neglecting of slow [Ca]i dynamics. This result proved that
the one-dimensional model could be used to understand the
qualitative dynamics of plateaus and valleys.

In a passive model, potential derivative would be straight
lines, but in the one-dimensional model these curves were
S-shaped due to the activation of ICa and IKsub (Fig. 7B). Due
to this distortion of the potential derivative curves, the one-
dimensional model crossed regions of different dV/dt values in
the (Idc, V) plane during the responses illustrated in Fig. 7, C
and D. With the triangular plateau (Fig. 7C, top), the mem-
brane potential of the one-dimensional model was �49.7 mV
at the end of the pulse. At this voltage, dV/dt was �55 mVs�1

(Fig. 7B) and this relatively low dV/dt value entailed the initial
slow rate of repolarization of the one-dimensional model (Fig.
7C). As the plateau decayed, however, the rate of repolariza-
tion accelerated because the model crossed regions with grow-
ing values of dV/dt until it approached its resting state. Then,
the model encountered again a region with low dV/dt value,
which was responsible for the slow phase terminating the
triangular plateau in the one-dimensional model (Fig. 7C). The
rectangular plateau on the bottom of Fig. 7C had a longer
duration because, at the value of Idc 
 0, the trajectory of the
one-dimensional model intersected constant potential deriva-
tive curves with globally smaller dV/dt values than with the
triangular plateau. Thus the smallest dV/dt value met during the
rectangular plateau was �10 mVs�1 versus �50 mVs�1 dur-

ing the triangular plateau. It is seen in Fig. 7C how the
sequence of slow/fast/slow potential derivatives in the one-
dimensional model accounted well for the qualitative shape of
plateaus in the full model. Similar conclusions can be derived
from Fig. 7, B and D, as regard to the valley potentials. Thus
the simplified one-dimensional model shows that plateaus and
valleys stood as a direct consequence of the distortion of the
voltage/current relationship around the  region, due to the
activation of ICa and IKsub.

Robustness of results and alternative schemes

The parameter sensitiveness of the results was examined
systematically. Particular emphasis was placed on the influence
of the parameters on the  region, due to its critical role in
setting sub-threshold responses of the model. Figure 8, A and
B, shows that increasing gKsub narrowed  by positively shift-
ing the left endpoint of the excited stable branch in the bifur-
cation diagram. Decreasing gKsub widened  with the opposite
effect and also shifted the right endpoint of the excited branch
(the Hopf bifurcation) toward the left of the diagram. First, this
shift resulted in transition from the Hopf to a homoclinic
bifurcation at regular saddle at gKsub 
 25.25 �Scm�2 (marked
by a vertical dashed line through ). With further decrease in
gKsub, the excited branch eventually lost stability at a lower Idc
than the right endpoint of the resting branch (Fig. 8B), turning
 into a current domain where the model could still display
bistability, but no longer hysteresis. To highlight the differ-
ence,  boundaries were plotted as dashed lines when 
corresponded to a bistable region (same symbols were used to
locate Hopf/homoclinic and hysteresis/bistability transitions
throughout Fig. 8). Note that  vanished for gKsub 
 15
�Scm�2, due to the coalescence of the left and right endpoints
of the excited branch. Figure 7, C and D, illustrates the effects
of changing activation parameters of gKsub.  rapidly vanished
when the half-activation potential Vu became more negative,
while less negative Vu widened  up to Vu 
 �37.95 mV,
where  vanished. Overall, Fig. 8C shows an approximate
10-mV-wide range of Vu values in which the model had a
significant region of hysteresis/bistability. As seen in Fig. 8D,
 was widened when gKsub activated with steeper slopes (i.e.,
smaller ku). On the other hand,  was continuously narrowed
by decreasing ku 
 5 mV, above which  vanished. Together,
these results show that dynamical behaviors described in pre-
vious sections were robust to significant deviations in the
sub-threshold K current parameters, but that an overall steep
slope of activation was required for the model to reproduce
experimental plateaus.

The effects of changing the density of the two other active
conductances are illustrated in Fig. 8, E (gCa) and F (gKdr). A
 region could be obtained with deviations of the two con-
ductances up to approximately 50% around their reference
value.  remained a true hysteresis region with all tested
values of gKdr, while it became a bistability region with gCa’s
larger than 800 �S cm�2 due to lower thresholds for spiking at
these high Ca conductance values.

The bottom of Fig. 8 illustrates the influence of several key
parameters of [Ca]i regulation. All results displayed above
were obtained with a radius Rd 
 0.5 �m, corresponding to the
thinnest spiny dendrites (Shelton 1985). Figure 8G shows that
increasing Rd began by steeply increasing the  width, which
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became nearly constant between 1 and 5 �m (corresponding to
the primary dendritic trunk). According to our model, all parts
of PC dendrites should thus be able to sustain dynamical
behaviors described above. Figure 8H displays essentially sim-
ilar results when parameter k was varied in a large range
around its reference value (k sets the time constant that relax-

ation of [Ca]i would exhibit without buffer in the cytoplasm).
Finally, Fig. 8, I and J, illustrates the effects of varying the total
buffer concentration, [B]T, and its dissociation constant, Kd, on
the duration of a spontaneously resetting plateau (triggered by
a 130-nAcm�2, 100-ms-duration pulse with Idc 
 0). With
increasing [B]T, triangular plateaus of growing duration were
first encountered. [B]T 
 0.3 �M marked appearance of rect-
angular plateaus; their duration increased linearly with the
buffer concentration. This feature reflects the ability of the
buffer to slow down [Ca]i dynamics in the range of the cation
concentration corresponding to the plateaus. Figure 8J shows
that Kd’s around 0.35 �m resulted in maximal duration pla-
teaus. Decreasing Kd from this value shortened the plateaus
because it allowed the buffer to saturate at lower [Ca]i levels,
thereby reducing its efficiency at slowing down [Ca]i dynamics
during plateaus. With Kd’s � 0.35 �M, plateaus were also
shortened because the buffer slowed down [Ca]i dynamics at
higher [Ca]i levels than those reached during plateaus.

Additional computations were carried out with Iksub inacti-
vating with time constants ranging from that of the rapid
A-current of Wang et al. (1991) to that of the slowly inacti-
vating current hypothesized by Midtgaard (1995). Figure 9A
displays boundaries of the  region in the model with inacti-
vation versus gKsub (boundaries did not depend on �h, which
was taken as a constant). The graph is similar to that obtained
without inactivation (Fig. 8A), except  occurred in a gKsub
range above that found in the model without inactivation. This
difference stemmed from the voltage dependence of h�, which
resulted in significant inactivation of gKsub at rest. Introduction
of the inactivation scheme also changed the bifurcation from
which the limit cycle emerged into a homoclinic bifurcation at
saddle-node in the entire gKsub range studied. As suggested by
the  region in Fig. 9A, the model with inactivation also
produced finite duration plateaus and valleys with appropriate
levels of tonic currents (not shown). However, the time con-
stant of inactivation �h modulated their duration as illustrated
with plateaus in Fig. 9B. The figure plots the length of a
finite-duration plateau (130-nAcm�2, 100-ms-duration pulse)
versus �h for three values of gKsub: 40.66, 75, and 100 �S
cm�2. With the value of 40.66, the model had the same density
of active sub-threshold K channels at rest as in its basic
formulation. With this value, decreasing �h continuously in-
creased the plateau duration, which became infinite at �h 
 2 s;
the model discharged a Ca spike below this critical value.
Plateaus were lengthened by the decay of Iksub as it partly
overcame the decrease in ICa responsible for the spontaneous
resetting of plateaus. This effect was enhanced by decreasing
�h down to the critical value where Iksub decayed too fast to
prevent V from reaching the spike threshold. Critical �h could
be decreased by using larger gKsub values (�h 
 50 ms with
gKsub 
 75 and �h 
 1 ms with gKsub 
 100). With these larger
gKsub values, however, plateau duration decreased in the neigh-
borhood of the critical �h instead of becoming infinite. As
critical �h was approached, this duration decreased due to an
early transient depolarization of growing amplitude (data not
shown). This resulted in a larger initial [Ca]i increase at the
plateau onset that advanced the resetting effect.

The basic version of the model omitted Ca-dependent K
conductances, while it highlighted a critical role for [Ca]i
changes in plateau generation. We therefore introduced a Ca-
dependence of Iksub based on Jacquin and Gruol’s (1999) data.

FIG. 8. Sensitivity of the results to parameters. A and C–H: boundaries of
the  region, found in the bifurcation diagram in Fig. 2C, as a function of
different parameters. Influence of parameters on the diagram is illustrated in B
with the example of gKsub. For gKsub � 20 �Scm�2, a true hysteresis region
exists. Below this value, hysteresis is lost, because the plateau branch ends
before the resting one, but  remains a bistable domain. To display this
difference,  boundaries are plotted as solid lines with hysteresis and as
dashed lines without hysteresis in all graphs. A dashed vertical line across 
(“bc” in A) separates 2 regions in which spikes arise from a Hopf (right) or
from a homoclinic bifurcation at regular saddle (left). Solid vertical line (“ ref ”
in A) marks the reference parameter value. I and J: influence of Ca-buffer
parameters (concentration [B]T and dissociation constant Kd) on the duration of
a spontaneously resetting plateau; plateau was triggered by a 100-ms pulse
(I� 
 130 nAcm�2).
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With this modification, the model failed to produce any long-
lasting responses to phasic inputs, either plateaus, bistability,
or valley potentials (data not shown). Inability of the model to
sustain this kind of responses arose because activation of Iksub
became controlled by the slow [Ca]i dynamics. In other words,
Iksub activated too slowly in front of ICa for the two currents to
produce the balance required for plateau generation.

D I S C U S S I O N

The model analyzed in this paper accounts for the major
features of the dual electroresponsiveness of PC dendrites. It
sustains finite-duration plateaus with the various shapes re-
ported in response to parallel fiber volleys (Campbell et al.
1983), activation of the climbing fiber (Ekerot and Oscarsson
1981), or direct electric stimulation (Llinas and Sugimori
1980b, 1992). The model also reproduces the transition from
plateaus to spikes with increasing stimulation, as reported by
Llinas and Sugimori (1980b, 1992). The robustness of these
results relative to large deviations in key parameters around
their standard value suggests that our model, despite its low-

dimensionality, provides a valuable account of the input-output
relation of PC dendrites. As the model predicts occurrence of
valley potentials in response to inhibitory inputs during stable
depolarized states, which have not been observed yet, we will
first discuss consistency of the model in relation to synaptic and
membrane intrinsic properties of PCs. We will then discuss the
significance of the model regarding computations of PC den-
drites.

We cannot exclude that other models may reproduce elec-
troresponsiveness of PC dendrites equally well. However,
models that have so far attempted to reproduce the dual elec-
troresponsiveness of PC dendrites contain inconsistencies. In
the introduction, we discussed that De Schutter and Bower’s
(1994) model fails to produce dendritic plateaus with sponta-
neous reset. Miyasho et al. (2001) recently introduced into this
model E- and D-type Ca currents, which inactivate with time
constants of several tens of milliseconds. In this model, brief
depolarizing currents trigger long after-depolarizations that
resemble experimental plateaus. But Miyasho et al.’s model
comprises low-threshold Ca conductances with densities of the
same order (or even larger) than P-type Ca channels, whereas
the latter channels sustain the major part of Ca currents into PC
dendrites (Usowicz et al. 1992). In fact, Llinas et al. (1989)
have shown that FTX toxin, a selective blocker of P-type
channels, abolishes spikes and plateaus, which support the idea
that a unique type of Ca current underlies both electric signals.
We have found that, to realistically reproduce salient features
of experimental plateaus with the sole noninactivating P chan-
nel, a minimal model needs to contain two kinds of voltage-
activated K channels. The delayed-rectifier introduced into our
model was clearly identified in PCs, where it serves to repo-
larize spikes (Gähwiler and Llano 1989; Gruol et al. 1991). The
second channel is more conjectural, because gKsub lumps to-
gether several sub-threshold K channels identified in PCs
(Gruol et al. 1991), which are not understood well enough to be
modeled individually. Among these conductances, the Purkinje
BK-type conductance does not seem critical for plateau gen-
eration because endowing gKsub with a quantitative model of its
Ca-dependence (Jacquin and Gruol 1999) completely abol-
ished plateaus. On the other hand, overall properties of the
model remained unchanged when gKsub was endowed with
inactivations similar to those exhibited by several PC’s sub-
threshold K channels (Midtgaard 1995; Wang et al. 1991).
Moreover, Yuen et al.’s (1995) model of a PC dendrite, which
is devoid of such a sub-threshold K current, produces unreal-
istic plateaus near 0 mV. Due to its steep slope of activation,
the idealized gKsub endows the model with a strong outward I/V
rectification near �45 mV when gCa is zero (data not shown),
as can clearly be observed in PCs after blocking their Ca
conductances (Genet and Kado 1997). Together, these results
suggest that the steep activation of gKsub represents a key
property for the generation of sub-threshold plateaus into PCs.
However, it must be noted that in the range [�50, �40] mV,
the involvement of IKdr in balancing ICa to produce plateaus is
quantitatively significant (Fig. 3).

Due to the high levels of Ca-binding proteins in PCs, [Ca]i
dynamics must be largely slowed down in the concentration
range corresponding to the Kd of these proteins. Neither Kd nor
the concentration of these Ca buffers are currently known with
precision. The results illustrated in this paper were, however,
computed with a buffer concentration, [B]T, falling at the

FIG. 9. Model with inactivation of gKsub. A: boundaries of  as a function
of gKsub. Dashed triangle on the left corresponds to a parameter range, where
 is a bistable region without true hysteresis. B: duration of a spontaneously
resetting plateau as a function of the time constant �h of inactivation of gKsub.
Plateau triggered by a 100-ms pulse (I� 
 130 nAcm�2). Graph displays results
obtained with 3 gKsub values: 40.66 (�), 75 (�), and 100 �Scm�2 (�). The model
discharges Ca spikes with �h values below the left endpoint of the curves.

2442 S. GENET AND B. DELORD

J Neurophysiol • VOL 88 • NOVEMBER 2002 • www.jn.org



center of the range of estimated parvalbumin and calbindin
concentrations in PCs (100–210 �M, Fierro and Llano 1996).
Moreover, Fig. 8 shows that plateau responses in the model
withstood large deviations in Kd and [B]T values. Slow [Ca]i
increases in the sub-threshold voltage range decreased the Ca
Nernst potential, thereby reducing the magnitude of ICa on a
time scale of hundreds of milliseconds. This induced the reset
of plateaus in the model by breaking the balance between ICa
and the two K currents. According to our model, the large [Ca]i
transients seen in PCs following their synaptic activation (Mi-
akawa et al. 1992) or direct electric stimulation (Lev-Ram et al.
1992) are therefore responsible for the spontaneous reset of
experimental plateaus.

With its set of reference parameters, our model is very close
to a transition between Hopf and homoclinic bifurcations for
emergence of Ca spiking (Fig. 8). With these two bifurcations,
oscillations become stable at a turning point, where they have
a finite amplitude of low sensitivity to the Idc magnitude.
Spiking emerges at null frequency with the homoclinic bifur-
cation and only at 5 Hz with the Hopf bifurcation (Fig. 2D).
This difference would be difficult to observe experimentally,
and the model was not designed to faithfully reproduce Ca
spiking, which probably involves other conductances than
those introduced into the model (see Midtgaard 1995). The
precise nature of the bifurcation, therefore, appears meaning-
less within the context of this study.

Our model assigns distinct roles to phasic and tonic inputs,
I� triggering nonlinear responses, whose duration is modulated
by Idc. A physiological counterpart for these two kinds of
excitatory inputs can be found in actual inputs to PC dendrites.
Thus spiny dendrites of PCs are bombarded with several thou-
sands of PFs synapses, whose precise pattern of activation is
still unknown. Contextual information in the mossy fiber sys-
tem without specific correlation may activate PFs asynchro-
nously. According to Rapp et al.’s (1992) simulations, individ-
ual fibers probably lose any individual functional meaning in
these conditions and provide a tonic depolarizing input to PC
dendrites, which can be identified as Idc in our model. In
addition to this tonic input, synchronous activation of a subset
of PFs during a motor task [see the theory of Marr (1969)] may
result in a phasic depolarizing input to the dendritic tree.
Ekerot and Oscarsson (1981) were indeed able to trigger pla-
teau potentials by stimulating bundles of PFs. The large num-
ber of PFs that must be activated synchronously to trigger
plateaus initially led to the conclusion that granule cells do not
evoke these prolonged responses under physiological condi-
tions (Campbell et al. 1983). Jaeger and Bower (1994) later
proved, however, that granule cells can actually do so via the
ascending part of their axon, which runs along PC dendrites
and provides more powerful excitatory synapses than PFs
(Llinas and Sugimori 1999); according to Cohen and Yarom
(1998), granule cell ascending axons provide the main source
of excitation to the cerebellar cortex when it is activated via the
natural mossy-fiber system. The climbing fiber represents an-
other attractive counterpart for I�, as Ekerot and Oscarsson
(1981) have observed that plateau potentials terminate the
complex spike in vivo. Interestingly, Ekerot and Kano (1985)
showed that activation of stellate cells, which make inhibitory
synapses on PC dendrites, abolishes the plateau part of the
complex spike and result in the failure of the CF to induce
long-term depression (LTD). The CF-induced [Ca]i signal is

believed to constitute the initial stimulus for the LTD of
parallel fibers (Daniel et al. 1998; Sakurai 1987), so that the
result of Ekerot and Kano (1985) suggests a possible role of
plateau potentials in the induction of LTD at PF synapses.

Jaeger and Bower (1994) have observed a gradation of
synaptic-evoked plateau responses with the stimulus intensity,
whereas Llinas and Sugimori (1980b) obtained all-or-none
plateaus by direct electric stimulation. Our model supports the
idea that plateau potentials are indeed all-or-none events. This
feature could be reconciled with the data of Jaeger and Bower
(1994) if plateaus can be triggered independently in different
branches of PC dendrites, as suggested by Campbell et al.
(1983). Jaeger and Bower’s (1994) graded responses would
thus reflect summation of individual all-or-none plateaus. If so,
plateaus would endow PCs with multistability properties in
regard to their input-output relation; computational perspec-
tives of networks comprising such multistable units have been
recently illustrated by Barto et al. (1999). This hypothesis on
multiple plateaus originating in different dendritic branches
could be explored by introducing our local model within a
multi-compartmental model of the PC.

An important prediction of our model is that the various
plateau shapes reported by Ekerot and Oscarsson (1981) only
reflect a part of the PC dendrites operating capabilities. Thus
with Idc values inside the hysteresis region , the model can be
switched to a stable plateau by brief depolarizing inputs. This
feature could explain the quasi-stable plateaus observed by
Llinas and Sugimori (1980b), even if a clear evidence for a
bistability of PC dendrites with large depolarizing DC input is
currently lacking. Brief hyperpolarizing currents with suffi-
cient magnitude can actively reset the plateau by making V
cross the unstable branch in the bifurcation diagram (Fig. 2C).
But it suffices that Idc decreases below the lower  bound to
recover the resting state automatically; this overcomes limita-
tion of theories of bistable dendrites (Baginskas et al. 1993),
into which plateaus can only be reset by activation of inhibitory
synapses. Transient inhibitory inputs are unable to reset the
plateau with Idc above the upper  bound. However, such
inputs can trigger long-duration valley potentials at approxi-
mately �52.5 mV (Fig. 6), from which the resting state is
recovered if Idc falls below the upper  bound (see Fig. 2C).
Valleys have not been observed, but these potentials represent
a testable prediction of the model that could be used to exper-
imentally validate the proposed membrane mechanisms under-
lying plateau potentials.

The present model of PC dendrite provides a modeling
framework linking detailed cellular experimental data and
large scale computational models of the cerebellum. Thus our
model suggests that plateaus and valleys constitute short-term
memories of phasic inputs and that the control contextual tonic
inputs exert on their duration enlarge the computational prop-
erties attributable to PC dendrites. These properties, together
with plastic changes at PF synapses, LTD (Daniel et al. 1998),
and potentiation (Hansel et al. 2001; Hirano 1991), may con-
tribute to the temporal specificity of cerebellar learning, that
has been revealed by the Pavlovian conditioning of eyelid
responses (Medina et al. 2000) and adaptation of the vestibulo-
ocular reflex.

We thank the two referees for sharp criticisms and clever suggestions.
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