
YACS: a new Learning Classi�er System usingAntiipationPierre Gérard1;2, Wolfgang Stolzmann3, and Olivier Sigaud11 Dassault Aviation, DGT/DPR/ESA78, Quai Marel Dassault, 92552 St-Cloud Cedex2 AnimatLab (LIP6), 8, rue du Capitaine Sott, 75015 PARIS3 DaimlerChrysler AG, Researh and Tehnology, Alt-Moabit 96A, 10559 Berlinpierre.gerard�lip6.frwolfgang.stolzmann�daimlerhrysler.omolivier.sigaud�dassault-aviation.frAbstrat. A new and original trend in the Learning Classi�er System(LCS) framework is foussed on latent learning. These new LCSs allupon lassi�ers with a [ondition℄, an [ation℄ and an [e�et℄ part. Inpsyhology, latent learning is de�ned as learning without getting any kindof reward. In the LCS framework, this proess is in harge of disoveringlassi�ers whih are able to antiipate aurately the onsequenes ofations under some onditions. Aordingly, the latent learning proessbuilds a model of the dynamis of the environment. This model an beused to improve the poliy learning proess. This paper desribes YACS,a new LCS performing latent learning, and ompares it with ACS.1 IntrodutionThe reinforement learning framework [Sutton and Barto, 1998℄ onsiders adap-tive agents involved in a sensori-motor loop. Suh agents pereive situationsthrough their sensors, and use these pereptions to selet an ation and at a-ordingly in the environment. As a result, they reeive a salar reward from theenvironment and pereive a new situation. The task of the agents is to learnthe optimal poliy (i.e. how to at in every situation in order to maximize theumulative reward on the long run). This way, one an for instane simulate ratswhose task is to learn the shortest path to the food.Holland [Holland, 1976℄ presented the �rst ideas about LCSs (Learning Clas-si�er Systems) designed to solve reinforement learning tasks. The apabilityof generalizing while learning is the main advantage of LCSs with respet toother reinforement learning systems like Q-learning[Watkins, 1989℄. It allowsto aggregate several situations within a ommon desription so that the rep-resentation of the problem gets smaller. The �rst LCS, alled CS1, an befound in [Holland and Reitman, 1978℄. Wilson [Wilson, 1995℄ introdued an al-gorithm similar to Q-learning [Watkins, 1989℄ in LCSs instead of the traditionalBuket Brigade algorithm [Holland, 1985℄. This work led to a revival of LCS



researh sine the auray based approah in XCS overomes the problemin previous LCSs where espeially deferred reward leads to over-generalization[Wilson, 1989℄.Additional to the generalization apabilities of LCSs in poliy learning tasks,an internal model of the dynamis of the environment an be used to adapt thepoliy further and faster. In multi-step problems, the onsequene of an ationdoes not only onsist in a reward, but also in the resulting new situation. Inproblems of that kind, an agent has the opportunity to onsider two suessivepereived situations. Thus it an learn to antiipate what happens immediatelyafter the exeution of an ation. This learning proess builds a model of thedynamis of the environment. Suh a model endows the system with informationabout situation transitions and allows lookahead mehanisms. These mehanismsan be used either for planning or for hypothetial ating so as to speed upthe poliy learning proess. De�ning subgoals also allows to antiipate and toplan [Donnart and Meyer, 1996℄ what will happen far into the future, but ourapproah onsiders the antiipated immediate e�ets of an ation.The notion that the formation of ation-e�et relations is at the ore of theaquisition of behavioral knowledge and the insight that antiipations are nees-sary for behavior reah far bak in psyhology. Aording to James [James, 1890℄,"an antiipatory image [...℄ is the only psyhi state whih introspetion lets usdisern as the forerunner of our voluntary ats.". In animal learning, Tolman[Tolman, 1932℄ proposed that learning is the proess of disovering what leads towhat (i.e. animals develop a �ognitive map�, a sort of internal representation ofthe world). Seward [Seward, 1949℄ gives empirial results whih showed that ratsare indeed learning an internal representation of an environment without reeiv-ing any type of reward or punishment. Learning without environmental rewardor punishment is alled latent learning. Ho�mann [Ho�mann, 1993℄ proposed apsyhologial learning theory of antiipatory behavioral ontrol. He postulatesthat onditional ation-e�et relations are learned latently by using antiipa-tions.In order to use LCS to learn a model of the dynamis of the environment,Holland [Holland, 1990℄ proposed an impliit approah. With internal messages,it is possible to use tags that speify if a urrent �ation� posted to a message listatually spei�es an ation or an antiipation. Riolo [Riolo, 1991℄ implementedthis idea in his CFSC2 and demonstrated its latent learning apability. A moreexpliit linkage is used in CXCS [Tomlinson and Bull, 2000℄. Probabilistiallylinked lassi�ers result in ooperations among lassi�ers. The linkage evolves animpliit representation of an antiipated e�et by the linked suessive ondi-tions.In ontrast with all these approahes, the Antiipatory Learning Proess(ALP) used in the ACS (Antiipatory Classi�er System) is a further developmentof the antiipatory behavioral ontrol theory introdued in psyhology by Ho�-mann [Ho�mann, 1993℄. YACS (Yet Another Classi�er System) also uses theseideas and both systems form expliit [ondition℄[ation℄[e�et℄ lassi�ers. Thisformalism is similar to Sutton's DynaQ+ [Sutton, 1991℄ approah or Dresher's



[ontext℄[ation℄[result℄ rules [Dresher, 1991℄, but with a generalization apa-bility. ACS and YACS both take advantage of the information provided by thesuession of situations in order to drive expliitly the lassi�er disovering pro-ess. Therefore, they use heuristis instead of geneti algorithms, whih are gen-eral but not expliitly driven by experiene.In setion 2 we detail the heuristis used for the latent learning proess inYACS. In setion 3 we show how this system takes advantage of the modelomputed by the latent learning proess to learn an optimal poliy. Some exper-imental results are presented and disussed in setion 4. In setion 5 we showthe main di�erenes between ACS and YACS.2 Desription of the latent learning proess in YACSAs ACS [Stolzmann, 1998℄, YACS deals with [ondition℄[ation℄[e�et℄ lassi-�ers, or C-A-E lassi�ers. C stands for [ondition℄, A for [ation℄ and E for[e�et℄. C parts take advantage of generality and may math several pereivedsituations. An A part spei�es a partiular ation possible in the environment.The E part represents the e�ets of the onsidered ation in the situationsmathed by the ondition. It reords the pereived hanges in the environment.A situation is divided into several features representing pereivable propertiesof an environment. For example, an agent in a grid world may pereive eightfeatures, one for eah adjaent ell. Thus, a situation is an ordered set of severaldisrete values, one for eah of the pereived features of the environment. A Cpart has the same struture but it may ontain don't are symbols �#�. Suh asymbol mathes every spei� value of the orresponding features of a pereivedsituation. The E part stores for eah pereived feature the expeted hangesin the environment when the ation of the lassi�er is hosen and when thepereived situation mathes its ondition. A spei� value in the E part means�if the lassi�er is �red, the feature of the pereived situation orresponding tothe spei� value will hange and turn to that value at the next time step�.The E part might ontain don't hange symbols �#�. A don't hange symbol inthe E part means �if the lassi�er is �red, the feature of the pereived situationorresponding to the don't hange symbol will remain unhanged at the next timestep�.The latent learning proess is in harge of disovering C � A � E lassi�erswith maximally general C parts that aurately model the dynamis of theenvironment. It learns C and E parts separately.In setion 2.1, we explain how YACS learns E parts by diret omparison ofsuessive pereived situations. Moreover, we present how it selets aurate las-si�ers in setion 2.2. Finally, we detail in setion 2.3 how YACS learns relevantonditions by suessive speializations.2.1 E�et overingThe e�et overing mehanism is the part of the latent learning proess that isin harge of disovering aurate E parts (i.e. E parts representing atual e�ets



of ations under some onditions). When the system learns aurate e�ets, itreates new lassi�ers with suitable E parts settled aording to experiene.During this proess, YACS also updates a trae T of good and bad markersmemorizing past antiipation mistakes and suesses of eah lassi�er. This traeworks as a FIFO1 list with a �nite length m.YACS keeps a memory of the last pereived situation and the last performedation. Thus, it knows the urrent situation St resulting from the ation At�1in the situation St�1 at eah time step.With this information, YACS omputes the desired e�et DE whih is the Epart of a lassi�er whih ould have been �red at the preeding time step, andwhose E part re�ets aurately the hanges atually pereived in the environ-ment. To ompute the desired e�et, YACS uses the di� operator whih worksas follows on features of the environment:diff(ft; ft�1) = �# if ft = ft�1ft otherwisewhere ft is a feature of the situation at the urrent time step, and ft�1 is theorresponding feature of the situation at the previous time step.The di� operator is applied to eah feature of the situations St and St�1 toompute the desired e�et DE.At eah time step, YACS heks the auray of the E part of every lassi�erof the ation set (i.e. the set of lassi�ers whih have been mathed by St�1 andwhose ations are the same as the seleted ation At�1). Suh a lassi�er shouldhave an E part equal to the desired e�et DE:� If its E part equals DE, the lassi�er would have antiipated well, and weadd a good marker to its trae T of antiipation mistakes and suesses.� In the other ase, the E part of the lassi�er is wrong and we add a badmarker to its trae T .Moreover, if no lassi�er has a orret E part, YACS hooses one of the lassi�erswhose E part is wrong. Then it builds a new lassi�er with the same C and Aparts. Its E part is set to DE. As it would have antiipated well, a good markeris added to its empty trae T . This new lassi�er is �nally added to the lassi�erset.2.2 Seletion of aurate lassi�ersAs YACS tries to build a set of lassi�ers that antiipate aurately, it has adeletion mehanism to remove inaurate lassi�ers. The trae T of good andbad markers allows to hek the antiipation abilities of a lassi�er.� If the trae T of a lassi�er is full and if it only ontains bad markers, thenYACS assumes that the lassi�er always antiipates inorretly and removesit.1 First In First Out: the �rst element added in the list is the �rst removed



� If the trae T of a lassi�er is full and if it ontains good and bad markers,we say that the lassi�er osillates: it sometimes antiipates well and some-times not. In Markov and deterministi environments, the reason of theseosillations is that its ondition is too general. It mathes several di�erentsituations, eah leading to a di�erent situation just after the ation. In or-der to distinguish between these situations, the ondition must be furtherspeialized.� In all other ases, the lassi�er is kept.This mehanism allows to keep only the aurate lassi�ers.2.3 Speialization of onditionsIn setion 2.1 we have presented how YACS learns E parts. However, the an-tiipation of a lassi�er may only be aurate if its C part is at least partlyspeialized. A C part should be as general as possible in order to represent regu-larities in the environment. But it must be spei� enough so that the lassi�erdoes not osillate. This setion explains how C parts are inrementally speial-ized so as to reah the right level of generality.The MutSpe operator The lassi�er disovery problem is usually solved bya geneti algorithm using a reation proess driven by mutation and rossoveron lassi�ers seleted aording to their �tness. These operators do not expliitlytake advantage of the experiene of the agent.As in the U-Tree algorithm [MCallum, 1996℄, YACS starts without mak-ing any distintion between situations, and inrementally introdues experienedriven speializations in C parts. It uses neither mutation nor rossover opera-tors.The speialization proess of YACS uses the mutspe operator introduedby [Dorigo, 1994℄. This operator selets a general feature of the C part2 of alassi�er, and produes one new lassi�er for eah possible spei� value of theseleted feature. The E parts of every new lassi�er are the same as the E part ofthe original lassi�er, exept when the speialization leads to an equality betweenthe feature of the C part and the orresponding feature in the E part. In thatase, a don't hange symbol is added. The original lassi�er is disarded.For instane, when the �rst feature is seleted, and assuming that it mighttake only two spei� values (0 or 1) the lassi�er [#|#|#|#℄ [0℄ [#|#|#|#℄produes two new lassi�ers ( [0|#|#|#℄ [0℄ [#|#|#|#℄ and [1|#|#|#℄ [0℄[#|#|#|#℄).The C parts of the new lassi�ers are more speialized than the original Cpart.Therefore, if the C part of the original lassi�er was mathing several per-eived situations, eah resulting C part will math a subset of these situations.We want YACS to be able to hoose the token to speialize in suh a way that2 a feature with a don't are symbol



the two resulting subsets have an equal ardinality, in order to prevent over-speialization.The expeted improvement by speialization estimates Choosing at ran-dom the token to speialize, as in Dorigo's original work, would lead to anover-speialization of the C parts and thus to a sub-optimal number of lassi-�ers. We improve this seletion proess by using the expeted improvement byspeialization estimate is assoiated to eah general feature of the C part of eahlassi�er (i.e to eah don't are symbol). This value estimates how muh thespeialization of the token would help to split the situation set overed by theC part into several sub-sets of equal ardinality.Let us onsider a lassi�er whih tries to antiipate the onsequenes of anation in several situations. If the value of a partiular feature of the situationwhen the lassi�er antiipates well is always di�erent from the value when itantiipates inorretly, then this feature is very relevant for distinguishing be-tween the situations overed by the C part. Thus, the C part must be speializedaording to this partiular feature, and the estimate is should get a high value.In order to ompute the estimates is, eah lassi�er memorizes the situationBadS preeding the last antiipation mistake and the situation GoodS preedingthe last antiipation suess. Eah time the lassi�er belongs to the ation setof last time step, St allows to hek the auray of the E part.� If the E part is orret, for eah feature of the environment:� if a partiular token of BadS equals the orresponding feature of St�1,then the orresponding estimate is is dereased using a Widrow-Ho�3delta rule;� if a partiular token of BadS di�ers from the orresponding feature ofSt�1, then the orresponding estimate is is inreased using a Widrow-Ho� delta rule;� If the E part is inorret, for eah feature of the environment:� if a partiular token of GoodS equals the orresponding feature of St�1,then the orresponding estimate is is dereased using a Widrow-Ho�delta rule;� if a partiular token of GoodS di�ers from the orresponding feature ofSt�1, then the orresponding estimate is is inreased using a Widrow-Ho� delta rule;The speialization proess The expeted improvement by speialization esti-mates detailed above allow the lassi�er speialization mehanism to be drivenby experiene and are used in the C parts speialization proess.When a lassi�er sometimes antiipates well and sometimes not (i.e. whenits antiipation trae ontains good and bad markers), it osillates and its C part3 The Widrow-Ho� delta rule uses a learning rate � 2 [0; 1℄. A salar x is inreasedwith suh a rule with respet to the formula: x (1� �)x+ �. It is dereased withthe formula: x (1� �)x



needs to be further speialized. If a lassi�er osillates that way, thanks to thee�et overing mehanism, the lassi�er set ontains at least one other lassi�erwith the same C and A parts and with a di�erent E part.The speialization proess is autious: YACS waits until all the lassi�er withthe same C and A parts have been identi�ed as osillating lassi�ers, and untiltheir antiipation traes are full. At this point, these lassi�ers selet togetherthe feature to speialize. The estimates is orresponding to eah feature of theenvironment are summed among the lassi�ers, and the feature with the highestsum is hosen to be speialized. The mutspe operator is then applied to everylassi�er. Some of the lassi�ers produed by the mutspe operator always anti-ipate badly. They are removed by the seletion of aurate lassi�ers proess.2.4 Useless lassi�ers and Condition overingAt this point, we have desribed the main mehanisms of the latent learningproess. The mehanisms desribed in this setion are devoted to deal with theuseless lassi�ers and the overing of new situations.Condition overing Given a partiular possible ation, when YACS gets anew situation St, it may happen that this situation does not math with any Cpart of the lassi�er set. In this ase, YACS reates a new lassi�er. Its A partequals the onsidered ation. The E part of the lassi�er is omputed aordingto St�1 in the same way as the desired e�et (see setion 2.1). Its C part issuh that it mathes St. It is also suh that it is neither more general nor morespei� than the C part of any other lassi�er with the same A part. With respetto the previous onstraints, it is as general as possible. These C parts allow toadd maximally general lassi�ers without introduing redundanies with alreadyspeialized ones.Useless lassi�ers The system uses a set P of every pereived situation en-ountered during the lifetime of the agent. This set only ontains one singleinstane of eah situation. It is not ordered. When the agent omes to time stept, it pereives the new situation St. If the new situation is not present in P , itis added.The speialization proess may reate lassi�ers whih will never be used norevaluated beause their C part does not math any possible situation. To get ridof suh lassi�ers, we remove every lassi�er whih does not math any situationin the set P of already enountered situations.The number of elements in P grows exponentially with respet to the num-ber of pereived features in the environment. In huge environments, memoryproblems may our and it would be worth taking advantage of generalizationin order to redue the size of this set. But in setion 3 we show that the systemmust deal with information about spei� situations in order to use dynamiprogramming. So this set P is also neessary for another part of the algorithm.



Until now, we have desribed the latent learning proess in YACS. Thanksto e�et overing and inremental speialization of onditions, it provides thesystem with a set of lassi�ers whih antiipate well the hanges in the environ-ment. This set of lassi�ers is a model of the dynamis of the environment interms of situation transitions. The di�erenes with the latent learning proessin ACS are disussed in setion 5.3.3 Desription of the poliy learning proess in YACSIn order to take advantage of the model of the dynamis of the environmentprovided by the ACS, Butz and Stolzmann [Butz and Stolzmann, 1999℄ use goaldireted planning. This solution is expensive in omputational time. Moreover,it is not part of the reinforement learning framework. It optimizes the modellearning apabilities but does not improve the poliy learning proess.YACS uses iterative algorithms derived from dynami programming. Plainvalue iteration (see setion 3.1) performs several steps of Value Iterations in orderto adjust the qualities for ation of eah (situation; ation) pair. Using one singlestep of value iteration at eah time step allows to �nd the optimal poliy overseveral time steps and o�ers a good reativity/planning tradeo�. Doing so issimilar to performing �mental� ations as in DynaQ+ [Sutton, 1991℄.In this setion, we desribe how YACS takes advantage of the model of theenvironment in order to speed up the reinforement learning proess and theomputation of a poliy. We �rst introdue the Value Iteration algorithm andthe way YACS identi�es the reward soures. Then we explain how the use ofgenerality forbids to ompute one single quality of ation for eah lassi�er4. We�nally present how this problem is solved in YACS.There are many ways for taking advantage of the model for performing rein-forement learning. We hoose the algorithms presented in this setion beausethey are among the most lassial available.3.1 Value IterationIn order to ompute an optimal poliy, YACS uses a simpli�ed variety of ValueIteration: a dynami programming algorithm whih solves the Bellman equations[Bellman, 1957℄. It iteratively re�nes the qualities for every (situation; ation)pair using the formula:Q(s; a) = R(s; a) + Xs0 T (s; a; s0)V (s0) (1)where V (s) = maxaQ(s; a) (2)4 Stolzmann [Stolzmann, 2000℄ also uses the term qualities but with a di�erent mean-ing. The qualities of ation are di�erent from the qualities used in ACS, whih arequalities of antiipation. Qualities of antiipation estimate the on�dene in theantiipation, and not an expeted disounted reward as the qualities of ation.



Q(s; a) is the quality of ation a in situation s. It takes into aount both theimmediate and the future expeted reward, disounted by a temporal disountfator . V (s) is the desirability value of the situation s. R(s; a) is the immediateexpeted reward when the agent performs ation a in situation s. T (s; a; s0) is theprobability to pereive the situation s0 just after performing ation a in situations. As YACS is designed to deal with deterministi environments, we do not usethe transition probabilities and replae the expeted future umulative rewardPs0 T (s; a; s0)V (s0) by maxs0V (s0) where s0 is a situation antiipated when theagent performs the ation a in situation s.3.2 Learning immediate rewardsThe latent learning proess brings information about situation transitions. Inorder to use a dynami programming algorithm, YACS omputes the immedi-ate expeted rewards orresponding to the R(s; a) term in value iteration. Animmediate reward estimate r is assoiated to eah lassi�er. It estimates theimmediate reward reeived by the agent if the ation whih it proposes is hosenwhen its C part mathes the urrent situation.Let us all Rt the reward given by the environment resulting from the ationAt when the pereived situation was St. The immediate reward estimate r ofevery lassi�er suh that its C part mathes St and its A part mathes At isupdated aording to a Widrow-Ho� delta rule: r  (1� �)r + �Rt3.3 The problem indued by general onditionsIn lassi�er systems without E parts, a lassi�er is kept when it helps to max-imize the reward on the long run [Wilson, 1994℄, or when it is able to preditthe reward aurately [Wilson, 1995℄. But we use lassi�ers with an E part. Inour ase the deision to keep or to remove a lassi�er only relies on its abilityto predit the next situation. Thus the �tness of a lassi�er does not take thereward into aount (see setion 2.2 about latent learning).This way of estimating the �tness of a lassi�er gives rise to a new wayof onsidering generality. A lassi�er is too general when a don't are symbolprevents the antiipation to be aurate, regardless of the expeted reward. It istoo spei� if its E part would remain aurate if some don't are symbols wereadded in its C part, regardless of the payo�.Let us onsider an agent in a maze like the woods environments (see setion4.1). When it pereives an obstale in a partiular diretion, and if it movestowards this diretion, it will hit the obstale and remain in the same ell. Theagent does not need to pay attention to the obstales in the other diretions toantiipate well what will happen. Thus a lassi�er whih ould be interpretedin a maze environment as �when the agent pereives an obstale on the north,if it tries to move north, it will not pereive any hanges in its situation: itwill remain in the same ell� antiipates well. It is aurate sine it would not



antiipate better if its C part were more spei�. It is kept and will not be furtherspeialized.The problem is that suh an aurate lassi�er is not too general with respetto antiipation, but it is too general to predit the disounted reward sine its Cpart mathes several di�erent situations. Beause of the disount fator  usedin Value Iteration, the desirability values assoiated to the situations whih arelose to a reward soure are higher than the desirability values assoiated to thesituations whih are far from it. Therefore, it is not possible to ompute a singlequality of ation for a lassi�er whose general C part mathes several situationspereived at di�erent distanes from the reward.To summarize, general C parts help to express regularities in the environ-ment instead of simply providing a kind of seletive attention. As a result, somelassi�ers may math several situations and thus it beomes impossible to om-pute a single quality of ation for eah general lassi�er. The system needs todeal with information about spei� situations.3.4 Assoiating desirability values to every already enounteredsituationLet us takle the problem indued by general onditions in another way. InYACS, a lassi�er stores at least one possible transition between two situationswhen an ation is performed. The latent learning proess in YACS disoverslassi�ers suh that one lassi�er represents several transitions involving thesame ation, but mathing in di�erent atual situations. To do so, YACS makesuse of general C parts and stores the hanges resulting from the ation in theE parts. Thus the system looses the information about the transitions betweenatual spei� situations by aggregating them in a single lassi�er with a generalondition. This loss of information about atual spei� situations forbids touse Value Iteration to take advantage of the model. It also forbids to perform�mental� ations as [Sutton, 1991℄ does in DynaQ+.In order to reover the missing information, YACS assoiates a desirabilityvalue to eah spei� situation in the already pereived situation set P (seesetion 2.4). This desirability value orresponds to the V (s) term in formula (2).The transitions are onsequently stored and the immediate rewards are storedin the lassi�ers and the missing information is stored in the already pereivedsituation set. The resulting model is muh smaller than a Q-table storing qualitiesfor every (situation; ation) pairs.To ompute the desirability value assoiated with a situation S, we �rstidentify all the lassi�ers whose C part mathes the situation S. If suh a las-si�er was �red, the immediate reward would be stored in its r estimate andthe expeted umulative reward would be the maximum among the value of thesituations antiipated by the �rable lassi�ers, multiplied by the disount fator. In order to determine the situation St+1 antiipated by a lassi�er given asituation St, YACS uses the passthrough operator. The antiipated situation is



St+1 = passthrough(St; E) where E is the e�et of the lassi�er. This operatorworks as follows on the features of the situations:passthrough(fs; fe) = �fs if fe = #fe otherwisewhere fs is a feature of the situation St and fe is the orresponding feature ofthe E part of the lassi�er.So the system omputes values for eah situation and takes advantage of themodel supplied by the latent learning proess to update these values withoutatually performing the ations. When the lassi�er system antiipates well inevery situation, the agent is able to quikly adapt its behavior to new rewardsoures.3.5 Seleting an ationWhen YACS pereives a situation St from the environment, it selets all thelassi�ers whose C part mathes. These lassi�ers antiipate the following situ-ation by omputing passthrough(St; E). Then they ompute a quality of ationby adding the immediate reward estimate r and the disounted expeted rewardwhih is the value of the following situation multiplied by the disount fator .The seleted ation is the ation of the lassi�er orresponding to the highestomputed quality of ation.4 Experiments with YACSIn setions 2 and 3, we have presented YACS in two parts. The latent learningproess is in harge of building a model of the dynamis of the environment. Thepoliy learning proess takes advantage of the model to ompute the optimalpoliy. This setion presents experimental results of YACS solving Wilson woodsproblems. The simulated woods environments are desribed in setion 4.1.The latent learning and poliy learning proesses both take plae in a generalreinforement learning task. In setion 4.2 we present the experimental resultsfor the general reinforement learning task when YACS interats with Maze4and Maze6. In setion 4.3, we present experimental results spei�ally dediatedto the latent learning proess.4.1 The Maze4 and Maze6 woods environmentsIn woods environments, the agent is situated in a maze ell and pereives theeight adjaent ells. A ell an either be empty, or ontain an obstale (�) orfood (F). It an move towards any of these ells. The agent is allowed to try tomove towards an obstale. In this ase, it will remain in the same ell.Maze4 (see �gure 1) has been investigated by [Lanzi, 1997℄ and Maze6 (see�gure 2) by [Lanzi, 1999℄. The experiments we present in this paper involveYACS interating with these environments.
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Fig. 1. The Maze4 environment
F

Fig. 2. The Maze6 environmentThe experiments are divided into trials. The agent starts a trial in a free ellhosen randomly. This random hoie makes the exploration easier and allowsto hek if the agent learns to reah the goal from any position in the maze. Atrial ends when the agent reahes the ell with food. In that ase the agent getsa reward of 1, it gets a new pereived situation, and a new trial starts.Sine the agent starts a trial in a random ell, the optimal number of ationsto reah the food is not onstant over trials. Averaged over every possible startingell, the optimal number of ations is 3.5 in Maze4 and 5.2 in Maze6. As we letthe agent pereive the situation in the ell with the food, the number of timesteps is one more than the number of ations. Thus, the average optimal path is4.5 time steps long in Maze4 and 6.2 in Maze6.In our experiments, the agent is allowed to perform any ation in every situ-ation. As a result, YACS has to disover lassi�ers whih model the transitionswhih do not lead to any hange. This is the ase when an ation leads the agentto hit an obstale and remain in the same ell. There are respetively 93 and 135transitions of that kind in Maze4 and Maze6. By taking advantage of generality,these transitions an be modeled with 8 lassi�ers in eah ase: one lassi�er foreah possible ation, by paying attention to the presene of a blok in the dire-tion orresponding to the ation. There are no other regularities in Maze4 andMaze6. Sine the total number of possible transitions is 208 in Maze4 and 288in Maze6, the optimal numbers of lassi�ers YACS should reah are respetively123 (208� 93 + 8) and 161 (288� 135 + 8) for Maze4 and Maze6.ACS [Butz et al., 2000b℄ has also been tested in Maze4 and Maze6 envi-ronment. In these experiments, the agent was also allowed to perform a-prioriine�ient ations, but in ACS, the lassi�ers whih do not model a hange aredeleted in the long run. Under these onditions, 115 (123 � 8) lassi�ers anaurately model the dynamis of the Maze4 environment and 153 (163 � 8)lassi�ers are needed for Maze6.4.2 Reinforement learningIn setions 2 and 3, we presented YACS in two parts. The latent learning pro-ess is in harge of building a model of the dynamis of the environment. Thepoliy learning takes advantage of the model to ompute the optimal poliy.



Both proesses take plae in the general reinforement learning framework. Ina �rst part, we present experimental results whih show how the generalizationproblem is solved by the use of desirability values assoiated to eah spei�situation. However, these experiments show limitations whih are due to theexploration/exploitation tradeo� in YACS. These problems are disussed in aseond part.Experimental results The agent explores the environment by random walkuntil the trae T of eah lassi�er ontains only good markers. At this point,YACS assumes that the dynamis of the environment is well known. The agentdoes not move randomly anymore and the system swithes into exploitationmode5.For every experiment, the learning rate parameter is set to � = 0:1 andthe lassi�er's memory size is set to m = 5. As we do not takle the explo-ration/exploration tradeo� in these experiments, the disount fator  does notmatter, exepted for �oat preision onerns. We set it to 0.9.Figures 3 and 4 present the number of time steps needed by the agent to�nish one trial. The results are averaged over 10 experiments. Figures use alogarithmi sale for the y axis.
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Fig. 3. Average number of time steps to�nish suessive trials in Maze4 1
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Fig. 4. Average number of time steps to�nish suessive trials in Maze6When the memory sizem is smaller, the speialization proess is less autious,sub-optimal speializations our more often in early time steps and thus, thesystem onverges towards a higher number of lassi�ers. When the memory sizem is higher, the bad lassi�ers are removed after a longer time and thus, themaximal number of lassi�er ever reahed in the experiments inreases.5 In the environments disussed here, it's su�ient to swith from exploration to ex-ploitation. But it in environments that hange after a long time, it might be ne-essary to swith bak from exploitation to exploration. This ould also be done independene of the traes.



Maze6 is a larger environment than Maze4 and the average optimal path tothe food is longer. Thus the number of time steps to reah the food in randommode is larger in Maze6. That is why YACS needs less trials to build a modelof the dynamis of the Maze6 environment, but eah trial is longer in terms oftime steps.Figures 5 and 6 show the number of time steps needed by the agent to �nishsuessive trials for a typial single experiment. As long as the system is in
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Fig. 5. Sample number of time steps to�nish suessive trials in Maze4 1
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Fig. 6. Sample number of time steps to�nish suessive trials in Maze6exploration mode, the number of time steps remains high. As soon as the systemswithes to exploitation mode, the behavior beomes optimal with respet to thequality of the model of the environment. The number of time steps in later trialsis not onstant beause eah trial starts in a random ell and thus, the optimalpath to the food does not always have the same length.In the Maze6 experiments, the system always disovers the shortest path tothe food. In one of the experiments in the Maze4 environment, the behavior wassub-optimal. This problem is disussed in the next setion.Disussion In LCSs with antiipation apabilities, the main onern is usu-ally the latent learning proess. In [Butz et al., 2000b℄ for example, the poliylearning proess does not take advantage of the model and uses a modi�ed Q-learning tehnique. Thus, the agent must atually at in the environment inorder to disover the optimal ations.When they take advantage of the model to speeds up the poliy learningproess, ACS and YACS [Stolzmann et al., 2000℄ fae the same problem: if themodel is not aurate, the agent exhibits a sub-optimal behavior. This is the asein our experiments with Maze4. The average number of time steps needed byYACS to �nish a trial onverges to 4.75 instead of 4.5. The problem omes fromthe inauray of the riterion used by the system to swith from explorationmode to exploitation mode. In one of the 10 trials, every lassi�er disovered by



the latent learning proess only ontained good markers, but the representationwas not perfetly aurate beause some lassi�ers were still over-general. As aresult, the behavior of the agent was sub-optimal in the exploitation phase.During the early time steps, the system ontains a lot of over-general lassi-�ers. Suh lassi�ers math di�erent situations and may let the agent onsidertransitions whih annot atually be enountered in the environment. When thepoliy learning proess relies on suh a model, the agent might repeat endlesslythe same sequene of ations.In order to avoid suh problems, an LCS with latent learning abilities needsspei� mehanisms. In DynaQ+, [Sutton and Barto, 1998℄ uses an explorationheuristi and gives an exploration bonus to the qualities for (situation; ation)pairs. This bonus inreases as the pairs have not been used for a long time. Thisway, ations that improve the model are enouraged and the system draws thebene�ts of a good exploration/exploitation tradeo�.Suh algorithms may be adapted to systems like ACS and YACS, whih takeadvantage of the generality to express regularities in the environment, ontrarilyto DynaQ+.In this setion, we presented some experimental results for general reinfore-ment learning tasks with YACS. Beause of the problem indued by general Cparts (see setion 3.3), one annot ompute a single quality of ation for eahlassi�er. The system must deal with information about spei� situations. With-out the desirability values assoiated to eah spei� situation, YACS would notbe able to ompute an optimal poliy at all. Our experiments with Maze4 andMaze6 show that the mehanism we propose solves the problem.4.3 Latent learningIn order to solve reinforement learning problems, YACS performs latent learningand poliy learning. In this setion we present experimental results onerningthe latent learning e�ieny in YACS.The latent learning proess is in harge of building a small and auratemodel of the dynamis of the environment. Thus the system should build an a-urate model with as less lassi�ers as possible, by disovering maximally generallassi�ers. In order to estimate the evolution of the auray of the model oversuessive time steps, we use a measure of the perentage of knowledge providedby the model. This measure is similar to the one used by [Butz et al., 2000b℄.For eah possible transition in the environment, we hek if the lassi�er systemontains at least one reliable lassi�er able to model the transition. In YACS,we say that a lassi�er is reliable if its trae T is full and never ontained badmarkers (i.e. if it always antiipated well6). The perentage of knowledge is theratio of possible transitions overed by a reliable lassi�er. This perentage is 16 In ACS, a lassi�er would be said to be reliable if its quality is higher than 0.9.As the riterion to deide whether a lassi�er is reliable or not, the perentage ofknowledge measure is not perfetly idential in both systems.



when the e�ets of every (situation; ation) pairs is aurately antiipated bythe model. It is 0 when the onsequenes of no (situation; ation) pair is wellantiipated.As in the previous setion, the parameters are set to � = 0:1, m = 5. All theresults are averaged over 10 experiments.Experiments with Maze4 and Maze6 Figure 7 presents the evolution ofboth the number of lassi�ers and the perentage of knowledge for the Maze4experiments. Figure 8 shows the same information for the experiments with theMaze6 environment.
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Fig. 7. Evolution of the number of lassi-�ers in Maze4 0
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Fig. 8. Evolution of the number of lassi-�ers in Maze6The average number of lassi�ers disovered by YACS onverges towards127.7 for Maze4 and 166.7 for Maze6, whih are respetively 102 and 103 perentof the optimal numbers of lassi�ers. As YACS does not use any generalizationmehanism yet, it annot reonsider early bad hoies of the speialization pro-ess. Thus, irrelevant speializations in the early time steps may lead the systemto over-speialization.During the �rst time steps (up to 500), the perentage of knowledge growsvery fast. YACS tries to model the transitions whih do not lead to any hangein the situation. Thus, YACS disovers quikly lassi�ers like �when there is anobstale in the north and I try to go north, nothing hanges in the environ-ment�. Suh lassi�ers are very easy to disover, sine they require only onespeialization of the onditions. Moreover, they an be applied in many sit-uations in the environment. As a result, when one is disovered, the numberof (situation; ation) pairs whih are antiipated well grows signi�antly. Theother relevant onditions need more speializations to be disovered. Thus, theperentage of knowledge grows slower.One an notie that the evolution of the number of lassi�ers is not mono-toni. In a �rst part, YACS reates new lassi�ers by e�et overing or ondition



speialization. Some of the lassi�ers reated by the mutspe operator antii-pate badly and need time to be evaluated and removed from the set. Duringthe seond part of the evolution, the main ativity of YACS is to remove suhlassi�ers, until the number of lassi�ers stabilizes lose to the optimum.Adding irrelevant information Considering a real robot that is equippedwith di�erent kinds of sensors, pereptions are normally not as aurate as inthe maze environments. For example, the robot ould detet di�erent degreesof brightness in its environment. Therefore, the trials in one experiment anour under di�erent light onditions. For a system without any generalizationapability this would result in a new pereived situation, eah time the lightonditions hange. Here we show that both ACS and YACS are able to handlesuh irrelevant pereived features.In order to simulate suh a light senario we introdue some further featuresinto the pereived situations. These attributes are randomly set to 0 or 1 whena new trial starts and keep the same value during the whole trial. As the addedpereived features are irrelevant to distinguish between situations, the optimalnumber of lassi�ers remains the same when irrelevant bits are added (see setion4.1).Figure 9 presents the evolution of both the number of lassi�ers and theperentage of knowledge for the Maze4 experiments when 3 irrelevant bits areadded. Figure 10 shows the same in the Maze6 environment.
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Fig. 9. Evolution of the number of lassi-�ers in Maze4 with 3 irrelevant bits 0
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Fig. 10. Evolution of the number of las-si�ers in Maze6 with 3 irrelevant bitsThe average number of lassi�ers onverges towards 133.3 for Maze4 and170.6 for Maze6, whih are respetively 108 and 106 perent of the optimal num-bers of lassi�ers. When these results are ompared with the results presentedin �gures 7 and 8, one an notie that YACS is a bit more robust with respetto irrelevant bits in Maze6 than in Maze4. As Maze6 is larger than Maze4, arandomly walking agent takes a longer time to �nish a trial in Maze6. Thus, the



agent remains a longer time in situations where the irrelevant bits do not hange.The expeted improvement by speialization estimate is disturbed in more oa-sions in small environments like Maze4 and works better in larger environmentslike Maze6.[Butz et al., 2000b℄ presents similar results for ACS in Maze4 with three ir-relevant bits. YACS needs an equivalent number of time steps to stabilize thenumber of lassi�ers with respet to ACS without its generalization mehanism.However, the number of lassi�ers disovered by ACS without the geneti algo-rithm is muh higher than in YACS. When ACS uses the generalization meh-anism, it takes a longer time to stabilize the number of lassi�ers, and thisnumber still remains higher than the number of lassi�ers disovered by YACS.This di�erene is disussed in setion 5.3.5 Comparison between YACS and ACSIn the previous setions we presented YACS. In this setion, we point out themain di�erenes between ACS and YACS. We assume that the reader is familiarwith the ACS lassi�er system and we do not give an introdution here.In setion 5.1 we present problems whih are already takled by ACS and notby YACS. In setion 4.3, we have shown that the number of lassi�ers produedby ACS and YACS are di�erent. In setion 5.2 we show that this di�erene doesnot ome from the meaning of the lassi�ers. Thus, in setion 5.3, we fous on themain di�erenes between the lassi�ers disovery proesses in ACS and YACS.In partiular, we enlight how YACS deorrelates C and E parts more than ACSdoes, and how it is more autious in the speialization proess.5.1 Extent of takled problemsThe �rst di�erene between ACS and YACS is the extent of problems takledby the two system.ACS is able to deal with non-Markov problems while YACS is not. In suhproblems, the pereived situation of the agent does not bring enough informationto disriminate between di�erent states of the environment. The agent pereivesthe same situations in di�erent states. These situations are said to be aliased.The agent must deal with internal states in order to distinguish between suhsituations and be able to deide the optimal ation in eah atual state. To solvethis problem, ACS learns ation sequenes [Stolzmann, 2000℄. The agent exeutesa sequene without paying attention to the environment until it is terminated.The blind ations allow to bridge aliased situations.Though everything presented until now was devoted to deterministi envi-ronments, [Butz et al., 2001℄ proposes an improvement of ACS whih allows thesystem to deal with stohasti environments. On the ontrary to deterministienvironments, the ations and the pereptions are not totally reliable. Whenthere is noise on the pereptions, some features of the pereived situations maynot orrespond to the atual features with some probabilities. When there is noise



on the ations, an ation in a partiular situation may lead to di�erent situationswith some probabilities. By storing for eah lassi�er a propability enhaned Epart, ACS is able build a stohasti model of an environment. YACS only dealswith deterministi environments.So far, ACS is more mature than YACS. In the following, we ompare YACSto the ore of ACS, without the extensions allowing it to deal with non-Markovand stohasti environment.5.2 Similarities between ACS and YACSThe number of lassi�ers produed by YACS in Maze4 with 3 irrelevant bits isdi�erent from the number of lassi�ers produed by ACS in the same experiment(see setion 4.3). This ould ome from the riterion to deide whether a lassi�erhas a orretE part in a spei� ase or not. Then the two systems would produedi�erent optimal representations of the dynamis of the environment.This riterion seems very di�erent in ACS and YACS. In this setion we willshow that in fat, they are very similar.ACS onsiders the urrent state St, the urrent ation At and the next stateSt+1 in the Antiipatory Learning Proess (ALP). YACS uses St�1, At�1 andSt. These are only di�erent ways of looking at the same things. Here, we use theterminology of YACS.[Stolzmann, 1998℄ gives a detailed desription of the omparison used in ACS.An antiipation of the next state passthrough(St�1; E) is omputed, then om-pared with St. In YACS, the desired e�et DE = diff(St; St�1) is omparedwith E. This looks very di�erent, but we will show that both kinds of omparisonare very similar.The passthrough and diff operators are de�ned for all features of the en-vironment. Let st�1 be a feature of St�1, st the orresponding feature for St, the orresponding omponent of the C part and e the orresponding omponentof the E part.The table 1 ompares the riterion e = diff(st; st�1) used in YACS withthe riterion passthrough(st�1; e) = st used in ACS. In this table, �?� means�di�erent from #, st and st�1�.st e diff(st; st�1) passthrough(st�1; e) YACS ACS= st�1 # # st�1 true true6= st�1 # st st�1 false false= st�1 st # st false true6= st�1 st st st true true= st�1 ? # ? false false6= st�1 ? st ? false falseTable 1. Truth table



The table 1 shows that the equation e = diff(st; st�1) is equivalent to theequation passthrough(st�1; e) = st exept in one ase, when st�1 = st = e.In ACS a speialization of a omponent e in the E part always implies a spe-ialization of the orresponding omponent  in the C part. If no generalizationis used in ACS,  annot beome a # symbol in the future. Sine every ativelassi�er must belong to the math set,  = st�1. Thus  would be equal to e,but this is impossible, beause only hanging omponents are speialized in theE part. The speialization of unhanging omponents does not in�uene this.Thus, if no generalization is used in ACS the omparison used in ACS is equalto the omparison used in YACS. There is only a di�erene if generalization isused in ACS. To summarize, we an say that the omparisons in ACS and YACSare very similar but the way speialization takes plae is di�erent. This point isdisussed in the next setion.5.3 Di�erenes between ACS and YACSYACS is designed so as to deorrelate the aquisition of relevant C and E parts.This is an important oneptual di�erene between ACS and YACS. An E partontains by itself the information about the antiipated e�ets ourring in theenvironment, regardless of the ondition parts. A spei� value for a partiularfeature in the E part always indiates that a hange ours, regardless of thestruture of the C part. But the lassi�er does not speify the initial value ofthe feature if it has not been speialized in the C part. YACS guarantees thatthe value of a partiular feature of the C part of a lassi�er is never equal to theorresponding value in its E part. If they should be equal, the orret value inthe E part is a don't hange symbol.This fat a�ets the latent learning proess. The �rst part of this proess inYACS is to set E parts to atually pereived hanges in the environment. Theseond part of the proess is in harge of disovering relevant C parts. A C partmust be able to disriminate between situations so that the E part disoveredby the �rst mehanism is always orret when the lassi�er an be �red. Thisway of reating new lassi�ers deorrelates the C and E parts disovery.In ACS, the E part disovery is performed by the speialization of hangingomponents proess. When a lassi�er antiipates badly, this part of the ALPmay reate a new lassi�er by speialization of both C and E parts. Thus, thedisovery of E parts in ACS relies on inremental speializations. By ontrast,the E part overing proess of YACS sets them to atually observed e�ets inone single stage, regardless of the number of don't hange symbols. In YACS,speialization does not make sense for E parts sine they do not ontain don'tare but don't hange symbols.The speialization of hanging omponents proess in ACS speializes si-multaneously C and E parts in order to store the hanges in the environment.It brings information about the spei� values resulting from the ations (asin YACS) but also about the initial orresponding values. However, this jointspeialization mehanism yields two drawbaks.



First, speializing only the hanging features may forbid to identify featureswhih are very disriminative but whih are not hanged by the ation. In orderto deal with that problem, ACS inludes the spei�ation of unhanging ompo-nents proess, whih allows to disriminate between some situations when thespeialization of an unhanging feature would be required.The seond problem of the speialization of hanging omponents proess isthat it may introdue over-speialization by speializing irrelevant but hangingfeatures in the C part. Thus, orrelating C and E parts in the ALP o�ers manyoasions to speialize irrelevant features. YACS deorrelates C and E parts anddiretly identi�es the features whih are the most relevant to distinguish betweensituations so as to get able to antiipate well.YACS takes advantage of this information to drive the ondition speializa-tion proess. Some of the lassi�ers reated by this proess do not antiipatewell (see setion 2.3) and must be removed thanks to the seletion of auratelassi�ers proess. In ontrast, ACS always produes lassi�ers that antiipateat least as well as their parent. When the ondition speialization proess inYACS reates useless lassi�ers, they are removed (see setion 2.4).The ondition speialization proess is driven by experiene and does notare whether the feature is hanging or not. The expeted improvement by spe-ialization does neither identify features whih are not orretly antiipated norhanging features. It fouses on the features of the C parts and does not areabout partiular features of the E parts. Drawing suh information from expe-riene takes time and YACS speializes less often than ACS does. It is moreautious and leads to less over-speialization problems than the speializationproess of ACS.Thus, ACS heavily relies on its generalization mehanism [Butz et al., 2000a℄in order to provide a model of the environment whih is as ompat as possible.ACS uses a geneti algorithm in order to orret over-speialization ases. Astraditional geneti algorithms, the searh mehanism relies on mutation androssover operators. It is not expliitly driven by experiene. As a result, itreates lassi�ers whih antiipate badly. Moreover, if a partiular situation anbe identi�ed by speializing in several di�erent ways, a situation may be overedby more than one single lassi�er. Thus, even if every lassi�er is at the rightlevel of speialization, the geneti algorithm may introdue redundanies whihlead to a sub-optimal number of lassi�ers.However, the generalization mehanism of ACS is able to reonsider irrelevantearly speializations. As YACS does not take advantage of suh a mehanism, itis not able to do so. Thus, when YACS fails to hoose the most relevant featureto speialize, it introdues over-speialization in the model of the environmentand annot orret the mistake. This absene of a generalization will beomeeven more ruial if the system is interating with a hanging environment.



6 Conlusion and Future WorkThe latent learning proess builds a model of the dynamis of the environmenteven in the absene of rewards. It models how the ations modify the pereivedsituations. This modeling proess uses information about suessive pereivedsituations. The information used is available at eah time step. So, latent learningsystems make an intensive use of the pereptual feedbak o�ered by the sensori-motor loop. Thus, they an quikly identify relevant and general lassi�ers.Moreover, sine the latent learning proess provides information about thesituations' transitions, it an speed up the poliy learning proess. With thelatent learning and poliy learning omponent, one an build a omplete rein-forement learning system.In this paper, we desribed the two omponents of YACS and showed ex-perimentally how this system is able to solve maze problems. We foussed onthe latent learning proess and desribed its two main parts: the e�et over-ing and the ondition speialization proess. YACS showed its ability to learn aompat model of the dynamis of the environment by taking advantage of in-formation available at eah time step. The experiments also on�rmed that theautious speialization proess in YACS leads to less over-speialization than theorresponding proess in ACS.But even if the speialization proess is very autious in YACS, it does onlylead to near optimality and YACS needs a dediated generalization mehanism.In a short term, YACS will be enhaned with suh a proess, whih will expliitlytake advantage of experiene to drive the generalization without geneti algo-rithms. The generalization mehanism of YACS will draw bene�ts of expetedimprovement by generalization estimates. These estimates should allow to deideif a lassi�er would antiipate orretly even if the orresponding speialized fea-ture of the C part is general. As in the speialization mehanism, the estimatesare updated aording to the experiene. The generalization of the C parts ofaurate lassi�ers with the same A and E parts will be driven by the expetedimprovement by generalization estimates.In a middle term, YACS should be enhaned to takle non-Markov problems.Where ACS uses ation sequenes to bridge aliased situation, YACS will adopta di�erent strategy and use internal states as Lanzi [Lanzi, 1998℄ does. It willidentify aliased situations when a lassi�er whose C part is already ompletelyspeialized osillates (see setion 2.3).Aknowledgments The authors would like to thank Martin Butz for valuabledisussions and useful omments whih helped to improve YACS.Referenes[Bellman, 1957℄ Bellman, R. E. (1957). Dynami Programming. Prineton UniversityPress, Prineton, NJ.
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