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t. A new and original trend in the Learning Classi�er System(LCS) framework is fo
ussed on latent learning. These new LCSs 
allupon 
lassi�ers with a [
ondition℄, an [a
tion℄ and an [e�e
t℄ part. Inpsy
hology, latent learning is de�ned as learning without getting any kindof reward. In the LCS framework, this pro
ess is in 
harge of dis
overing
lassi�ers whi
h are able to anti
ipate a

urately the 
onsequen
es ofa
tions under some 
onditions. A

ordingly, the latent learning pro
essbuilds a model of the dynami
s of the environment. This model 
an beused to improve the poli
y learning pro
ess. This paper des
ribes YACS,a new LCS performing latent learning, and 
ompares it with ACS.1 Introdu
tionThe reinfor
ement learning framework [Sutton and Barto, 1998℄ 
onsiders adap-tive agents involved in a sensori-motor loop. Su
h agents per
eive situationsthrough their sensors, and use these per
eptions to sele
t an a
tion and a
t a
-
ordingly in the environment. As a result, they re
eive a s
alar reward from theenvironment and per
eive a new situation. The task of the agents is to learnthe optimal poli
y (i.e. how to a
t in every situation in order to maximize the
umulative reward on the long run). This way, one 
an for instan
e simulate ratswhose task is to learn the shortest path to the food.Holland [Holland, 1976℄ presented the �rst ideas about LCSs (Learning Clas-si�er Systems) designed to solve reinfor
ement learning tasks. The 
apabilityof generalizing while learning is the main advantage of LCSs with respe
t toother reinfor
ement learning systems like Q-learning[Watkins, 1989℄. It allowsto aggregate several situations within a 
ommon des
ription so that the rep-resentation of the problem gets smaller. The �rst LCS, 
alled CS1, 
an befound in [Holland and Reitman, 1978℄. Wilson [Wilson, 1995℄ introdu
ed an al-gorithm similar to Q-learning [Watkins, 1989℄ in LCSs instead of the traditionalBu
ket Brigade algorithm [Holland, 1985℄. This work led to a revival of LCS



resear
h sin
e the a

ura
y based approa
h in XCS over
omes the problemin previous LCSs where espe
ially deferred reward leads to over-generalization[Wilson, 1989℄.Additional to the generalization 
apabilities of LCSs in poli
y learning tasks,an internal model of the dynami
s of the environment 
an be used to adapt thepoli
y further and faster. In multi-step problems, the 
onsequen
e of an a
tiondoes not only 
onsist in a reward, but also in the resulting new situation. Inproblems of that kind, an agent has the opportunity to 
onsider two su

essiveper
eived situations. Thus it 
an learn to anti
ipate what happens immediatelyafter the exe
ution of an a
tion. This learning pro
ess builds a model of thedynami
s of the environment. Su
h a model endows the system with informationabout situation transitions and allows lookahead me
hanisms. These me
hanisms
an be used either for planning or for hypotheti
al a
ting so as to speed upthe poli
y learning pro
ess. De�ning subgoals also allows to anti
ipate and toplan [Donnart and Meyer, 1996℄ what will happen far into the future, but ourapproa
h 
onsiders the anti
ipated immediate e�e
ts of an a
tion.The notion that the formation of a
tion-e�e
t relations is at the 
ore of thea
quisition of behavioral knowledge and the insight that anti
ipations are ne
es-sary for behavior rea
h far ba
k in psy
hology. A

ording to James [James, 1890℄,"an anti
ipatory image [...℄ is the only psy
hi
 state whi
h introspe
tion lets usdis
ern as the forerunner of our voluntary a
ts.". In animal learning, Tolman[Tolman, 1932℄ proposed that learning is the pro
ess of dis
overing what leads towhat (i.e. animals develop a �
ognitive map�, a sort of internal representation ofthe world). Seward [Seward, 1949℄ gives empiri
al results whi
h showed that ratsare indeed learning an internal representation of an environment without re
eiv-ing any type of reward or punishment. Learning without environmental rewardor punishment is 
alled latent learning. Ho�mann [Ho�mann, 1993℄ proposed apsy
hologi
al learning theory of anti
ipatory behavioral 
ontrol. He postulatesthat 
onditional a
tion-e�e
t relations are learned latently by using anti
ipa-tions.In order to use LCS to learn a model of the dynami
s of the environment,Holland [Holland, 1990℄ proposed an impli
it approa
h. With internal messages,it is possible to use tags that spe
ify if a 
urrent �a
tion� posted to a message lista
tually spe
i�es an a
tion or an anti
ipation. Riolo [Riolo, 1991℄ implementedthis idea in his CFSC2 and demonstrated its latent learning 
apability. A moreexpli
it linkage is used in CXCS [Tomlinson and Bull, 2000℄. Probabilisti
allylinked 
lassi�ers result in 
ooperations among 
lassi�ers. The linkage evolves animpli
it representation of an anti
ipated e�e
t by the linked su

essive 
ondi-tions.In 
ontrast with all these approa
hes, the Anti
ipatory Learning Pro
ess(ALP) used in the ACS (Anti
ipatory Classi�er System) is a further developmentof the anti
ipatory behavioral 
ontrol theory introdu
ed in psy
hology by Ho�-mann [Ho�mann, 1993℄. YACS (Yet Another Classi�er System) also uses theseideas and both systems form expli
it [
ondition℄[a
tion℄[e�e
t℄ 
lassi�ers. Thisformalism is similar to Sutton's DynaQ+ [Sutton, 1991℄ approa
h or Dres
her's



[
ontext℄[a
tion℄[result℄ rules [Dres
her, 1991℄, but with a generalization 
apa-bility. ACS and YACS both take advantage of the information provided by thesu

ession of situations in order to drive expli
itly the 
lassi�er dis
overing pro-
ess. Therefore, they use heuristi
s instead of geneti
 algorithms, whi
h are gen-eral but not expli
itly driven by experien
e.In se
tion 2 we detail the heuristi
s used for the latent learning pro
ess inYACS. In se
tion 3 we show how this system takes advantage of the model
omputed by the latent learning pro
ess to learn an optimal poli
y. Some exper-imental results are presented and dis
ussed in se
tion 4. In se
tion 5 we showthe main di�eren
es between ACS and YACS.2 Des
ription of the latent learning pro
ess in YACSAs ACS [Stolzmann, 1998℄, YACS deals with [
ondition℄[a
tion℄[e�e
t℄ 
lassi-�ers, or C-A-E 
lassi�ers. C stands for [
ondition℄, A for [a
tion℄ and E for[e�e
t℄. C parts take advantage of generality and may mat
h several per
eivedsituations. An A part spe
i�es a parti
ular a
tion possible in the environment.The E part represents the e�e
ts of the 
onsidered a
tion in the situationsmat
hed by the 
ondition. It re
ords the per
eived 
hanges in the environment.A situation is divided into several features representing per
eivable propertiesof an environment. For example, an agent in a grid world may per
eive eightfeatures, one for ea
h adja
ent 
ell. Thus, a situation is an ordered set of severaldis
rete values, one for ea
h of the per
eived features of the environment. A Cpart has the same stru
ture but it may 
ontain don't 
are symbols �#�. Su
h asymbol mat
hes every spe
i�
 value of the 
orresponding features of a per
eivedsituation. The E part stores for ea
h per
eived feature the expe
ted 
hangesin the environment when the a
tion of the 
lassi�er is 
hosen and when theper
eived situation mat
hes its 
ondition. A spe
i�
 value in the E part means�if the 
lassi�er is �red, the feature of the per
eived situation 
orresponding tothe spe
i�
 value will 
hange and turn to that value at the next time step�.The E part might 
ontain don't 
hange symbols �#�. A don't 
hange symbol inthe E part means �if the 
lassi�er is �red, the feature of the per
eived situation
orresponding to the don't 
hange symbol will remain un
hanged at the next timestep�.The latent learning pro
ess is in 
harge of dis
overing C � A � E 
lassi�erswith maximally general C parts that a

urately model the dynami
s of theenvironment. It learns C and E parts separately.In se
tion 2.1, we explain how YACS learns E parts by dire
t 
omparison ofsu

essive per
eived situations. Moreover, we present how it sele
ts a

urate 
las-si�ers in se
tion 2.2. Finally, we detail in se
tion 2.3 how YACS learns relevant
onditions by su

essive spe
ializations.2.1 E�e
t 
overingThe e�e
t 
overing me
hanism is the part of the latent learning pro
ess that isin 
harge of dis
overing a

urate E parts (i.e. E parts representing a
tual e�e
ts



of a
tions under some 
onditions). When the system learns a

urate e�e
ts, it
reates new 
lassi�ers with suitable E parts settled a

ording to experien
e.During this pro
ess, YACS also updates a tra
e T of good and bad markersmemorizing past anti
ipation mistakes and su

esses of ea
h 
lassi�er. This tra
eworks as a FIFO1 list with a �nite length m.YACS keeps a memory of the last per
eived situation and the last performeda
tion. Thus, it knows the 
urrent situation St resulting from the a
tion At�1in the situation St�1 at ea
h time step.With this information, YACS 
omputes the desired e�e
t DE whi
h is the Epart of a 
lassi�er whi
h 
ould have been �red at the pre
eding time step, andwhose E part re�e
ts a

urately the 
hanges a
tually per
eived in the environ-ment. To 
ompute the desired e�e
t, YACS uses the di� operator whi
h worksas follows on features of the environment:diff(ft; ft�1) = �# if ft = ft�1ft otherwisewhere ft is a feature of the situation at the 
urrent time step, and ft�1 is the
orresponding feature of the situation at the previous time step.The di� operator is applied to ea
h feature of the situations St and St�1 to
ompute the desired e�e
t DE.At ea
h time step, YACS 
he
ks the a

ura
y of the E part of every 
lassi�erof the a
tion set (i.e. the set of 
lassi�ers whi
h have been mat
hed by St�1 andwhose a
tions are the same as the sele
ted a
tion At�1). Su
h a 
lassi�er shouldhave an E part equal to the desired e�e
t DE:� If its E part equals DE, the 
lassi�er would have anti
ipated well, and weadd a good marker to its tra
e T of anti
ipation mistakes and su

esses.� In the other 
ase, the E part of the 
lassi�er is wrong and we add a badmarker to its tra
e T .Moreover, if no 
lassi�er has a 
orre
t E part, YACS 
hooses one of the 
lassi�erswhose E part is wrong. Then it builds a new 
lassi�er with the same C and Aparts. Its E part is set to DE. As it would have anti
ipated well, a good markeris added to its empty tra
e T . This new 
lassi�er is �nally added to the 
lassi�erset.2.2 Sele
tion of a

urate 
lassi�ersAs YACS tries to build a set of 
lassi�ers that anti
ipate a

urately, it has adele
tion me
hanism to remove ina

urate 
lassi�ers. The tra
e T of good andbad markers allows to 
he
k the anti
ipation abilities of a 
lassi�er.� If the tra
e T of a 
lassi�er is full and if it only 
ontains bad markers, thenYACS assumes that the 
lassi�er always anti
ipates in
orre
tly and removesit.1 First In First Out: the �rst element added in the list is the �rst removed



� If the tra
e T of a 
lassi�er is full and if it 
ontains good and bad markers,we say that the 
lassi�er os
illates: it sometimes anti
ipates well and some-times not. In Markov and deterministi
 environments, the reason of theseos
illations is that its 
ondition is too general. It mat
hes several di�erentsituations, ea
h leading to a di�erent situation just after the a
tion. In or-der to distinguish between these situations, the 
ondition must be furtherspe
ialized.� In all other 
ases, the 
lassi�er is kept.This me
hanism allows to keep only the a

urate 
lassi�ers.2.3 Spe
ialization of 
onditionsIn se
tion 2.1 we have presented how YACS learns E parts. However, the an-ti
ipation of a 
lassi�er may only be a

urate if its C part is at least partlyspe
ialized. A C part should be as general as possible in order to represent regu-larities in the environment. But it must be spe
i�
 enough so that the 
lassi�erdoes not os
illate. This se
tion explains how C parts are in
rementally spe
ial-ized so as to rea
h the right level of generality.The MutSpe
 operator The 
lassi�er dis
overy problem is usually solved bya geneti
 algorithm using a 
reation pro
ess driven by mutation and 
rossoveron 
lassi�ers sele
ted a

ording to their �tness. These operators do not expli
itlytake advantage of the experien
e of the agent.As in the U-Tree algorithm [M
Callum, 1996℄, YACS starts without mak-ing any distin
tion between situations, and in
rementally introdu
es experien
edriven spe
ializations in C parts. It uses neither mutation nor 
rossover opera-tors.The spe
ialization pro
ess of YACS uses the mutspe
 operator introdu
edby [Dorigo, 1994℄. This operator sele
ts a general feature of the C part2 of a
lassi�er, and produ
es one new 
lassi�er for ea
h possible spe
i�
 value of thesele
ted feature. The E parts of every new 
lassi�er are the same as the E part ofthe original 
lassi�er, ex
ept when the spe
ialization leads to an equality betweenthe feature of the C part and the 
orresponding feature in the E part. In that
ase, a don't 
hange symbol is added. The original 
lassi�er is dis
arded.For instan
e, when the �rst feature is sele
ted, and assuming that it mighttake only two spe
i�
 values (0 or 1) the 
lassi�er [#|#|#|#℄ [0℄ [#|#|#|#℄produ
es two new 
lassi�ers ( [0|#|#|#℄ [0℄ [#|#|#|#℄ and [1|#|#|#℄ [0℄[#|#|#|#℄).The C parts of the new 
lassi�ers are more spe
ialized than the original Cpart.Therefore, if the C part of the original 
lassi�er was mat
hing several per-
eived situations, ea
h resulting C part will mat
h a subset of these situations.We want YACS to be able to 
hoose the token to spe
ialize in su
h a way that2 a feature with a don't 
are symbol



the two resulting subsets have an equal 
ardinality, in order to prevent over-spe
ialization.The expe
ted improvement by spe
ialization estimates Choosing at ran-dom the token to spe
ialize, as in Dorigo's original work, would lead to anover-spe
ialization of the C parts and thus to a sub-optimal number of 
lassi-�ers. We improve this sele
tion pro
ess by using the expe
ted improvement byspe
ialization estimate is asso
iated to ea
h general feature of the C part of ea
h
lassi�er (i.e to ea
h don't 
are symbol). This value estimates how mu
h thespe
ialization of the token would help to split the situation set 
overed by theC part into several sub-sets of equal 
ardinality.Let us 
onsider a 
lassi�er whi
h tries to anti
ipate the 
onsequen
es of ana
tion in several situations. If the value of a parti
ular feature of the situationwhen the 
lassi�er anti
ipates well is always di�erent from the value when itanti
ipates in
orre
tly, then this feature is very relevant for distinguishing be-tween the situations 
overed by the C part. Thus, the C part must be spe
ializeda

ording to this parti
ular feature, and the estimate is should get a high value.In order to 
ompute the estimates is, ea
h 
lassi�er memorizes the situationBadS pre
eding the last anti
ipation mistake and the situation GoodS pre
edingthe last anti
ipation su

ess. Ea
h time the 
lassi�er belongs to the a
tion setof last time step, St allows to 
he
k the a

ura
y of the E part.� If the E part is 
orre
t, for ea
h feature of the environment:� if a parti
ular token of BadS equals the 
orresponding feature of St�1,then the 
orresponding estimate is is de
reased using a Widrow-Ho�3delta rule;� if a parti
ular token of BadS di�ers from the 
orresponding feature ofSt�1, then the 
orresponding estimate is is in
reased using a Widrow-Ho� delta rule;� If the E part is in
orre
t, for ea
h feature of the environment:� if a parti
ular token of GoodS equals the 
orresponding feature of St�1,then the 
orresponding estimate is is de
reased using a Widrow-Ho�delta rule;� if a parti
ular token of GoodS di�ers from the 
orresponding feature ofSt�1, then the 
orresponding estimate is is in
reased using a Widrow-Ho� delta rule;The spe
ialization pro
ess The expe
ted improvement by spe
ialization esti-mates detailed above allow the 
lassi�er spe
ialization me
hanism to be drivenby experien
e and are used in the C parts spe
ialization pro
ess.When a 
lassi�er sometimes anti
ipates well and sometimes not (i.e. whenits anti
ipation tra
e 
ontains good and bad markers), it os
illates and its C part3 The Widrow-Ho� delta rule uses a learning rate � 2 [0; 1℄. A s
alar x is in
reasedwith su
h a rule with respe
t to the formula: x (1� �)x+ �. It is de
reased withthe formula: x (1� �)x



needs to be further spe
ialized. If a 
lassi�er os
illates that way, thanks to thee�e
t 
overing me
hanism, the 
lassi�er set 
ontains at least one other 
lassi�erwith the same C and A parts and with a di�erent E part.The spe
ialization pro
ess is 
autious: YACS waits until all the 
lassi�er withthe same C and A parts have been identi�ed as os
illating 
lassi�ers, and untiltheir anti
ipation tra
es are full. At this point, these 
lassi�ers sele
t togetherthe feature to spe
ialize. The estimates is 
orresponding to ea
h feature of theenvironment are summed among the 
lassi�ers, and the feature with the highestsum is 
hosen to be spe
ialized. The mutspe
 operator is then applied to every
lassi�er. Some of the 
lassi�ers produ
ed by the mutspe
 operator always anti
-ipate badly. They are removed by the sele
tion of a

urate 
lassi�ers pro
ess.2.4 Useless 
lassi�ers and Condition 
overingAt this point, we have des
ribed the main me
hanisms of the latent learningpro
ess. The me
hanisms des
ribed in this se
tion are devoted to deal with theuseless 
lassi�ers and the 
overing of new situations.Condition 
overing Given a parti
ular possible a
tion, when YACS gets anew situation St, it may happen that this situation does not mat
h with any Cpart of the 
lassi�er set. In this 
ase, YACS 
reates a new 
lassi�er. Its A partequals the 
onsidered a
tion. The E part of the 
lassi�er is 
omputed a

ordingto St�1 in the same way as the desired e�e
t (see se
tion 2.1). Its C part issu
h that it mat
hes St. It is also su
h that it is neither more general nor morespe
i�
 than the C part of any other 
lassi�er with the same A part. With respe
tto the previous 
onstraints, it is as general as possible. These C parts allow toadd maximally general 
lassi�ers without introdu
ing redundan
ies with alreadyspe
ialized ones.Useless 
lassi�ers The system uses a set P of every per
eived situation en-
ountered during the lifetime of the agent. This set only 
ontains one singleinstan
e of ea
h situation. It is not ordered. When the agent 
omes to time stept, it per
eives the new situation St. If the new situation is not present in P , itis added.The spe
ialization pro
ess may 
reate 
lassi�ers whi
h will never be used norevaluated be
ause their C part does not mat
h any possible situation. To get ridof su
h 
lassi�ers, we remove every 
lassi�er whi
h does not mat
h any situationin the set P of already en
ountered situations.The number of elements in P grows exponentially with respe
t to the num-ber of per
eived features in the environment. In huge environments, memoryproblems may o

ur and it would be worth taking advantage of generalizationin order to redu
e the size of this set. But in se
tion 3 we show that the systemmust deal with information about spe
i�
 situations in order to use dynami
programming. So this set P is also ne
essary for another part of the algorithm.



Until now, we have des
ribed the latent learning pro
ess in YACS. Thanksto e�e
t 
overing and in
remental spe
ialization of 
onditions, it provides thesystem with a set of 
lassi�ers whi
h anti
ipate well the 
hanges in the environ-ment. This set of 
lassi�ers is a model of the dynami
s of the environment interms of situation transitions. The di�eren
es with the latent learning pro
essin ACS are dis
ussed in se
tion 5.3.3 Des
ription of the poli
y learning pro
ess in YACSIn order to take advantage of the model of the dynami
s of the environmentprovided by the ACS, Butz and Stolzmann [Butz and Stolzmann, 1999℄ use goaldire
ted planning. This solution is expensive in 
omputational time. Moreover,it is not part of the reinfor
ement learning framework. It optimizes the modellearning 
apabilities but does not improve the poli
y learning pro
ess.YACS uses iterative algorithms derived from dynami
 programming. Plainvalue iteration (see se
tion 3.1) performs several steps of Value Iterations in orderto adjust the qualities for a
tion of ea
h (situation; a
tion) pair. Using one singlestep of value iteration at ea
h time step allows to �nd the optimal poli
y overseveral time steps and o�ers a good rea
tivity/planning tradeo�. Doing so issimilar to performing �mental� a
tions as in DynaQ+ [Sutton, 1991℄.In this se
tion, we des
ribe how YACS takes advantage of the model of theenvironment in order to speed up the reinfor
ement learning pro
ess and the
omputation of a poli
y. We �rst introdu
e the Value Iteration algorithm andthe way YACS identi�es the reward sour
es. Then we explain how the use ofgenerality forbids to 
ompute one single quality of a
tion for ea
h 
lassi�er4. We�nally present how this problem is solved in YACS.There are many ways for taking advantage of the model for performing rein-for
ement learning. We 
hoose the algorithms presented in this se
tion be
ausethey are among the most 
lassi
al available.3.1 Value IterationIn order to 
ompute an optimal poli
y, YACS uses a simpli�ed variety of ValueIteration: a dynami
 programming algorithm whi
h solves the Bellman equations[Bellman, 1957℄. It iteratively re�nes the qualities for every (situation; a
tion)pair using the formula:Q(s; a) = R(s; a) + 
Xs0 T (s; a; s0)V (s0) (1)where V (s) = maxaQ(s; a) (2)4 Stolzmann [Stolzmann, 2000℄ also uses the term qualities but with a di�erent mean-ing. The qualities of a
tion are di�erent from the qualities used in ACS, whi
h arequalities of anti
ipation. Qualities of anti
ipation estimate the 
on�den
e in theanti
ipation, and not an expe
ted dis
ounted reward as the qualities of a
tion.



Q(s; a) is the quality of a
tion a in situation s. It takes into a

ount both theimmediate and the future expe
ted reward, dis
ounted by a temporal dis
ountfa
tor 
. V (s) is the desirability value of the situation s. R(s; a) is the immediateexpe
ted reward when the agent performs a
tion a in situation s. T (s; a; s0) is theprobability to per
eive the situation s0 just after performing a
tion a in situations. As YACS is designed to deal with deterministi
 environments, we do not usethe transition probabilities and repla
e the expe
ted future 
umulative rewardPs0 T (s; a; s0)V (s0) by maxs0V (s0) where s0 is a situation anti
ipated when theagent performs the a
tion a in situation s.3.2 Learning immediate rewardsThe latent learning pro
ess brings information about situation transitions. Inorder to use a dynami
 programming algorithm, YACS 
omputes the immedi-ate expe
ted rewards 
orresponding to the R(s; a) term in value iteration. Animmediate reward estimate r is asso
iated to ea
h 
lassi�er. It estimates theimmediate reward re
eived by the agent if the a
tion whi
h it proposes is 
hosenwhen its C part mat
hes the 
urrent situation.Let us 
all Rt the reward given by the environment resulting from the a
tionAt when the per
eived situation was St. The immediate reward estimate r ofevery 
lassi�er su
h that its C part mat
hes St and its A part mat
hes At isupdated a

ording to a Widrow-Ho� delta rule: r  (1� �)r + �Rt3.3 The problem indu
ed by general 
onditionsIn 
lassi�er systems without E parts, a 
lassi�er is kept when it helps to max-imize the reward on the long run [Wilson, 1994℄, or when it is able to predi
tthe reward a

urately [Wilson, 1995℄. But we use 
lassi�ers with an E part. Inour 
ase the de
ision to keep or to remove a 
lassi�er only relies on its abilityto predi
t the next situation. Thus the �tness of a 
lassi�er does not take thereward into a

ount (see se
tion 2.2 about latent learning).This way of estimating the �tness of a 
lassi�er gives rise to a new wayof 
onsidering generality. A 
lassi�er is too general when a don't 
are symbolprevents the anti
ipation to be a

urate, regardless of the expe
ted reward. It istoo spe
i�
 if its E part would remain a

urate if some don't 
are symbols wereadded in its C part, regardless of the payo�.Let us 
onsider an agent in a maze like the woods environments (see se
tion4.1). When it per
eives an obsta
le in a parti
ular dire
tion, and if it movestowards this dire
tion, it will hit the obsta
le and remain in the same 
ell. Theagent does not need to pay attention to the obsta
les in the other dire
tions toanti
ipate well what will happen. Thus a 
lassi�er whi
h 
ould be interpretedin a maze environment as �when the agent per
eives an obsta
le on the north,if it tries to move north, it will not per
eive any 
hanges in its situation: itwill remain in the same 
ell� anti
ipates well. It is a

urate sin
e it would not



anti
ipate better if its C part were more spe
i�
. It is kept and will not be furtherspe
ialized.The problem is that su
h an a

urate 
lassi�er is not too general with respe
tto anti
ipation, but it is too general to predi
t the dis
ounted reward sin
e its Cpart mat
hes several di�erent situations. Be
ause of the dis
ount fa
tor 
 usedin Value Iteration, the desirability values asso
iated to the situations whi
h are
lose to a reward sour
e are higher than the desirability values asso
iated to thesituations whi
h are far from it. Therefore, it is not possible to 
ompute a singlequality of a
tion for a 
lassi�er whose general C part mat
hes several situationsper
eived at di�erent distan
es from the reward.To summarize, general C parts help to express regularities in the environ-ment instead of simply providing a kind of sele
tive attention. As a result, some
lassi�ers may mat
h several situations and thus it be
omes impossible to 
om-pute a single quality of a
tion for ea
h general 
lassi�er. The system needs todeal with information about spe
i�
 situations.3.4 Asso
iating desirability values to every already en
ounteredsituationLet us ta
kle the problem indu
ed by general 
onditions in another way. InYACS, a 
lassi�er stores at least one possible transition between two situationswhen an a
tion is performed. The latent learning pro
ess in YACS dis
overs
lassi�ers su
h that one 
lassi�er represents several transitions involving thesame a
tion, but mat
hing in di�erent a
tual situations. To do so, YACS makesuse of general C parts and stores the 
hanges resulting from the a
tion in theE parts. Thus the system looses the information about the transitions betweena
tual spe
i�
 situations by aggregating them in a single 
lassi�er with a general
ondition. This loss of information about a
tual spe
i�
 situations forbids touse Value Iteration to take advantage of the model. It also forbids to perform�mental� a
tions as [Sutton, 1991℄ does in DynaQ+.In order to re
over the missing information, YACS asso
iates a desirabilityvalue to ea
h spe
i�
 situation in the already per
eived situation set P (seese
tion 2.4). This desirability value 
orresponds to the V (s) term in formula (2).The transitions are 
onsequently stored and the immediate rewards are storedin the 
lassi�ers and the missing information is stored in the already per
eivedsituation set. The resulting model is mu
h smaller than a Q-table storing qualitiesfor every (situation; a
tion) pairs.To 
ompute the desirability value asso
iated with a situation S, we �rstidentify all the 
lassi�ers whose C part mat
hes the situation S. If su
h a 
las-si�er was �red, the immediate reward would be stored in its r estimate andthe expe
ted 
umulative reward would be the maximum among the value of thesituations anti
ipated by the �rable 
lassi�ers, multiplied by the dis
ount fa
tor
. In order to determine the situation St+1 anti
ipated by a 
lassi�er given asituation St, YACS uses the passthrough operator. The anti
ipated situation is



St+1 = passthrough(St; E) where E is the e�e
t of the 
lassi�er. This operatorworks as follows on the features of the situations:passthrough(fs; fe) = �fs if fe = #fe otherwisewhere fs is a feature of the situation St and fe is the 
orresponding feature ofthe E part of the 
lassi�er.So the system 
omputes values for ea
h situation and takes advantage of themodel supplied by the latent learning pro
ess to update these values withouta
tually performing the a
tions. When the 
lassi�er system anti
ipates well inevery situation, the agent is able to qui
kly adapt its behavior to new rewardsour
es.3.5 Sele
ting an a
tionWhen YACS per
eives a situation St from the environment, it sele
ts all the
lassi�ers whose C part mat
hes. These 
lassi�ers anti
ipate the following situ-ation by 
omputing passthrough(St; E). Then they 
ompute a quality of a
tionby adding the immediate reward estimate r and the dis
ounted expe
ted rewardwhi
h is the value of the following situation multiplied by the dis
ount fa
tor 
.The sele
ted a
tion is the a
tion of the 
lassi�er 
orresponding to the highest
omputed quality of a
tion.4 Experiments with YACSIn se
tions 2 and 3, we have presented YACS in two parts. The latent learningpro
ess is in 
harge of building a model of the dynami
s of the environment. Thepoli
y learning pro
ess takes advantage of the model to 
ompute the optimalpoli
y. This se
tion presents experimental results of YACS solving Wilson woodsproblems. The simulated woods environments are des
ribed in se
tion 4.1.The latent learning and poli
y learning pro
esses both take pla
e in a generalreinfor
ement learning task. In se
tion 4.2 we present the experimental resultsfor the general reinfor
ement learning task when YACS intera
ts with Maze4and Maze6. In se
tion 4.3, we present experimental results spe
i�
ally dedi
atedto the latent learning pro
ess.4.1 The Maze4 and Maze6 woods environmentsIn woods environments, the agent is situated in a maze 
ell and per
eives theeight adja
ent 
ells. A 
ell 
an either be empty, or 
ontain an obsta
le (�) orfood (F). It 
an move towards any of these 
ells. The agent is allowed to try tomove towards an obsta
le. In this 
ase, it will remain in the same 
ell.Maze4 (see �gure 1) has been investigated by [Lanzi, 1997℄ and Maze6 (see�gure 2) by [Lanzi, 1999℄. The experiments we present in this paper involveYACS intera
ting with these environments.
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Fig. 1. The Maze4 environment
F

Fig. 2. The Maze6 environmentThe experiments are divided into trials. The agent starts a trial in a free 
ell
hosen randomly. This random 
hoi
e makes the exploration easier and allowsto 
he
k if the agent learns to rea
h the goal from any position in the maze. Atrial ends when the agent rea
hes the 
ell with food. In that 
ase the agent getsa reward of 1, it gets a new per
eived situation, and a new trial starts.Sin
e the agent starts a trial in a random 
ell, the optimal number of a
tionsto rea
h the food is not 
onstant over trials. Averaged over every possible starting
ell, the optimal number of a
tions is 3.5 in Maze4 and 5.2 in Maze6. As we letthe agent per
eive the situation in the 
ell with the food, the number of timesteps is one more than the number of a
tions. Thus, the average optimal path is4.5 time steps long in Maze4 and 6.2 in Maze6.In our experiments, the agent is allowed to perform any a
tion in every situ-ation. As a result, YACS has to dis
over 
lassi�ers whi
h model the transitionswhi
h do not lead to any 
hange. This is the 
ase when an a
tion leads the agentto hit an obsta
le and remain in the same 
ell. There are respe
tively 93 and 135transitions of that kind in Maze4 and Maze6. By taking advantage of generality,these transitions 
an be modeled with 8 
lassi�ers in ea
h 
ase: one 
lassi�er forea
h possible a
tion, by paying attention to the presen
e of a blo
k in the dire
-tion 
orresponding to the a
tion. There are no other regularities in Maze4 andMaze6. Sin
e the total number of possible transitions is 208 in Maze4 and 288in Maze6, the optimal numbers of 
lassi�ers YACS should rea
h are respe
tively123 (208� 93 + 8) and 161 (288� 135 + 8) for Maze4 and Maze6.ACS [Butz et al., 2000b℄ has also been tested in Maze4 and Maze6 envi-ronment. In these experiments, the agent was also allowed to perform a-prioriine�
ient a
tions, but in ACS, the 
lassi�ers whi
h do not model a 
hange aredeleted in the long run. Under these 
onditions, 115 (123 � 8) 
lassi�ers 
ana

urately model the dynami
s of the Maze4 environment and 153 (163 � 8)
lassi�ers are needed for Maze6.4.2 Reinfor
ement learningIn se
tions 2 and 3, we presented YACS in two parts. The latent learning pro-
ess is in 
harge of building a model of the dynami
s of the environment. Thepoli
y learning takes advantage of the model to 
ompute the optimal poli
y.



Both pro
esses take pla
e in the general reinfor
ement learning framework. Ina �rst part, we present experimental results whi
h show how the generalizationproblem is solved by the use of desirability values asso
iated to ea
h spe
i�
situation. However, these experiments show limitations whi
h are due to theexploration/exploitation tradeo� in YACS. These problems are dis
ussed in ase
ond part.Experimental results The agent explores the environment by random walkuntil the tra
e T of ea
h 
lassi�er 
ontains only good markers. At this point,YACS assumes that the dynami
s of the environment is well known. The agentdoes not move randomly anymore and the system swit
hes into exploitationmode5.For every experiment, the learning rate parameter is set to � = 0:1 andthe 
lassi�er's memory size is set to m = 5. As we do not ta
kle the explo-ration/exploration tradeo� in these experiments, the dis
ount fa
tor 
 does notmatter, ex
epted for �oat pre
ision 
on
erns. We set it to 0.9.Figures 3 and 4 present the number of time steps needed by the agent to�nish one trial. The results are averaged over 10 experiments. Figures use alogarithmi
 s
ale for the y axis.
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Fig. 3. Average number of time steps to�nish su

essive trials in Maze4 1
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Fig. 4. Average number of time steps to�nish su

essive trials in Maze6When the memory sizem is smaller, the spe
ialization pro
ess is less 
autious,sub-optimal spe
ializations o

ur more often in early time steps and thus, thesystem 
onverges towards a higher number of 
lassi�ers. When the memory sizem is higher, the bad 
lassi�ers are removed after a longer time and thus, themaximal number of 
lassi�er ever rea
hed in the experiments in
reases.5 In the environments dis
ussed here, it's su�
ient to swit
h from exploration to ex-ploitation. But it in environments that 
hange after a long time, it might be ne
-essary to swit
h ba
k from exploitation to exploration. This 
ould also be done independen
e of the tra
es.



Maze6 is a larger environment than Maze4 and the average optimal path tothe food is longer. Thus the number of time steps to rea
h the food in randommode is larger in Maze6. That is why YACS needs less trials to build a modelof the dynami
s of the Maze6 environment, but ea
h trial is longer in terms oftime steps.Figures 5 and 6 show the number of time steps needed by the agent to �nishsu

essive trials for a typi
al single experiment. As long as the system is in
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Fig. 5. Sample number of time steps to�nish su

essive trials in Maze4 1
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Fig. 6. Sample number of time steps to�nish su

essive trials in Maze6exploration mode, the number of time steps remains high. As soon as the systemswit
hes to exploitation mode, the behavior be
omes optimal with respe
t to thequality of the model of the environment. The number of time steps in later trialsis not 
onstant be
ause ea
h trial starts in a random 
ell and thus, the optimalpath to the food does not always have the same length.In the Maze6 experiments, the system always dis
overs the shortest path tothe food. In one of the experiments in the Maze4 environment, the behavior wassub-optimal. This problem is dis
ussed in the next se
tion.Dis
ussion In LCSs with anti
ipation 
apabilities, the main 
on
ern is usu-ally the latent learning pro
ess. In [Butz et al., 2000b℄ for example, the poli
ylearning pro
ess does not take advantage of the model and uses a modi�ed Q-learning te
hnique. Thus, the agent must a
tually a
t in the environment inorder to dis
over the optimal a
tions.When they take advantage of the model to speeds up the poli
y learningpro
ess, ACS and YACS [Stolzmann et al., 2000℄ fa
e the same problem: if themodel is not a

urate, the agent exhibits a sub-optimal behavior. This is the 
asein our experiments with Maze4. The average number of time steps needed byYACS to �nish a trial 
onverges to 4.75 instead of 4.5. The problem 
omes fromthe ina

ura
y of the 
riterion used by the system to swit
h from explorationmode to exploitation mode. In one of the 10 trials, every 
lassi�er dis
overed by



the latent learning pro
ess only 
ontained good markers, but the representationwas not perfe
tly a

urate be
ause some 
lassi�ers were still over-general. As aresult, the behavior of the agent was sub-optimal in the exploitation phase.During the early time steps, the system 
ontains a lot of over-general 
lassi-�ers. Su
h 
lassi�ers mat
h di�erent situations and may let the agent 
onsidertransitions whi
h 
annot a
tually be en
ountered in the environment. When thepoli
y learning pro
ess relies on su
h a model, the agent might repeat endlesslythe same sequen
e of a
tions.In order to avoid su
h problems, an LCS with latent learning abilities needsspe
i�
 me
hanisms. In DynaQ+, [Sutton and Barto, 1998℄ uses an explorationheuristi
 and gives an exploration bonus to the qualities for (situation; a
tion)pairs. This bonus in
reases as the pairs have not been used for a long time. Thisway, a
tions that improve the model are en
ouraged and the system draws thebene�ts of a good exploration/exploitation tradeo�.Su
h algorithms may be adapted to systems like ACS and YACS, whi
h takeadvantage of the generality to express regularities in the environment, 
ontrarilyto DynaQ+.In this se
tion, we presented some experimental results for general reinfor
e-ment learning tasks with YACS. Be
ause of the problem indu
ed by general Cparts (see se
tion 3.3), one 
annot 
ompute a single quality of a
tion for ea
h
lassi�er. The system must deal with information about spe
i�
 situations. With-out the desirability values asso
iated to ea
h spe
i�
 situation, YACS would notbe able to 
ompute an optimal poli
y at all. Our experiments with Maze4 andMaze6 show that the me
hanism we propose solves the problem.4.3 Latent learningIn order to solve reinfor
ement learning problems, YACS performs latent learningand poli
y learning. In this se
tion we present experimental results 
on
erningthe latent learning e�
ien
y in YACS.The latent learning pro
ess is in 
harge of building a small and a

uratemodel of the dynami
s of the environment. Thus the system should build an a
-
urate model with as less 
lassi�ers as possible, by dis
overing maximally general
lassi�ers. In order to estimate the evolution of the a

ura
y of the model oversu

essive time steps, we use a measure of the per
entage of knowledge providedby the model. This measure is similar to the one used by [Butz et al., 2000b℄.For ea
h possible transition in the environment, we 
he
k if the 
lassi�er system
ontains at least one reliable 
lassi�er able to model the transition. In YACS,we say that a 
lassi�er is reliable if its tra
e T is full and never 
ontained badmarkers (i.e. if it always anti
ipated well6). The per
entage of knowledge is theratio of possible transitions 
overed by a reliable 
lassi�er. This per
entage is 16 In ACS, a 
lassi�er would be said to be reliable if its quality is higher than 0.9.As the 
riterion to de
ide whether a 
lassi�er is reliable or not, the per
entage ofknowledge measure is not perfe
tly identi
al in both systems.



when the e�e
ts of every (situation; a
tion) pairs is a

urately anti
ipated bythe model. It is 0 when the 
onsequen
es of no (situation; a
tion) pair is wellanti
ipated.As in the previous se
tion, the parameters are set to � = 0:1, m = 5. All theresults are averaged over 10 experiments.Experiments with Maze4 and Maze6 Figure 7 presents the evolution ofboth the number of 
lassi�ers and the per
entage of knowledge for the Maze4experiments. Figure 8 shows the same information for the experiments with theMaze6 environment.
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Fig. 7. Evolution of the number of 
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Fig. 8. Evolution of the number of 
lassi-�ers in Maze6The average number of 
lassi�ers dis
overed by YACS 
onverges towards127.7 for Maze4 and 166.7 for Maze6, whi
h are respe
tively 102 and 103 per
entof the optimal numbers of 
lassi�ers. As YACS does not use any generalizationme
hanism yet, it 
annot re
onsider early bad 
hoi
es of the spe
ialization pro-
ess. Thus, irrelevant spe
ializations in the early time steps may lead the systemto over-spe
ialization.During the �rst time steps (up to 500), the per
entage of knowledge growsvery fast. YACS tries to model the transitions whi
h do not lead to any 
hangein the situation. Thus, YACS dis
overs qui
kly 
lassi�ers like �when there is anobsta
le in the north and I try to go north, nothing 
hanges in the environ-ment�. Su
h 
lassi�ers are very easy to dis
over, sin
e they require only onespe
ialization of the 
onditions. Moreover, they 
an be applied in many sit-uations in the environment. As a result, when one is dis
overed, the numberof (situation; a
tion) pairs whi
h are anti
ipated well grows signi�
antly. Theother relevant 
onditions need more spe
ializations to be dis
overed. Thus, theper
entage of knowledge grows slower.One 
an noti
e that the evolution of the number of 
lassi�ers is not mono-toni
. In a �rst part, YACS 
reates new 
lassi�ers by e�e
t 
overing or 
ondition



spe
ialization. Some of the 
lassi�ers 
reated by the mutspe
 operator anti
i-pate badly and need time to be evaluated and removed from the set. Duringthe se
ond part of the evolution, the main a
tivity of YACS is to remove su
h
lassi�ers, until the number of 
lassi�ers stabilizes 
lose to the optimum.Adding irrelevant information Considering a real robot that is equippedwith di�erent kinds of sensors, per
eptions are normally not as a

urate as inthe maze environments. For example, the robot 
ould dete
t di�erent degreesof brightness in its environment. Therefore, the trials in one experiment 
ano

ur under di�erent light 
onditions. For a system without any generalization
apability this would result in a new per
eived situation, ea
h time the light
onditions 
hange. Here we show that both ACS and YACS are able to handlesu
h irrelevant per
eived features.In order to simulate su
h a light s
enario we introdu
e some further featuresinto the per
eived situations. These attributes are randomly set to 0 or 1 whena new trial starts and keep the same value during the whole trial. As the addedper
eived features are irrelevant to distinguish between situations, the optimalnumber of 
lassi�ers remains the same when irrelevant bits are added (see se
tion4.1).Figure 9 presents the evolution of both the number of 
lassi�ers and theper
entage of knowledge for the Maze4 experiments when 3 irrelevant bits areadded. Figure 10 shows the same in the Maze6 environment.
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Fig. 9. Evolution of the number of 
lassi-�ers in Maze4 with 3 irrelevant bits 0
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Fig. 10. Evolution of the number of 
las-si�ers in Maze6 with 3 irrelevant bitsThe average number of 
lassi�ers 
onverges towards 133.3 for Maze4 and170.6 for Maze6, whi
h are respe
tively 108 and 106 per
ent of the optimal num-bers of 
lassi�ers. When these results are 
ompared with the results presentedin �gures 7 and 8, one 
an noti
e that YACS is a bit more robust with respe
tto irrelevant bits in Maze6 than in Maze4. As Maze6 is larger than Maze4, arandomly walking agent takes a longer time to �nish a trial in Maze6. Thus, the



agent remains a longer time in situations where the irrelevant bits do not 
hange.The expe
ted improvement by spe
ialization estimate is disturbed in more o

a-sions in small environments like Maze4 and works better in larger environmentslike Maze6.[Butz et al., 2000b℄ presents similar results for ACS in Maze4 with three ir-relevant bits. YACS needs an equivalent number of time steps to stabilize thenumber of 
lassi�ers with respe
t to ACS without its generalization me
hanism.However, the number of 
lassi�ers dis
overed by ACS without the geneti
 algo-rithm is mu
h higher than in YACS. When ACS uses the generalization me
h-anism, it takes a longer time to stabilize the number of 
lassi�ers, and thisnumber still remains higher than the number of 
lassi�ers dis
overed by YACS.This di�eren
e is dis
ussed in se
tion 5.3.5 Comparison between YACS and ACSIn the previous se
tions we presented YACS. In this se
tion, we point out themain di�eren
es between ACS and YACS. We assume that the reader is familiarwith the ACS 
lassi�er system and we do not give an introdu
tion here.In se
tion 5.1 we present problems whi
h are already ta
kled by ACS and notby YACS. In se
tion 4.3, we have shown that the number of 
lassi�ers produ
edby ACS and YACS are di�erent. In se
tion 5.2 we show that this di�eren
e doesnot 
ome from the meaning of the 
lassi�ers. Thus, in se
tion 5.3, we fo
us on themain di�eren
es between the 
lassi�ers dis
overy pro
esses in ACS and YACS.In parti
ular, we enlight how YACS de
orrelates C and E parts more than ACSdoes, and how it is more 
autious in the spe
ialization pro
ess.5.1 Extent of ta
kled problemsThe �rst di�eren
e between ACS and YACS is the extent of problems ta
kledby the two system.ACS is able to deal with non-Markov problems while YACS is not. In su
hproblems, the per
eived situation of the agent does not bring enough informationto dis
riminate between di�erent states of the environment. The agent per
eivesthe same situations in di�erent states. These situations are said to be aliased.The agent must deal with internal states in order to distinguish between su
hsituations and be able to de
ide the optimal a
tion in ea
h a
tual state. To solvethis problem, ACS learns a
tion sequen
es [Stolzmann, 2000℄. The agent exe
utesa sequen
e without paying attention to the environment until it is terminated.The blind a
tions allow to bridge aliased situations.Though everything presented until now was devoted to deterministi
 envi-ronments, [Butz et al., 2001℄ proposes an improvement of ACS whi
h allows thesystem to deal with sto
hasti
 environments. On the 
ontrary to deterministi
environments, the a
tions and the per
eptions are not totally reliable. Whenthere is noise on the per
eptions, some features of the per
eived situations maynot 
orrespond to the a
tual features with some probabilities. When there is noise



on the a
tions, an a
tion in a parti
ular situation may lead to di�erent situationswith some probabilities. By storing for ea
h 
lassi�er a propability enhan
ed Epart, ACS is able build a sto
hasti
 model of an environment. YACS only dealswith deterministi
 environments.So far, ACS is more mature than YACS. In the following, we 
ompare YACSto the 
ore of ACS, without the extensions allowing it to deal with non-Markovand sto
hasti
 environment.5.2 Similarities between ACS and YACSThe number of 
lassi�ers produ
ed by YACS in Maze4 with 3 irrelevant bits isdi�erent from the number of 
lassi�ers produ
ed by ACS in the same experiment(see se
tion 4.3). This 
ould 
ome from the 
riterion to de
ide whether a 
lassi�erhas a 
orre
tE part in a spe
i�
 
ase or not. Then the two systems would produ
edi�erent optimal representations of the dynami
s of the environment.This 
riterion seems very di�erent in ACS and YACS. In this se
tion we willshow that in fa
t, they are very similar.ACS 
onsiders the 
urrent state St, the 
urrent a
tion At and the next stateSt+1 in the Anti
ipatory Learning Pro
ess (ALP). YACS uses St�1, At�1 andSt. These are only di�erent ways of looking at the same things. Here, we use theterminology of YACS.[Stolzmann, 1998℄ gives a detailed des
ription of the 
omparison used in ACS.An anti
ipation of the next state passthrough(St�1; E) is 
omputed, then 
om-pared with St. In YACS, the desired e�e
t DE = diff(St; St�1) is 
omparedwith E. This looks very di�erent, but we will show that both kinds of 
omparisonare very similar.The passthrough and diff operators are de�ned for all features of the en-vironment. Let st�1 be a feature of St�1, st the 
orresponding feature for St, 
the 
orresponding 
omponent of the C part and e the 
orresponding 
omponentof the E part.The table 1 
ompares the 
riterion e = diff(st; st�1) used in YACS withthe 
riterion passthrough(st�1; e) = st used in ACS. In this table, �?� means�di�erent from #, st and st�1�.st e diff(st; st�1) passthrough(st�1; e) YACS ACS= st�1 # # st�1 true true6= st�1 # st st�1 false false= st�1 st # st false true6= st�1 st st st true true= st�1 ? # ? false false6= st�1 ? st ? false falseTable 1. Truth table



The table 1 shows that the equation e = diff(st; st�1) is equivalent to theequation passthrough(st�1; e) = st ex
ept in one 
ase, when st�1 = st = e.In ACS a spe
ialization of a 
omponent e in the E part always implies a spe-
ialization of the 
orresponding 
omponent 
 in the C part. If no generalizationis used in ACS, 
 
annot be
ome a # symbol in the future. Sin
e every a
tive
lassi�er must belong to the mat
h set, 
 = st�1. Thus 
 would be equal to e,but this is impossible, be
ause only 
hanging 
omponents are spe
ialized in theE part. The spe
ialization of un
hanging 
omponents does not in�uen
e this.Thus, if no generalization is used in ACS the 
omparison used in ACS is equalto the 
omparison used in YACS. There is only a di�eren
e if generalization isused in ACS. To summarize, we 
an say that the 
omparisons in ACS and YACSare very similar but the way spe
ialization takes pla
e is di�erent. This point isdis
ussed in the next se
tion.5.3 Di�eren
es between ACS and YACSYACS is designed so as to de
orrelate the a
quisition of relevant C and E parts.This is an important 
on
eptual di�eren
e between ACS and YACS. An E part
ontains by itself the information about the anti
ipated e�e
ts o

urring in theenvironment, regardless of the 
ondition parts. A spe
i�
 value for a parti
ularfeature in the E part always indi
ates that a 
hange o

urs, regardless of thestru
ture of the C part. But the 
lassi�er does not spe
ify the initial value ofthe feature if it has not been spe
ialized in the C part. YACS guarantees thatthe value of a parti
ular feature of the C part of a 
lassi�er is never equal to the
orresponding value in its E part. If they should be equal, the 
orre
t value inthe E part is a don't 
hange symbol.This fa
t a�e
ts the latent learning pro
ess. The �rst part of this pro
ess inYACS is to set E parts to a
tually per
eived 
hanges in the environment. These
ond part of the pro
ess is in 
harge of dis
overing relevant C parts. A C partmust be able to dis
riminate between situations so that the E part dis
overedby the �rst me
hanism is always 
orre
t when the 
lassi�er 
an be �red. Thisway of 
reating new 
lassi�ers de
orrelates the C and E parts dis
overy.In ACS, the E part dis
overy is performed by the spe
ialization of 
hanging
omponents pro
ess. When a 
lassi�er anti
ipates badly, this part of the ALPmay 
reate a new 
lassi�er by spe
ialization of both C and E parts. Thus, thedis
overy of E parts in ACS relies on in
remental spe
ializations. By 
ontrast,the E part 
overing pro
ess of YACS sets them to a
tually observed e�e
ts inone single stage, regardless of the number of don't 
hange symbols. In YACS,spe
ialization does not make sense for E parts sin
e they do not 
ontain don't
are but don't 
hange symbols.The spe
ialization of 
hanging 
omponents pro
ess in ACS spe
ializes si-multaneously C and E parts in order to store the 
hanges in the environment.It brings information about the spe
i�
 values resulting from the a
tions (asin YACS) but also about the initial 
orresponding values. However, this jointspe
ialization me
hanism yields two drawba
ks.



First, spe
ializing only the 
hanging features may forbid to identify featureswhi
h are very dis
riminative but whi
h are not 
hanged by the a
tion. In orderto deal with that problem, ACS in
ludes the spe
i�
ation of un
hanging 
ompo-nents pro
ess, whi
h allows to dis
riminate between some situations when thespe
ialization of an un
hanging feature would be required.The se
ond problem of the spe
ialization of 
hanging 
omponents pro
ess isthat it may introdu
e over-spe
ialization by spe
ializing irrelevant but 
hangingfeatures in the C part. Thus, 
orrelating C and E parts in the ALP o�ers manyo

asions to spe
ialize irrelevant features. YACS de
orrelates C and E parts anddire
tly identi�es the features whi
h are the most relevant to distinguish betweensituations so as to get able to anti
ipate well.YACS takes advantage of this information to drive the 
ondition spe
ializa-tion pro
ess. Some of the 
lassi�ers 
reated by this pro
ess do not anti
ipatewell (see se
tion 2.3) and must be removed thanks to the sele
tion of a

urate
lassi�ers pro
ess. In 
ontrast, ACS always produ
es 
lassi�ers that anti
ipateat least as well as their parent. When the 
ondition spe
ialization pro
ess inYACS 
reates useless 
lassi�ers, they are removed (see se
tion 2.4).The 
ondition spe
ialization pro
ess is driven by experien
e and does not
are whether the feature is 
hanging or not. The expe
ted improvement by spe-
ialization does neither identify features whi
h are not 
orre
tly anti
ipated nor
hanging features. It fo
uses on the features of the C parts and does not 
areabout parti
ular features of the E parts. Drawing su
h information from expe-rien
e takes time and YACS spe
ializes less often than ACS does. It is more
autious and leads to less over-spe
ialization problems than the spe
ializationpro
ess of ACS.Thus, ACS heavily relies on its generalization me
hanism [Butz et al., 2000a℄in order to provide a model of the environment whi
h is as 
ompa
t as possible.ACS uses a geneti
 algorithm in order to 
orre
t over-spe
ialization 
ases. Astraditional geneti
 algorithms, the sear
h me
hanism relies on mutation and
rossover operators. It is not expli
itly driven by experien
e. As a result, it
reates 
lassi�ers whi
h anti
ipate badly. Moreover, if a parti
ular situation 
anbe identi�ed by spe
ializing in several di�erent ways, a situation may be 
overedby more than one single 
lassi�er. Thus, even if every 
lassi�er is at the rightlevel of spe
ialization, the geneti
 algorithm may introdu
e redundan
ies whi
hlead to a sub-optimal number of 
lassi�ers.However, the generalization me
hanism of ACS is able to re
onsider irrelevantearly spe
ializations. As YACS does not take advantage of su
h a me
hanism, itis not able to do so. Thus, when YACS fails to 
hoose the most relevant featureto spe
ialize, it introdu
es over-spe
ialization in the model of the environmentand 
annot 
orre
t the mistake. This absen
e of a generalization will be
omeeven more 
ru
ial if the system is intera
ting with a 
hanging environment.



6 Con
lusion and Future WorkThe latent learning pro
ess builds a model of the dynami
s of the environmenteven in the absen
e of rewards. It models how the a
tions modify the per
eivedsituations. This modeling pro
ess uses information about su

essive per
eivedsituations. The information used is available at ea
h time step. So, latent learningsystems make an intensive use of the per
eptual feedba
k o�ered by the sensori-motor loop. Thus, they 
an qui
kly identify relevant and general 
lassi�ers.Moreover, sin
e the latent learning pro
ess provides information about thesituations' transitions, it 
an speed up the poli
y learning pro
ess. With thelatent learning and poli
y learning 
omponent, one 
an build a 
omplete rein-for
ement learning system.In this paper, we des
ribed the two 
omponents of YACS and showed ex-perimentally how this system is able to solve maze problems. We fo
ussed onthe latent learning pro
ess and des
ribed its two main parts: the e�e
t 
over-ing and the 
ondition spe
ialization pro
ess. YACS showed its ability to learn a
ompa
t model of the dynami
s of the environment by taking advantage of in-formation available at ea
h time step. The experiments also 
on�rmed that the
autious spe
ialization pro
ess in YACS leads to less over-spe
ialization than the
orresponding pro
ess in ACS.But even if the spe
ialization pro
ess is very 
autious in YACS, it does onlylead to near optimality and YACS needs a dedi
ated generalization me
hanism.In a short term, YACS will be enhan
ed with su
h a pro
ess, whi
h will expli
itlytake advantage of experien
e to drive the generalization without geneti
 algo-rithms. The generalization me
hanism of YACS will draw bene�ts of expe
tedimprovement by generalization estimates. These estimates should allow to de
ideif a 
lassi�er would anti
ipate 
orre
tly even if the 
orresponding spe
ialized fea-ture of the C part is general. As in the spe
ialization me
hanism, the estimatesare updated a

ording to the experien
e. The generalization of the C parts ofa

urate 
lassi�ers with the same A and E parts will be driven by the expe
tedimprovement by generalization estimates.In a middle term, YACS should be enhan
ed to ta
kle non-Markov problems.Where ACS uses a
tion sequen
es to bridge aliased situation, YACS will adopta di�erent strategy and use internal states as Lanzi [Lanzi, 1998℄ does. It willidentify aliased situations when a 
lassi�er whose C part is already 
ompletelyspe
ialized os
illates (see se
tion 2.3).A
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