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Abstract. A new and original trend in the Learning Classifier System
(LCS) framework is focussed on latent learning. These new LCSs call
upon classifiers with a [condition], an [action] and an [effect] part. In
psychology, latent learning is defined as learning without getting any kind
of reward. In the LCS framework, this process is in charge of discovering
classifiers which are able to anticipate accurately the consequences of
actions under some conditions. Accordingly, the latent learning process
builds a model of the dynamics of the environment. This model can be
used to improve the policy learning process. This paper describes YACS,
a new LCS performing latent learning, and compares it with ACS.

1 Introduction

The reinforcement learning framework [Sutton and Barto, 1998] considers adap-
tive agents involved in a sensori-motor loop. Such agents perceive situations
through their sensors, and use these perceptions to select an action and act ac-
cordingly in the environment. As a result, they receive a scalar reward from the
environment and perceive a new situation. The task of the agents is to learn
the optimal policy (i.e. how to act in every situation in order to maximize the
cumulative reward on the long run). This way, one can for instance simulate rats
whose task is to learn the shortest path to the food.

Holland [Holland, 1976] presented the first ideas about LCSs (Learning Clas-
sifier Systems) designed to solve reinforcement learning tasks. The capability
of generalizing while learning is the main advantage of LCSs with respect to
other reinforcement learning systems like Q-learning]Watkins, 1989]. It allows
to aggregate several situations within a common description so that the rep-
resentation of the problem gets smaller. The first LCS, called CS1, can be
found in [Holland and Reitman, 1978]. Wilson [Wilson, 1995] introduced an al-
gorithm similar to Q-learning [Watkins, 1989] in LCSs instead of the traditional
Bucket Brigade algorithm [Holland, 1985]. This work led to a revival of LCS



research since the accuracy based approach in XCS overcomes the problem
in previous LCSs where especially deferred reward leads to over-generalization
[Wilson, 1989].

Additional to the generalization capabilities of LCSs in policy learning tasks,
an internal model of the dynamics of the environment can be used to adapt the
policy further and faster. In multi-step problems, the consequence of an action
does not only consist in a reward, but also in the resulting new situation. In
problems of that kind, an agent has the opportunity to consider two successive
perceived situations. Thus it can learn to anticipate what happens immediately
after the execution of an action. This learning process builds a model of the
dynamics of the environment. Such a model endows the system with information
about situation transitions and allows lookahead mechanisms. These mechanisms
can be used either for planning or for hypothetical acting so as to speed up
the policy learning process. Defining subgoals also allows to anticipate and to
plan [Donnart and Meyer, 1996] what will happen far into the future, but our
approach considers the anticipated immediate effects of an action.

The notion that the formation of action-effect relations is at the core of the
acquisition of behavioral knowledge and the insight that anticipations are neces-
sary for behavior reach far back in psychology. According to James [James, 1890],
"an anticipatory image [...] is the only psychic state which introspection lets us
discern as the forerunner of our voluntary acts.”. In animal learning, Tolman
[Tolman, 1932] proposed that learning is the process of discovering what leads to
what (i.e. animals develop a “cognitive map”, a sort of internal representation of
the world). Seward [Seward, 1949] gives empirical results which showed that rats
are indeed learning an internal representation of an environment without receiv-
ing any type of reward or punishment. Learning without environmental reward
or punishment is called latent learning. Hoffmann [Hoffmann, 1993] proposed a
psychological learning theory of anticipatory behavioral control. He postulates
that conditional action-effect relations are learned latently by using anticipa-
tions.

In order to use LCS to learn a model of the dynamics of the environment,
Holland [Holland, 1990] proposed an implicit approach. With internal messages,
it is possible to use tags that specify if a current “action” posted to a message list
actually specifies an action or an anticipation. Riolo [Riolo, 1991] implemented
this idea in his CFSC2 and demonstrated its latent learning capability. A more
explicit linkage is used in CXCS [Tomlinson and Bull, 2000]. Probabilistically
linked classifiers result in cooperations among classifiers. The linkage evolves an
implicit representation of an anticipated effect by the linked successive condi-
tions.

In contrast with all these approaches, the Anticipatory Learning Process
(ALP) used in the ACS (Anticipatory Classifier System) is a further development
of the anticipatory behavioral control theory introduced in psychology by Hoff-
mann [Hoffmann, 1993]. YACS (Yet Another Classifier System) also uses these
ideas and both systems form explicit [condition][action][effect] classifiers. This
formalism is similar to Sutton’s DynaQ+ [Sutton, 1991] approach or Drescher’s



[context][action][result] rules [Drescher, 1991], but with a generalization capa-
bility. ACS and YACS both take advantage of the information provided by the
succession of situations in order to drive explicitly the classifier discovering pro-
cess. Therefore, they use heuristics instead of genetic algorithms, which are gen-
eral but not explicitly driven by experience.

In section 2 we detail the heuristics used for the latent learning process in
YACS. In section 3 we show how this system takes advantage of the model
computed by the latent learning process to learn an optimal policy. Some exper-
imental results are presented and discussed in section 4. In section 5 we show
the main differences between ACS and YACS.

2 Description of the latent learning process in YACS

As ACS [Stolzmann, 1998], YACS deals with [condition][action][effect] classi-
fiers, or C-A-E classifiers. C' stands for [condition], A for [action] and E for
[effect]. C parts take advantage of generality and may match several perceived
situations. An A part specifies a particular action possible in the environment.
The E part represents the effects of the considered action in the situations
matched by the condition. It records the perceived changes in the environment.

A situation is divided into several features representing perceivable properties
of an environment. For example, an agent in a grid world may perceive eight
features, one for each adjacent cell. Thus, a situation is an ordered set of several
discrete values, one for each of the perceived features of the environment. A C'
part has the same structure but it may contain don’t care symbols “#°’. Such a
symbol matches every specific value of the corresponding features of a perceived
situation. The E part stores for each perceived feature the expected changes
in the environment when the action of the classifier is chosen and when the
perceived situation matches its condition. A specific value in the E part means
“f the classifier is fired, the feature of the perceived situation corresponding to
the specific value will change and turn to that value at the next time step”.
The E part might contain don’t change symbols ““#”’. A don’t change symbol in
the E part means “if the classifier is fired, the feature of the perceived situation
corresponding to the don’t change symbol will remain unchanged at the next time
step”.

The latent learning process is in charge of discovering C' — A — E classifiers
with maximally general C' parts that accurately model the dynamics of the
environment. It learns C' and E parts separately.

In section 2.1, we explain how YACS learns E parts by direct comparison of
successive perceived situations. Moreover, we present how it selects accurate clas-
sifiers in section 2.2. Finally, we detail in section 2.3 how YACS learns relevant
conditions by successive specializations.

2.1 Effect covering

The effect covering mechanism is the part of the latent learning process that is
in charge of discovering accurate E parts (i.e. E parts representing actual effects



of actions under some conditions). When the system learns accurate effects, it
creates new classifiers with suitable F parts settled according to experience.
During this process, YACS also updates a trace T' of good and bad markers
memorizing past anticipation mistakes and successes of each classifier. This trace
works as a FIFO! list with a finite length m.

YACS keeps a memory of the last perceived situation and the last performed
action. Thus, it knows the current situation S; resulting from the action A;_4
in the situation S;_; at each time step.

With this information, YACS computes the desired effect DE which is the
part of a classifier which could have been fired at the preceding time step, and
whose E part reflects accurately the changes actually perceived in the environ-
ment. To compute the desired effect, YACS uses the diff operator which works
as follows on features of the environment:

dif f(fe, fr—1) = {# if fo = fiz1

f+ otherwise

where f; is a feature of the situation at the current time step, and f;—; is the
corresponding feature of the situation at the previous time step.

The diff operator is applied to each feature of the situations S; and S;_; to
compute the desired effect DE.

At each time step, YACS checks the accuracy of the E part of every classifier
of the action set (i.e. the set of classifiers which have been matched by S;—; and
whose actions are the same as the selected action A;_1). Such a classifier should
have an E part equal to the desired effect DE:

— If its E part equals DE, the classifier would have anticipated well, and we
add a good marker to its trace T' of anticipation mistakes and successes.

— In the other case, the E part of the classifier is wrong and we add a bad
marker to its trace T'.

Moreover, if no classifier has a correct E part, YACS chooses one of the classifiers
whose E part is wrong. Then it builds a new classifier with the same C and A
parts. Its E part is set to DE. As it would have anticipated well, a good marker
is added to its empty trace T'. This new classifier is finally added to the classifier
set.

2.2 Selection of accurate classifiers

As YACS tries to build a set of classifiers that anticipate accurately, it has a
delection mechanism to remove inaccurate classifiers. The trace T" of good and
bad markers allows to check the anticipation abilities of a classifier.

— If the trace T of a classifier is full and if it only contains bad markers, then
YACS assumes that the classifier always anticipates incorrectly and removes
it.

! First In First Out: the first element added in the list is the first removed



— If the trace T of a classifier is full and if it contains good and bad markers,
we say that the classifier oscillates: it sometimes anticipates well and some-
times not. In Markov and deterministic environments, the reason of these
oscillations is that its condition is too general. It matches several different
situations, each leading to a different situation just after the action. In or-
der to distinguish between these situations, the condition must be further
specialized.

— In all other cases, the classifier is kept.

This mechanism allows to keep only the accurate classifiers.

2.3 Specialization of conditions

In section 2.1 we have presented how YACS learns E parts. However, the an-
ticipation of a classifier may only be accurate if its C' part is at least partly
specialized. A C part should be as general as possible in order to represent regu-
larities in the environment. But it must be specific enough so that the classifier
does not oscillate. This section explains how C' parts are incrementally special-
ized so as to reach the right level of generality.

The MutSpec operator The classifier discovery problem is usually solved by
a genetic algorithm using a creation process driven by mutation and crossover
on classifiers selected according to their fitness. These operators do not explicitly
take advantage of the experience of the agent.

As in the U-TREE algorithm [McCallum, 1996], YACS starts without mak-
ing any distinction between situations, and incrementally introduces experience
driven specializations in C' parts. It uses neither mutation nor crossover opera-
tors.

The specialization process of YACS uses the mutspec operator introduced
by [Dorigo, 1994]. This operator selects a general feature of the C' part® of a
classifier, and produces one new classifier for each possible specific value of the
selected feature. The E parts of every new classifier are the same as the E part of
the original classifier, except when the specialization leads to an equality between
the feature of the C' part and the corresponding feature in the E part. In that
case, a don’t change symbol is added. The original classifier is discarded.

For instance, when the first feature is selected, and assuming that it might
take only two specific values (0 or 1) the classifier [#|#|#|#] [0] [#|#]|#]|4#]
produces two new classifiers ( [0[#|#|#] [0] [#|#[#|#] and [1|#[#|#] [0]
Col | #1#]).

The C parts of the new classifiers are more specialized than the original C'
part.

Therefore, if the C' part of the original classifier was matching several per-
ceived situations, each resulting C part will match a subset of these situations.
We want YACS to be able to choose the token to specialize in such a way that

2 a feature with a don’t care symbol



the two resulting subsets have an equal cardinality, in order to prevent over-
specialization.

The expected improvement by specialization estimates Choosing at ran-
dom the token to specialize, as in Dorigo’s original work, would lead to an
over-specialization of the C' parts and thus to a sub-optimal number of classi-
fiers. We improve this selection process by using the expected improvement by
specialization estimate is associated to each general feature of the C' part of each
classifier (i.e to each don’t care symbol). This value estimates how much the
specialization of the token would help to split the situation set covered by the
C part into several sub-sets of equal cardinality.

Let us consider a classifier which tries to anticipate the consequences of an
action in several situations. If the value of a particular feature of the situation
when the classifier anticipates well is always different from the value when it
anticipates incorrectly, then this feature is very relevant for distinguishing be-
tween the situations covered by the C' part. Thus, the C' part must be specialized
according to this particular feature, and the estimate i, should get a high value.

In order to compute the estimates i,, each classifier memorizes the situation
BadS preceding the last anticipation mistake and the situation GoodS preceding
the last anticipation success. Each time the classifier belongs to the action set
of last time step, S; allows to check the accuracy of the E part.

— If the E part is correct, for each feature of the environment:

e if a particular token of BadS equals the corresponding feature of S;_1,
then the corresponding estimate iy is decreased using a Widrow-Hoff?
delta rule;

e if a particular token of BadS differs from the corresponding feature of
Si;—_1, then the corresponding estimate is is increased using a Widrow-
Hoff delta rule;

— If the E part is incorrect, for each feature of the environment:

e if a particular token of GoodS equals the corresponding feature of S;_1,
then the corresponding estimate s is decreased using a Widrow-Hoff
delta rule;

e if a particular token of GoodS differs from the corresponding feature of
St¢—1, then the corresponding estimate is is increased using a Widrow-
Hoff delta rule;

The specialization process The expected improvement by specialization esti-
mates detailed above allow the classifier specialization mechanism to be driven
by experience and are used in the C' parts specialization process.

When a classifier sometimes anticipates well and sometimes not (i.e. when
its anticipation trace contains good and bad markers), it oscillates and its C' part

® The Widrow-Hoff delta rule uses a learning rate 8 € [0,1]. A scalar z is increased
with such a rule with respect to the formula: z + (1 — 8)x + 8. It is decreased with
the formula: = + (1 — 3)z



needs to be further specialized. If a classifier oscillates that way, thanks to the
effect covering mechanism, the classifier set contains at least one other classifier
with the same C' and A parts and with a different E part.

The specialization process is cautious: YACS waits until all the classifier with
the same C and A parts have been identified as oscillating classifiers, and until
their anticipation traces are full. At this point, these classifiers select together
the feature to specialize. The estimates i corresponding to each feature of the
environment are summed among the classifiers, and the feature with the highest
sum is chosen to be specialized. The mutspec operator is then applied to every
classifier. Some of the classifiers produced by the mutspec operator always antic-
ipate badly. They are removed by the selection of accurate classifiers process.

2.4 Useless classifiers and Condition covering

At this point, we have described the main mechanisms of the latent learning
process. The mechanisms described in this section are devoted to deal with the
useless classifiers and the covering of new situations.

Condition covering Given a particular possible action, when YACS gets a
new situation S, it may happen that this situation does not match with any C'
part of the classifier set. In this case, YACS creates a new classifier. Its A part
equals the considered action. The E part of the classifier is computed according
to Si—1 in the same way as the desired effect (see section 2.1). Its C' part is
such that it matches S;. It is also such that it is neither more general nor more
specific than the C' part of any other classifier with the same A part. With respect
to the previous constraints, it is as general as possible. These C' parts allow to
add maximally general classifiers without introducing redundancies with already
specialized ones.

Useless classifiers The system uses a set P of every perceived situation en-
countered during the lifetime of the agent. This set only contains one single
instance of each situation. It is not ordered. When the agent comes to time step
t, it perceives the new situation S;. If the new situation is not present in P, it
is added.

The specialization process may create classifiers which will never be used nor
evaluated because their C' part does not match any possible situation. To get rid
of such classifiers, we remove every classifier which does not match any situation
in the set P of already encountered situations.

The number of elements in P grows exponentially with respect to the num-
ber of perceived features in the environment. In huge environments, memory
problems may occur and it would be worth taking advantage of generalization
in order to reduce the size of this set. But in section 3 we show that the system
must deal with information about specific situations in order to use dynamic
programming. So this set P is also necessary for another part of the algorithm.



Until now, we have described the latent learning process in YACS. Thanks
to effect covering and incremental specialization of conditions, it provides the
system with a set of classifiers which anticipate well the changes in the environ-
ment. This set of classifiers is a model of the dynamics of the environment in
terms of situation transitions. The differences with the latent learning process
in ACS are discussed in section 5.3.

3 Description of the policy learning process in YACS

In order to take advantage of the model of the dynamics of the environment
provided by the ACS, Butz and Stolzmann [Butz and Stolzmann, 1999] use goal
directed planning. This solution is expensive in computational time. Moreover,
it is not part of the reinforcement learning framework. It optimizes the model
learning capabilities but does not improve the policy learning process.

YACS uses iterative algorithms derived from dynamic programming. Plain
value iteration (see section 3.1) performs several steps of Value Iterations in order
to adjust the qualities for action of each (situation, action) pair. Using one single
step of value iteration at each time step allows to find the optimal policy over
several time steps and offers a good reactivity/planning tradeoff. Doing so is
similar to performing “mental” actions as in DynaQ-+ [Sutton, 1991].

In this section, we describe how YACS takes advantage of the model of the
environment in order to speed up the reinforcement learning process and the
computation of a policy. We first introduce the Value Iteration algorithm and
the way YACS identifies the reward sources. Then we explain how the use of
generality forbids to compute one single quality of action for each classifier*. We
finally present how this problem is solved in YACS.

There are many ways for taking advantage of the model for performing rein-
forcement learning. We choose the algorithms presented in this section because
they are among the most classical available.

3.1 Value Iteration

In order to compute an optimal policy, YACS uses a simplified variety of Value
Iteration: a dynamic programming algorithm which solves the Bellman equations
[Bellman, 1957]. It iteratively refines the qualities for every (situation,action)
pair using the formula:

Q(s,a) = R(s,a) + 'yZT(s,a, sV (s") (1)

where
V(s) = max,Q(s,a) (2)

* Stolzmann [Stolzmann, 2000] also uses the term qualities but with a different mean-
ing. The qualities of action are different from the qualities used in ACS, which are
qualities of anticipation. Qualities of anticipation estimate the confidence in the
anticipation, and not an expected discounted reward as the qualities of action.



Q(s,a) is the quality of action a in situation s. It takes into account both the
immediate and the future expected reward, discounted by a temporal discount
factor . V(s) is the desirability value of the situation s. R(s, a) is the immediate
expected reward when the agent performs action a in situation s. T'(s, a, s') is the
probability to perceive the situation s’ just after performing action a in situation
s.

As YACS is designed to deal with deterministic environments, we do not use
the transition probabilities and replace the expected future cumulative reward
Yo T(s,a,s")V(s') by mazsV(s') where s’ is a situation anticipated when the
agent, performs the action a in situation s.

3.2 Learning immediate rewards

The latent learning process brings information about situation transitions. In
order to use a dynamic programming algorithm, YACS computes the immedi-
ate expected rewards corresponding to the R(s,a) term in value iteration. An
immediate reward estimate r is associated to each classifier. It estimates the
immediate reward received by the agent if the action which it proposes is chosen
when its C' part matches the current situation.

Let us call R; the reward given by the environment resulting from the action
A; when the perceived situation was S;. The immediate reward estimate r of
every classifier such that its C' part matches S; and its A part matches A; is
updated according to a Widrow-Hoff delta rule: r < (1 — 8)r + BR;

3.3 The problem induced by general conditions

In classifier systems without E parts, a classifier is kept when it helps to max-
imize the reward on the long run [Wilson, 1994], or when it is able to predict
the reward accurately [Wilson, 1995]. But we use classifiers with an E part. In
our case the decision to keep or to remove a classifier only relies on its ability
to predict the next situation. Thus the fitness of a classifier does not take the
reward into account (see section 2.2 about latent learning).

This way of estimating the fitness of a classifier gives rise to a new way
of considering generality. A classifier is too general when a don’t care symbol
prevents the anticipation to be accurate, regardless of the expected reward. It is
too specific if its E part would remain accurate if some don’t care symbols were
added in its C' part, regardless of the payoff.

Let us consider an agent in a maze like the woods environments (see section
4.1). When it perceives an obstacle in a particular direction, and if it moves
towards this direction, it will hit the obstacle and remain in the same cell. The
agent does not need to pay attention to the obstacles in the other directions to
anticipate well what will happen. Thus a classifier which could be interpreted
in a maze environment as “when the agent perceives an obstacle on the north,
if it tries to move north, it will not perceive any changes in its situation: it
will remain in the same cell” anticipates well. It is accurate since it would not



anticipate better if its C' part were more specific. It is kept and will not be further
specialized.

The problem is that such an accurate classifier is not too general with respect
to anticipation, but it is too general to predict the discounted reward since its C'
part matches several different situations. Because of the discount factor v used
in Value Iteration, the desirability values associated to the situations which are
close to a reward source are higher than the desirability values associated to the
situations which are far from it. Therefore, it is not possible to compute a single
quality of action for a classifier whose general C' part matches several situations
perceived at different distances from the reward.

To summarize, general C' parts help to express regularities in the environ-
ment instead of simply providing a kind of selective attention. As a result, some
classifiers may match several situations and thus it becomes impossible to com-
pute a single quality of action for each general classifier. The system needs to
deal with information about specific situations.

3.4 Associating desirability values to every already encountered
situation

Let us tackle the problem induced by general conditions in another way. In
YACS, a classifier stores at least one possible transition between two situations
when an action is performed. The latent learning process in YACS discovers
classifiers such that one classifier represents several transitions involving the
same action, but matching in different actual situations. To do so, YACS makes
use of general C parts and stores the changes resulting from the action in the
E parts. Thus the system looses the information about the transitions between
actual specific situations by aggregating them in a single classifier with a general
condition. This loss of information about actual specific situations forbids to
use Value Iteration to take advantage of the model. It also forbids to perform
“mental” actions as [Sutton, 1991] does in DynaQ+.

In order to recover the missing information, YACS associates a desirability
value to each specific situation in the already perceived situation set P (see
section 2.4). This desirability value corresponds to the V'(s) term in formula (2).
The transitions are consequently stored and the immediate rewards are stored
in the classifiers and the missing information is stored in the already perceived
situation set. The resulting model is much smaller than a Q-table storing qualities
for every (situation,action) pairs.

To compute the desirability value associated with a situation S, we first
identify all the classifiers whose C' part matches the situation S. If such a clas-
sifier was fired, the immediate reward would be stored in its r estimate and
the expected cumulative reward would be the maximum among the value of the
situations anticipated by the firable classifiers, multiplied by the discount factor
5.

In order to determine the situation S:;y; anticipated by a classifier given a
situation S;, YACS uses the passthrough operator. The anticipated situation is



Sir1 = passthrough(Sy, E) where E is the effect of the classifier. This operator
works as follows on the features of the situations:

fsiffe:#

passthrough(fs, fe) = {fe otherwise

where f; is a feature of the situation S; and f. is the corresponding feature of
the E part of the classifier.

So the system computes values for each situation and takes advantage of the
model supplied by the latent learning process to update these values without
actually performing the actions. When the classifier system anticipates well in
every situation, the agent is able to quickly adapt its behavior to new reward
sources.

3.5 Selecting an action

When YACS perceives a situation S; from the environment, it selects all the
classifiers whose C' part matches. These classifiers anticipate the following situ-
ation by computing passthrough(S¢, E). Then they compute a quality of action
by adding the immediate reward estimate r and the discounted expected reward
which is the value of the following situation multiplied by the discount factor 7.
The selected action is the action of the classifier corresponding to the highest
computed quality of action.

4 Experiments with YACS

In sections 2 and 3, we have presented YACS in two parts. The latent learning
process is in charge of building a model of the dynamics of the environment. The
policy learning process takes advantage of the model to compute the optimal
policy. This section presents experimental results of YACS solving Wilson woods
problems. The simulated woods environments are described in section 4.1.

The latent learning and policy learning processes both take place in a general
reinforcement learning task. In section 4.2 we present the experimental results
for the general reinforcement learning task when YACS interacts with Mazed
and Maze6. In section 4.3, we present experimental results specifically dedicated
to the latent learning process.

4.1 The Mazed4 and Maze6 woods environments

In woods environments, the agent is situated in a maze cell and perceives the
eight adjacent cells. A cell can either be empty, or contain an obstacle (H) or
food (F). It can move towards any of these cells. The agent is allowed to try to
move towards an obstacle. In this case, it will remain in the same cell.

Mazed (see figure 1) has been investigated by [Lanzi, 1997] and Maze6 (see
figure 2) by [Lanzi, 1999]. The experiments we present in this paper involve
YACS interacting with these environments.



Fig. 1. The Maze4 environment Fig. 2. The Maze6 environment

The experiments are divided into trials. The agent starts a trial in a free cell
chosen randomly. This random choice makes the exploration easier and allows
to check if the agent learns to reach the goal from any position in the maze. A
trial ends when the agent reaches the cell with food. In that case the agent gets
a reward of 1, it gets a new perceived situation, and a new trial starts.

Since the agent starts a trial in a random cell, the optimal number of actions
to reach the food is not constant over trials. Averaged over every possible starting
cell, the optimal number of actions is 3.5 in Maze4 and 5.2 in Maze6. As we let
the agent perceive the situation in the cell with the food, the number of time
steps is one more than the number of actions. Thus, the average optimal path is
4.5 time steps long in Mazed and 6.2 in Maze6.

In our experiments, the agent is allowed to perform any action in every situ-
ation. As a result, YACS has to discover classifiers which model the transitions
which do not lead to any change. This is the case when an action leads the agent
to hit an obstacle and remain in the same cell. There are respectively 93 and 135
transitions of that kind in Maze4 and Maze6. By taking advantage of generality,
these transitions can be modeled with 8 classifiers in each case: one classifier for
each possible action, by paying attention to the presence of a block in the direc-
tion corresponding to the action. There are no other regularities in Maze4 and
Magze6. Since the total number of possible transitions is 208 in Maze4 and 288
in Maze6, the optimal numbers of classifiers YACS should reach are respectively
123 (208 — 93 + 8) and 161 (288 — 135 + 8) for Maze4 and Maze6.

ACS [Butz et al., 2000b] has also been tested in Maze4 and Maze6 envi-
ronment. In these experiments, the agent was also allowed to perform a-priori
inefficient actions, but in ACS, the classifiers which do not model a change are
deleted in the long run. Under these conditions, 115 (123 — 8) classifiers can
accurately model the dynamics of the Maze4 environment and 153 (163 — 8)
classifiers are needed for Maze6.

4.2 Reinforcement learning

In sections 2 and 3, we presented YACS in two parts. The latent learning pro-
cess is in charge of building a model of the dynamics of the environment. The
policy learning takes advantage of the model to compute the optimal policy.



Both processes take place in the general reinforcement learning framework. In
a first part, we present experimental results which show how the generalization
problem is solved by the use of desirability values associated to each specific
situation. However, these experiments show limitations which are due to the
exploration/exploitation tradeoff in YACS. These problems are discussed in a
second part.

Experimental results The agent explores the environment by random walk
until the trace T' of each classifier contains only good markers. At this point,
YACS assumes that the dynamics of the environment is well known. The agent
does not move randomly anymore and the system switches into exploitation
mode®.

For every experiment, the learning rate parameter is set to § = 0.1 and
the classifier’s memory size is set to m = 5. As we do not tackle the explo-
ration/exploration tradeoff in these experiments, the discount factor v does not
matter, excepted for float precision concerns. We set it to 0.9.

Figures 3 and 4 present the number of time steps needed by the agent to
finish one trial. The results are averaged over 10 experiments. Figures use a
logarithmic scale for the y axis.
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When the memory size m is smaller, the specialization process is less cautious,
sub-optimal specializations occur more often in early time steps and thus, the
system converges towards a higher number of classifiers. When the memory size
m is higher, the bad classifiers are removed after a longer time and thus, the
maximal number of classifier ever reached in the experiments increases.

5 In the environments discussed here, it’s sufficient to switch from exploration to ex-
ploitation. But it in environments that change after a long time, it might be nec-
essary to switch back from exploitation to exploration. This could also be done in
dependence of the traces.



Maze6 is a larger environment than Maze4 and the average optimal path to
the food is longer. Thus the number of time steps to reach the food in random
mode is larger in Maze6. That is why YACS needs less trials to build a model
of the dynamics of the Maze6 environment, but each trial is longer in terms of
time steps.

Figures 5 and 6 show the number of time steps needed by the agent to finish
successive trials for a typical single experiment. As long as the system is in
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Fig. 5. Sample number of time steps to  Fig. 6. Sample number of time steps to
finish successive trials in Maze4 finish successive trials in Maze6

exploration mode, the number of time steps remains high. As soon as the system
switches to exploitation mode, the behavior becomes optimal with respect to the
quality of the model of the environment. The number of time steps in later trials
is not constant because each trial starts in a random cell and thus, the optimal
path to the food does not always have the same length.

In the Maze6 experiments, the system always discovers the shortest path to
the food. In one of the experiments in the Maze4 environment, the behavior was
sub-optimal. This problem is discussed in the next section.

Discussion In LCSs with anticipation capabilities, the main concern is usu-
ally the latent learning process. In [Butz et al., 2000b] for example, the policy
learning process does not take advantage of the model and uses a modified Q-
learning technique. Thus, the agent must actually act in the environment in
order to discover the optimal actions.

When they take advantage of the model to speeds up the policy learning
process, ACS and YACS [Stolzmann et al., 2000] face the same problem: if the
model is not accurate, the agent exhibits a sub-optimal behavior. This is the case
in our experiments with Mazed. The average number of time steps needed by
YACS to finish a trial converges to 4.75 instead of 4.5. The problem comes from
the inaccuracy of the criterion used by the system to switch from exploration
mode to exploitation mode. In one of the 10 trials, every classifier discovered by



the latent learning process only contained good markers, but the representation
was not, perfectly accurate because some classifiers were still over-general. As a
result, the behavior of the agent was sub-optimal in the exploitation phase.

During the early time steps, the system contains a lot of over-general classi-
fiers. Such classifiers match different situations and may let the agent consider
transitions which cannot actually be encountered in the environment. When the
policy learning process relies on such a model, the agent might repeat endlessly
the same sequence of actions.

In order to avoid such problems, an LCS with latent learning abilities needs
specific mechanisms. In DynaQ+, [Sutton and Barto, 1998] uses an exploration
heuristic and gives an exploration bonus to the qualities for (situation,action)
pairs. This bonus increases as the pairs have not been used for a long time. This
way, actions that improve the model are encouraged and the system draws the
benefits of a good exploration/exploitation tradeoff.

Such algorithms may be adapted to systems like ACS and YACS, which take
advantage of the generality to express regularities in the environment, contrarily
to DynaQ-+.

In this section, we presented some experimental results for general reinforce-
ment learning tasks with YACS. Because of the problem induced by general C
parts (see section 3.3), one cannot compute a single quality of action for each
classifier. The system must deal with information about specific situations. With-
out the desirability values associated to each specific situation, YACS would not
be able to compute an optimal policy at all. Our experiments with Maze4 and
Maze6 show that the mechanism we propose solves the problem.

4.3 Latent learning

In order to solve reinforcement learning problems, YACS performs latent learning
and policy learning. In this section we present experimental results concerning
the latent learning efficiency in YACS.

The latent learning process is in charge of building a small and accurate
model of the dynamics of the environment. Thus the system should build an ac-
curate model with as less classifiers as possible, by discovering maximally general
classifiers. In order to estimate the evolution of the accuracy of the model over
successive time steps, we use a measure of the percentage of knowledge provided
by the model. This measure is similar to the one used by [Butz et al., 2000b].
For each possible transition in the environment, we check if the classifier system
contains at least one reliable classifier able to model the transition. In YACS,
we say that a classifier is reliable if its trace T is full and never contained bad
markers (i.e. if it always anticipated well®). The percentage of knowledge is the
ratio of possible transitions covered by a reliable classifier. This percentage is 1

6 In ACS, a classifier would be said to be reliable if its quality is higher than 0.9.
As the criterion to decide whether a classifier is reliable or not, the percentage of
knowledge measure is not perfectly identical in both systems.



when the effects of every (situation,action) pairs is accurately anticipated by
the model. Tt is 0 when the consequences of no (situation, action) pair is well
anticipated.

As in the previous section, the parameters are set to § = 0.1, m = 5. All the
results are averaged over 10 experiments.

Experiments with Maze4 and Maze6 Figure 7 presents the evolution of
both the number of classifiers and the percentage of knowledge for the Maze4
experiments. Figure 8 shows the same information for the experiments with the
Maze6 environment.
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The average number of classifiers discovered by YACS converges towards
127.7 for Maze4 and 166.7 for Maze6, which are respectively 102 and 103 percent
of the optimal numbers of classifiers. As YACS does not use any generalization
mechanism yet, it cannot reconsider early bad choices of the specialization pro-
cess. Thus, irrelevant specializations in the early time steps may lead the system
to over-specialization.

During the first time steps (up to 500), the percentage of knowledge grows
very fast. YACS tries to model the transitions which do not lead to any change
in the situation. Thus, YACS discovers quickly classifiers like “when there is an
obstacle in the north and I try to go north, nothing changes in the environ-
ment”. Such classifiers are very easy to discover, since they require only one
specialization of the conditions. Moreover, they can be applied in many sit-
uations in the environment. As a result, when one is discovered, the number
of (situation,action) pairs which are anticipated well grows significantly. The
other relevant conditions need more specializations to be discovered. Thus, the
percentage of knowledge grows slower.

One can notice that the evolution of the number of classifiers is not mono-
tonic. In a first part, YACS creates new classifiers by effect covering or condition



specialization. Some of the classifiers created by the mutspec operator antici-
pate badly and need time to be evaluated and removed from the set. During
the second part of the evolution, the main activity of YACS is to remove such
classifiers, until the number of classifiers stabilizes close to the optimum.

Adding irrelevant information Considering a real robot that is equipped
with different kinds of sensors, perceptions are normally not as accurate as in
the maze environments. For example, the robot could detect different degrees
of brightness in its environment. Therefore, the trials in one experiment can
occur under different light conditions. For a system without any generalization
capability this would result in a new perceived situation, each time the light
conditions change. Here we show that both ACS and YACS are able to handle
such irrelevant perceived features.

In order to simulate such a light scenario we introduce some further features
into the perceived situations. These attributes are randomly set to 0 or 1 when
a new trial starts and keep the same value during the whole trial. As the added
perceived features are irrelevant to distinguish between situations, the optimal
number of classifiers remains the same when irrelevant bits are added (see section
4.1).

Figure 9 presents the evolution of both the number of classifiers and the
percentage of knowledge for the Maze4 experiments when 3 irrelevant bits are
added. Figure 10 shows the same in the Maze6 environment.
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The average number of classifiers converges towards 133.3 for Maze4 and
170.6 for Maze6, which are respectively 108 and 106 percent of the optimal num-
bers of classifiers. When these results are compared with the results presented
in figures 7 and 8, one can notice that YACS is a bit more robust with respect
to irrelevant bits in Maze6 than in Maze4. As Maze6 is larger than Maze4, a
randomly walking agent takes a longer time to finish a trial in Maze6. Thus, the



agent remains a longer time in situations where the irrelevant bits do not change.
The expected improvement by specialization estimate is disturbed in more occa-
sions in small environments like Maze4 and works better in larger environments
like Maze6.

[Butz et al., 2000b] presents similar results for ACS in Maze4 with three ir-
relevant bits. YACS needs an equivalent number of time steps to stabilize the
number of classifiers with respect to ACS without its generalization mechanism.
However, the number of classifiers discovered by ACS without the genetic algo-
rithm is much higher than in YACS. When ACS uses the generalization mech-
anism, it takes a longer time to stabilize the number of classifiers, and this
number still remains higher than the number of classifiers discovered by YACS.
This difference is discussed in section 5.3.

5 Comparison between YACS and ACS

In the previous sections we presented YACS. In this section, we point out the
main differences between ACS and YACS. We assume that the reader is familiar
with the ACS classifier system and we do not give an introduction here.

In section 5.1 we present problems which are already tackled by ACS and not
by YACS. In section 4.3, we have shown that the number of classifiers produced
by ACS and YACS are different. In section 5.2 we show that this difference does
not come from the meaning of the classifiers. Thus, in section 5.3, we focus on the
main differences between the classifiers discovery processes in ACS and YACS.
In particular, we enlight how YACS decorrelates C' and E parts more than ACS
does, and how it is more cautious in the specialization process.

5.1 Extent of tackled problems

The first difference between ACS and YACS is the extent of problems tackled
by the two system.

ACS is able to deal with non-Markov problems while YACS is not. In such
problems, the perceived situation of the agent does not bring enough information
to discriminate between different states of the environment. The agent perceives
the same situations in different states. These situations are said to be aliased.
The agent must deal with internal states in order to distinguish between such
situations and be able to decide the optimal action in each actual state. To solve
this problem, ACS learns action sequences [Stolzmann, 2000]. The agent executes
a sequence without paying attention to the environment until it is terminated.
The blind actions allow to bridge aliased situations.

Though everything presented until now was devoted to deterministic envi-
ronments, [Butz et al., 2001] proposes an improvement of ACS which allows the
system to deal with stochastic environments. On the contrary to deterministic
environments, the actions and the perceptions are not totally reliable. When
there is noise on the perceptions, some features of the perceived situations may
not correspond to the actual features with some probabilities. When there is noise



on the actions, an action in a particular situation may lead to different situations
with some probabilities. By storing for each classifier a propability enhanced F
part, ACS is able build a stochastic model of an environment. YACS only deals
with deterministic environments.

So far, ACS is more mature than YACS. In the following, we compare YACS
to the core of ACS, without the extensions allowing it to deal with non-Markov
and stochastic environment.

5.2 Similarities between ACS and YACS

The number of classifiers produced by YACS in Maze4 with 3 irrelevant bits is
different from the number of classifiers produced by ACS in the same experiment
(see section 4.3). This could come from the criterion to decide whether a classifier
has a correct E part in a specific case or not. Then the two systems would produce
different optimal representations of the dynamics of the environment.

This criterion seems very different in ACS and YACS. In this section we will
show that in fact, they are very similar.

ACS considers the current state S;, the current action A; and the next state
S¢11 in the Anticipatory Learning Process (ALP). YACS uses S;—1, A;—1 and
S¢. These are only different ways of looking at the same things. Here, we use the
terminology of YACS.

[Stolzmann, 1998] gives a detailed description of the comparison used in ACS.
An anticipation of the next state passthrough(S;_1, E) is computed, then com-
pared with S;. In YACS, the desired effect DE = dif f(St, S¢—1) is compared
with E. This looks very different, but we will show that both kinds of comparison
are very similar.

The passthrough and dif f operators are defined for all features of the en-
vironment. Let s;_; be a feature of S;_1, s; the corresponding feature for S;, ¢
the corresponding component of the C' part and e the corresponding component
of the FE part.

The table 1 compares the criterion e = dif f(s¢, st—1) used in YACS with
the criterion passthrough(s;—1,e) = s; used in ACS. In this table, “x” means
“different from #, s; and s;—1”.

| St | e |diff(st, st,1)|passthrough(st,1, e)|YACS|ACS|

= si—1|# # St_1 true |true
# Se—1|# St St—1 false |false
= S4_1|S¢ # St false |true
# St—1|5¢ St St true |true
= S;_1|% # * false |false
# St—1|* St * false |false

Table 1. Truth table



The table 1 shows that the equation e = dif f(s¢, s¢.—1) is equivalent to the
equation passthrough(s;—1,e) = s; except in one case, when s;_1 = s; = e.

In ACS a specialization of a component e in the E part always implies a spe-
cialization of the corresponding component ¢ in the C part. If no generalization
is used in ACS, ¢ cannot become a # symbol in the future. Since every active
classifier must belong to the match set, ¢ = s;—1. Thus ¢ would be equal to e,
but this is impossible, because only changing components are specialized in the
E part. The specialization of unchanging components does not influence this.

Thus, if no generalization is used in ACS the comparison used in ACS is equal
to the comparison used in YACS. There is only a difference if generalization is
used in ACS. To summarize, we can say that the comparisons in ACS and YACS
are very similar but the way specialization takes place is different. This point is
discussed in the next section.

5.3 Differences between ACS and YACS

YACS is designed so as to decorrelate the acquisition of relevant C' and F parts.
This is an important conceptual difference between ACS and YACS. An E part
contains by itself the information about the anticipated effects occurring in the
environment, regardless of the condition parts. A specific value for a particular
feature in the E part always indicates that a change occurs, regardless of the
structure of the C' part. But the classifier does not specify the initial value of
the feature if it has not been specialized in the C' part. YACS guarantees that
the value of a particular feature of the C' part of a classifier is never equal to the
corresponding value in its E part. If they should be equal, the correct value in
the F part is a don’t change symbol.

This fact affects the latent learning process. The first part of this process in
YACS is to set E parts to actually perceived changes in the environment. The
second part of the process is in charge of discovering relevant C parts. A C part
must be able to discriminate between situations so that the E part discovered
by the first mechanism is always correct when the classifier can be fired. This
way of creating new classifiers decorrelates the C' and E parts discovery.

In ACS, the FE part discovery is performed by the specialization of changing
components process. When a classifier anticipates badly, this part of the ALP
may create a new classifier by specialization of both C' and E parts. Thus, the
discovery of E parts in ACS relies on incremental specializations. By contrast,
the E part covering process of YACS sets them to actually observed effects in
one single stage, regardless of the number of don’t change symbols. In YACS,
specialization does not make sense for F parts since they do not contain don’t
care but don’t change symbols.

The specialization of changing components process in ACS specializes si-
multaneously C' and E parts in order to store the changes in the environment.
It brings information about the specific values resulting from the actions (as
in YACS) but also about the initial corresponding values. However, this joint
specialization mechanism yields two drawbacks.



First, specializing only the changing features may forbid to identify features
which are very discriminative but which are not changed by the action. In order
to deal with that problem, ACS includes the specification of unchanging compo-
nents process, which allows to discriminate between some situations when the
specialization of an unchanging feature would be required.

The second problem of the specialization of changing components process is
that it may introduce over-specialization by specializing irrelevant but changing
features in the C' part. Thus, correlating C' and E parts in the ALP offers many
occasions to specialize irrelevant features. YACS decorrelates C' and FE parts and
directly identifies the features which are the most relevant to distinguish between
situations so as to get able to anticipate well.

YACS takes advantage of this information to drive the condition specializa-
tion process. Some of the classifiers created by this process do not anticipate
well (see section 2.3) and must be removed thanks to the selection of accurate
classifiers process. In contrast, ACS always produces classifiers that anticipate
at least as well as their parent. When the condition specialization process in
YACS creates useless classifiers, they are removed (see section 2.4).

The condition specialization process is driven by experience and does not
care whether the feature is changing or not. The expected improvement by spe-
cialization does neither identify features which are not correctly anticipated nor
changing features. It focuses on the features of the C parts and does not care
about particular features of the E parts. Drawing such information from expe-
rience takes time and YACS specializes less often than ACS does. It is more
cautious and leads to less over-specialization problems than the specialization
process of ACS.

Thus, ACS heavily relies on its generalization mechanism [Butz et al., 2000a]
in order to provide a model of the environment which is as compact as possible.
ACS uses a genetic algorithm in order to correct over-specialization cases. As
traditional genetic algorithms, the search mechanism relies on mutation and
crossover operators. It is not explicitly driven by experience. As a result, it
creates classifiers which anticipate badly. Moreover, if a particular situation can
be identified by specializing in several different ways, a situation may be covered
by more than one single classifier. Thus, even if every classifier is at the right
level of specialization, the genetic algorithm may introduce redundancies which
lead to a sub-optimal number of classifiers.

However, the generalization mechanism of ACS is able to reconsider irrelevant
early specializations. As YACS does not take advantage of such a mechanism, it
is not able to do so. Thus, when YACS fails to choose the most relevant feature
to specialize, it introduces over-specialization in the model of the environment
and cannot correct the mistake. This absence of a generalization will become
even more crucial if the system is interacting with a changing environment.



6 Conclusion and Future Work

The latent learning process builds a model of the dynamics of the environment
even in the absence of rewards. It models how the actions modify the perceived
situations. This modeling process uses information about successive perceived
situations. The information used is available at each time step. So, latent learning
systems make an intensive use of the perceptual feedback offered by the sensori-
motor loop. Thus, they can quickly identify relevant and general classifiers.

Moreover, since the latent learning process provides information about the
situations’ transitions, it can speed up the policy learning process. With the
latent learning and policy learning component, one can build a complete rein-
forcement learning system.

In this paper, we described the two components of YACS and showed ex-
perimentally how this system is able to solve maze problems. We focussed on
the latent learning process and described its two main parts: the effect cover-
ing and the condition specialization process. YACS showed its ability to learn a
compact model of the dynamics of the environment by taking advantage of in-
formation available at each time step. The experiments also confirmed that the
cautious specialization process in YACS leads to less over-specialization than the
corresponding process in ACS.

But even if the specialization process is very cautious in YACS, it does only
lead to near optimality and YACS needs a dedicated generalization mechanism.
In a short term, YACS will be enhanced with such a process, which will explicitly
take advantage of experience to drive the generalization without genetic algo-
rithms. The generalization mechanism of YACS will draw benefits of expected
improvement by generalization estimates. These estimates should allow to decide
if a classifier would anticipate correctly even if the corresponding specialized fea-
ture of the C' part is general. As in the specialization mechanism, the estimates
are updated according to the experience. The generalization of the C parts of
accurate classifiers with the same A and E parts will be driven by the expected
improvement by generalization estimates.

In a middle term, YACS should be enhanced to tackle non-Markov problems.
Where ACS uses action sequences to bridge aliased situation, YACS will adopt
a different strategy and use internal states as Lanzi [Lanzi, 1998] does. It will
identify aliased situations when a classifier whose C' part is already completely
specialized oscillates (see section 2.3).
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