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This article presents distributed impedance as a new approach for multiple robot system
control. In this approach, each cooperating manipulator is controlled by an indepen-
dent impedance controller. In addition, along selected degrees of freedom, force control
is achieved through an external loop, to improve control of the object’s internal load-
ing. Extensive stability analysis is performed, based on a realistic model that includes
robot impedance and object dynamics. Experiments are performed using two cooperat-
ing industrial robots holding an object through point contacts. Force and position control
actions are suitably dispatched to achieve both internal loading control and object posi-
tion control. Individual impedance parameters are specified according to the theoritical
stability criterion. The performance of the system is demonstrated for transportation and
contact tasks. © 2002 Wiley Periodicals, Inc.

1. INTRODUCTION

The coordination of several manipulators is fre-
quently considered in the manipulation of heavy or
large objects. It may also be required for the ma-
nipulation of nonrigid bodies or to perform complex
assembly tasks. In such cases, the systemperformance
depends on each individual subsystem performance.

Dexterous articulated hands also belong to the
coordinated system family. They offer a highdegree of

∗To whom all correspondence should be addressed.

flexibility in grasp configuration, and can be used to
impart finemotions to the grasped object. In such sys-
tems the fingers can be viewed as small manipulators
and the contacts as the effectors.

The coordination problem ofmanipulators can be
split in two subproblems :

1. trajectory tracking for free or constrained
motions of the object,

2. internal forces control under contact stability
constraints.
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1.1. Previous Works

Most approaches previously proposed for coordi-
nated manipulation control can be divided into three
categories:

1. object level control,
2. effector level control, and
3. joint level control.

The first considers the manipulators and the grasped
object as a whole (Figure 1(a)). They can be viewed
as extensions of operational space control to multi-
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Figure 1. Control variables in different approaches to
coordinated manipulation.

manipulator systems.1 Different control schemeshave
been adapted to this context, for example: hybrid
force-position control,2−5 computed torque control6,7

and impedance control.8−11

Such a centralized approach implies that specific
pieces of hardware share data in real time from each
manipulator force and position sensor. Notice that
the structure of the controller depends on the system.
This almost prohibits the implementation of regrasp-
ing procedures or, more generally, any change in the
system topology.

Furthermore, when the system is built-up by
manipulators with heterogeneous performance, the
whole system performance reflects that of the worst
one, especially for precision and stability.

An alternative to global control consists in
considering each manipulator as autonomous and in-
dependently controlled. This greatly simplifies the
implementation of the coordinated control. From the
hardware point of view, each manipulator controller
keeps its original individual structure. Changes in
system topology are easier and do not lead to sig-
nificant modifications in control structure. Obviously,
this modularity gives more flexibility in the use of
the coordinated manipulation system. Furthermore,
system performance optimization can be addressed
through performance optimization of each individual
manipulator. Phenomena (actuators dynamics, non-
colocated modes, etc.) limiting the performance of
a given manipulator can be dealt with locally, with-
out major influence on the rest of the cooperative
system.

A first possible approach (Figure 1(b)) for lo-
cal control of multirobot systems is to use pure
joint control.12,13 In that case, hardware and software
implementation are greatly simplified. However,
since the task is controlled at the object level, it is nec-
essary to invert the grasp models and manipulator
kinematics.14 This is why joint-level approaches are
very sensitive to uncertainties in manipulators and
grasp geometries.

An alternative is effector-level control (Fig-
ure 1(c)). Here we must deal with position and force
control at the contact between the end-effectors and
the manipulated object. Such an approach offers an
interesting trade-off between the simplicity of joint-
level solutions and the efficiency of centralized solu-
tions. Moreover, important problems linked to point-
contact manipulation (i.e., control of impact, sliding
on object surface, etc.) can be addressed in a more
direct and suitable manner.

Coordinated manipulation control at the end-
effector level has been investigated for many years.
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Figure 2. Two solutions for effector-level control of coor-
dinated manipulation.

In the leader-follower approach, for example,13,15,16

one in two cooperating manipulators has its end-
effector trajectory in-line adjusted with respect to the
actual trajectory of the other (Figure 2(a)). For this,
closed-chain kinematic constraints are explicitly taken
into account. Internal forces that are not directly con-
trolled entirely rely on exact knowledge of manipu-
lated object compliance and geometry.

In the master-slave approach,2,16 the master
(which is position controlled) induces object motions,
whereas the slave, (which is purely force controlled)
must regulate internal forces while the object is in
motion (Figure 2(b)). In that case, internal force regu-
lation entirely relies on the loop rapidity of the slave
force control.

More recently, the hybrid external solution has
been proposed17 to simultaneously control both force
and position at each end-effector.18 This symmetric
solution provides flexibility and simplifies object in-
ternal andexternal applied force regulation.However,
the force control action remains predominant (integral
action) over the position control action. This makes
the system unable to reject disturbances applied to
the manipulated object.

1.2. The Distributed Impedance Approach

Effector-level control of coordinated manipulation
must face two major difficulties simultaneously:

1. From each coordinated manipulator’s point of
view, the environment (the manipulated object
and the other manipulators) reflects a complex
dynamic behavior. Thus, from stability con-
siderations, a local force controller cannot be
implementedwith an arbitrarily high gain. For
that reason,master-slave solutions are not suit-
able for coordinated manipulation.

2. Because internal load regulation and trajec-
tory control are fundamental components of
coordinatedmanipulation, both forces andmo-
tionmust be simultaneously andprecisely con-
trolled. As a consequence, it is not realistic
to simply implement pure position control
symmetrically on each manipulator (as in the
leader-follower approach), nor to generalize
closed-loop force control (as in the hybrid ex-
ternal approach17).

To overcome these difficulties, we propose the dis-
tributed impedance control approach. This approach
is based on an individual impedance control of each
manipulator.

Basically, impedance control establishes a linear
relationship between the wrench applied to the end-
effector F and the error between desired and actual
end-effector configuration X̃ − X. Thus, the manipu-
lator will react in a limited and predictable way to
any external disturbance. Robustness in impedance
control has been slightly demonstrated (for instance
in refs. 19 and 20). More generally, impedance control
is well suited to the control of contact tasks involving
a complex and dynamically variable environment.

Moreover, explicit force control can be locally
added simply by activating an external force loop
over the existing impedance scheme.20,21 In the coor-
dinatedmanipulation context, this can be particularly
useful, because it is necessary to control both force and
motion at the end-effector level accurately.

Impedance control has been proposed to control
multiarm systems, but only in a semi-distributed
way.22,23 In both cases, information about robot posi-
tions and forces still needs to be centralized. In Bonitz
and Hsia,22 individual impedance control schemes
take into account only the part of applied efforts
producing internal load, and then introduce coupling
effects between object motion and internal load regu-
lation. In Kosuge et al.,24 impedance distribution was
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implemented using virtual internal model of the ma-
nipulator end-effectors. But there is no consideration
of how impedances are distributed, nor how to intro-
duce explicit force control in the object–end-effector
interactions.

In the next section, a new distributed impedance
control structure is proposed and developed for a set
of manipulators grasping an object through simple
point contacts. Object motion, internal force realiza-
tion, and control are addressed, and a complete algo-
rithm for computation of the corresponding individ-
ual reference trajectories and forces is proposed.

A stability analysis based on the hyperstabil-
ity principle is developed in Section 3, giving suf-
ficient conditions for the stability of the distributed
impedance controller.

Section 4 provides experimental results to verify
the ability of the distributed impedance approach to
realize point-contact grasping tasks. Adynamic trans-
porting task is first performed, then the object comes
into contact with a stiff, planar environment with a
desired applied effort. Both tasks illustrate the ability
of impedance distribution to accurately control object
trajectory and internal forces.

2. SYSTEM DESCRIPTION

Letus consider anobject Sp graspedbynmanipulators
through frictional point contacts (Figure 3). Ro is a
frame fixed to the object. For simplicity, its origin O◦

is chosen to be themass center of Sp.Rb is a base frame
fixed to the environment. In the following, all vectors
andmatrices are expressedwith respect to the vectors
ofRb .

The absolute configuration of Ro with respect to
a base frame Rb is given by the 3 × 1 position vector
X◦ and the 3× 3 rotation matrix ◦Rb . The generalized
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Figure 3. Grasp geometry.
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Figure 4. Object/effector interaction.

velocity ofRo is represented by the 6 × 1 vector V◦:

V◦=(Ẋ◦T, Ω◦T)
T

(1)

where Ẋ◦ = dX◦
dt and Ω◦ is a 3 × 1 rotational velocity

vector.
The ith effector contact point on the object is Oi .

Its location with respect toRo is given by the constant
3 × 1 position vector ri . The position of Oi in Rb is
represented by Xi .

The object motion equation is

Fext + F◦ = Λ◦ V̇◦ + C◦ (2)

Λ◦ =
(
m◦ II3 03

03 I◦

)

C◦ =
( −m◦ g

Ω◦ × I◦Ω◦

)

where II3 is the 3 × 3 identity matrix and 03 is the
3 × 3 null matrix. F◦ is the resultant force/moment
vector applied to Sp at point O◦ by the set of com-
manded end-effectors (Figure 4). Fext is the external
force/moment vector at O◦. Fext = 0 when Sp has no
contact with its environment.Λ◦ is the object’s gener-
alized inertiamatrix, built from itsmassm◦ and inertia
tensor I◦ expressed with respect to point O◦ and the
vectors ofRb .C◦ represents Coriolis and gravitational
effects, constructedwith the gravitational acceleration
vector g.

A pure force Fi is applied to the object through
the ith contact point. The Fi are grouped into a 3n× 1
vector F = (F1T, . . . , FnT)T. F is related to F◦ through
the 6 × 3n grasp matrix W:

F◦ = W F (3)

For the vectors F, F◦, and ri , (i = 1, . . . , n) expressed
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in the base frame Rb and with O◦ as reduction point,
we have

W =
(

II3 . . . II3
−S(r1) . . . −S(rn)

)
(4)

Where S(·) represents the cross-product operator.
The application of the principle of virtual work to

Eq. (3) gives the vector of the individual end-effector
velocities Ẋ = (Ẋ1T, . . . , ẊnT)T:

Ẋ = WT (Ẋ◦T, Ω◦T)
T = WT V◦ (5)

And for infinitesimal displacements δX◦ and δX =
(δX1T, . . . , δXnT)T, we have

δX = WT δX◦ (6)

The object internal forces belong to the null space of
W. Assuming that W is a full-rank matrix, and that N
is a (3n)× (3n− 6)matrix whose columns form a base
of the null space of W, we have

F = W� F◦ + N η◦ (7)

where W� = WT (W WT)−1 is the right generalized
inverse of W. The first term in Eq. (7) represents the
contribution of the contact forces to object manipula-
tion; andη◦ represents the 3n− 6 vector of the internal
force magnitudes.

The selection of N and η◦ significantly influences
grasp stability. Possible choices of N and η◦ are given
in Section 5 for some simple grasp configurations.
For more details the reader should refer to Nakamura
et al.25 and to Szewczyk and Bidaud.26

2.1. End-effector Control

In the distributed impedance control approach, each
manipulator is driven by its own independent
impedance controller. An impedance is specified
for each end-effector participating in the task. This
impedance links the ith component Fi of F to X̃i and
Xi (i.e., corresponding to reference and actual end-
effector position vectors):

− Fi = Mi Ẍi + Bi (Ẋi − ˜̇Xi ) + Ki (Xi − X̃i ) (8)

Here Ki , Bi , and Mi are 3 × 3 diagonal matrices that
define the ith individual target impedance.When con-
trolling a single manipulator, they are specified accor-
ding to local constraints, such as free or constrained
directions, apparent end-effector inertia matrix, and

so on.21 When several manipulators are controlled,
the Ki , Bi , and Mi matrices are also determined by
the global impedance desired to reflect on the manip-
ulated object.

The impedance behavior described by Eq. (8) can
be obtained in differentways. Some solutions (such as
position based impedance control27) rely on position
control at the joint level. Theydonot allowanarbitrary
choice of the target impedance parameters.28 Other
solutions (such as force based impedance control29),
rely on control of the manipulator dynamics in its op-
erational space. Actuator commanded forces fcom are
computed, such as

Ji
−T

f icom − Fi =Λi Ẍi + Ci (9)

Here, Ji is the Jacobian matrix of the ith manipula-
tor, which is assumed to be nonredundant and non-
singular. Λi and Ci are respectively the operational
apparent inertia matrix, and the Coriolis, centrifugal,
and gravitational forces.

According to Eqs. (8) and (9), we have

f icom = JiT[Λi Mi−1(Bi (Ẋi − ˜̇Xi ) + Ki (Xi − X̃i )

+ Ci + (II3 − ΛiMi−1) Fi ] (10)

which requires an on-line estimation of the applied
effort Fi . This solution has been chosen in this work. It
has been implemented following the control scheme
presented in Figure 5.

2.2. Reference Trajectories

Each individual impedance controller defined by
Eq. (8) is featured with a unique input variable,
which is the reference trajectory X̃i computed accord-
ing to task specification (i.e., desired object trajectory
X̃◦, ˜◦Rb, Ṽ◦, ˜̇V◦, and internal load η̃◦). Each individual
reference trajectory can be viewed as the sum of an
accompanying trajectory X̃i

a and an additional trajectory
X̃i

+ (Figure 6).
X̃i

a is the ith contact-point trajectory required by
the object desired motion, considering a given grasp
geometry:

X̃i
a = X̃◦ − ˜◦RT

b ri (11)

The additional trajectory X̃i
+ is aimed to generate

the ith desired end-effector/object interaction force
F̃i (i.e., the contribution of the ith manipulator to the
object internal forces, object dynamics compensation,
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and application of an external force Fext). Namely,
according to Eqs. (3) and (7), its value is

F̃i = uiT F̃ (12)

F̃ = (W̃�
(Λ̃◦ ˙̃V◦ + C̃◦) + Ñ η̃◦) (13)

where uiT = (03×3(i−1), II3, 03×3(n−i+1)) is a suitable pro-
jection operator to extract F̃i from F̃. According to
Eq. (8), X̃i

+ is finally deduced from F̃i by the following
low-pass filter application:

X̃i
+ = L−1

( L(F̃i )

Bi p + Ki

)
(14)

whereL( ·) represents the Laplace transformation and
p represents the derivative operator.

2.3. Active Force Control

In distributed impedance control, the contact forces
Fi are not explicitly controlled with a feedback loop.
Instead, they are specified off-line through desired
position terms X̃i

+ (see Eq. (14)) and applied in a feed-
forward manner. Thus, the system is unable to reject

disturbances that make Fi deviate from its desired
value F̃i . This is the case when the real end-effector
stiffness Ki differs from its predicted value, used in
Eq. (14) to derive X̃i

+. A mechanism that can control
the end-effector contact forces and reject such distur-
bances is then much needed.

However, introducing complete active force con-
trol for all the Fi components would lead to a loss
of control of object position. In this case, the system
would be completely unable to reject any external
force applied to the object (as explained in Section 1).

To solve this problem, we select only a subset of
theF components thatwill be actively force controlled,
while pure impedance control is maintained on the
other components. The two different subsets include
respectively nϕ and nπ end-effector/object interaction
components, and nπ +nϕ = 3n. The 6 × nπ grasp
matrix πW extracted from W is associated with the
purely impedance controlled interaction components.
πW must be full rank to guarantee complete position
control of the object. In the case of free spatial mani-
pulations, nπ ≥ 6 is implied; that necessary condition
is the same as the force-closure condition derived by
Nguyen.30

Theoretically, it is sufficient to choose six indepen-
dent components to be position controlled (nπ = 6).
Practically, nπ > 6 can be useful for preserving the
rank of πW from discrepancy and to facilitate appar-
ent impedance conditioning of the object. However,
in the following, we have chosen to restrict the num-
ber of purely impedance controlled interactions to the
minimum (nπ = 6) to maximize the number of inter-
action components under force control.

The choice of nϕ and nπ , however, does not say
which components of F should be force or purely
impedance controlled. Note that it is more straight-
forward to select the nϕ force controlled components.
The force controlled components are selected from the
internal forces when the object is in free motion. For
constrained motions of the object, these components
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Figure 7. Example of force and pure impedance controller
repartition.

are among those which also compensate the object in-
teraction with the environment Fext. This is illustrated
in Figure 7 for simple two-finger grasps.

The resulting distributed impedance control
scheme, including active force control, is represented
in Figure 8.Along the nϕ selecteddirections, force con-
trol is achievedusing an external force loop,20,21 which
modifies the corresponding reference velocity propor-
tionally to the measured force error.

Note that along each end-effector/object inter-
action component, selected to be either purely
impedance controlled or force controlled, the orig-
inal impedance controller (8) is still implemented.
That clearly distinguishes between the distributed
impedance control approach and the master/slave
methods. In distributed impedance, the manipula-
tor motion is always anticipated through the pro-
grammed trajectory Xi

a (Eq. (11)), even if a local force
controller is implemented.
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3. STABILITY STUDY

We consider that position and force control actions are
distributed according to the considerationsdeveloped
in Section two, which leads to the following condi-
tions:

nπ= 6
nϕ= 3n − 6

πW is a 6× 6 real matrix
rank(πW) = 6

When dealing with a set of nonredundant manipula-
tors, the state of a cooperating system (for a given con-
figuration mode) is entirely characterized by the ob-
ject configuration (X◦ and ◦Rb) and by its internal load
(η◦). Since the manipulated object has 6 d.o.f. in the
3D space and rank(πW) = 6, its configuration is en-
tirely determined by the nπ = 6 local coordinates cor-
responding to the purely impedance controlled com-
ponents. On the other hand, assuming that the system
tends toward its desired configuration, the object in-
ternal load error also tends to zero as soon as the n − 6
force controlled interaction components tend to their
desired values. That is only true when πW has no null
space and thus position control actions cannot pro-
duce any internal force.

To conclude, system stability is ensured as soon
as

πX → π X̃ and ϕF → ϕF̃ (15)

for any initial actual values of X◦, ◦Rb , and η◦.
In this section, we establish conditions to satisfy

Eq. (15), proceeding in three steps:

1. We define a potential energy function for the
system, and show that the configuration πX =
πX̃ corresponds to an absoluteminimumof this
function.
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2. Using the hyperstability principle, we demon-
strate that ϕF → ϕ F̃, assuming that the different
target impedance parameters have been prop-
erly chosen.

3. Using results of steps 1 and 2, we show that the
desired system configuration is a stable equi-
librium point, that is, πX → πX̃.

3.1. System Potential Energy

We define Q as the system potential energy with
respect to

• the nπ position control actions (programmed
stiffness πK),

• the feedforward applied forces Ñη̃◦ and W̃�C̃◦

(for internal load production and auxiliary
effects compensation, respectively), and

• the gravity forces.

So,

Q def= 1
2π�XT

πK π�X − �XT (Ñη̃ + W̃�C̃◦)

−m◦ �XGT
g (16)

where−π�X def= (πX − πX̃), −�X def= (X−X̃),−�XG def=
(XG − X̃G), and XG = X◦ + G◦O◦.

The derivation of Eq. (16) with respect to the sys-
tem configuration (see Appendix 1) gives

dQ

dπXT = πK π�X − πW−1W Ñη̃

− πW−1(W W̃� − II6) C̃◦ (17)

Moreover, by the definition of Ñ and W̃�, we have

W̃ Ñ = 06×3n−6 and W̃ W̃� = II6 (18)

Thus, the desired system configuration π�X =
0 (i.e., X◦ = X̃◦, πX = πX̃, and W = W̃) always verifies
that

dQ

d πXT = 0 (19)

When calculating the derivative of Eq. (17) with
respect to πXT again, we get

d2Q

dπXT2 = πK−d(πW−1 W)

d πXT (Ñ η̃ + W̃� C̃◦) + d (πW−1)

d πXT C̃◦

(20)

Considering the form of matrix W in Eq. (4), it
is obvious that the entries of πW−1, W, Ñ, and their
derivatives with respect to πX are bounded. Thus, we
can always find a matrix πK∗ such that

πK > πK∗ ⇒ d2Q

dπXT2
> 0 (21)

This result combined with Eq. (19) indicates that the
stiffness matrix πK can always be such that the origin
X◦ = X̃◦ corresponds to an absolute minimum of the
potential energy Q. Moreover, Q is null for X◦ = X̃◦

(Eq. (17)) and positive for any other configuration of
the system (Eqs. (19) and (21)).

3.2. Internal Load Stability

Consider now the system shown in Figure 9. It is
strictly equivalent to the system in Figure 8, with X̃◦

and η̃◦ now considered as constant inputs. Notice that
the linearity of relations (13) and (14) allows us to rep-
resent the gravity and Coriolis compensation C̃◦ and
the internal load offset η̃◦ as independent inputs to
the system.

The system in Figure 9 is composed of a nonlinear
feedback loop enclosing a linear forward block. They
are linked through the quantities ϕẊ and �ϕF. Here,
�ϕF = ϕF − ϕ F̃ is the deviation in applied forces along
the force controlled interaction components.

Hyperstability of such a closed loop system is
ensured by the strict real positiveness of its forward
block and by the passivity of its feedback block.31
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3.2.1. Strict Real Positiveness of the Forward Block

The transfer function associated with the linear for-
ward block is of the form

H(p) = diag(hv(p)) (22)

hv(p) = mv p2 + bv p + kv(
bv kv

F + 1
)
p + kv kv

F
(23)

v = 1, . . . , nϕ

where, mv, bv, kv, and kv
F are parameters of the vth

force controlled target impedance.
Thus, strict real positiveness of the forward block

is verified as soon as each of the nϕ force con-
trolled object/end-effector interaction components
verify that

kv
F > 0, kv > 0, bv > 0, mv > 0 (24)

and

bv
(
bv + 1

kv
F

)
> mv kv (25)

3.2.2. Passivity of the Feedback Block

Asufficient condition for the feedback block to be pas-
sive is given by the Popov criterion:32

∫ T

0
( ϕẊT�ϕF) dt > −∞

⇔
∫ T

0
(V◦T

ϕW�ϕF) dt > −∞

⇔
∫ T

0
(V◦T

ϕF◦) dt > −∞ (26)

where, ϕF◦ represents the resultingwrench at pointO◦

exertedby the setof interactioncomponentswith force
feedback. We show in Appendix 2 that condition (26)
is equivalent to

1
2

V◦TΛ◦V◦ + 1
2π ẊT

πM πẊ

+
∫ T

0
(π ẊT

πBπ Ẋ) dt + Q > −∞ (27)

The first term in Eq. (27) is positive because thematrix
Λ◦ is positive. The second and third terms are also
positive when

mu > 0, bu > 0 (28)
u = 1, . . . , nπ (29)

for each of the nπ purely impedance controlled com-
ponents. The fourth term is the system potential
energy Q, which is always positive provided that
πK has been chosen large enough to verify Eq. (21).
Thus, the nonlinear feedback block of the system rep-
resented in Figure 9 is passive as soon as conditions
(21) and (29) are verified.

These conditions combined with conditions (24)
and (25) ensure that the system represented in Figure 9
is passive. Consequently, we have�ϕF → 0, and then

ϕF → ϕ F̃ (30)

3.3. Stability of the Desired Configuration

Consider now the Lyapunov candidate function

G = Eo + Eπ + Q (31)

with

Eo = 1
2

Ẋ◦TΛ◦Ẋ◦ and Eπ = 1
2π ẊT

πMπ Ẋ (32)

G is obviously positive for any configuration of the
system, and radially unbounded. Moreover, accord-
ing to Eqs. (8) and (16) and to the results (30), we have

d
dt

Eo = Ẋ◦TΛ◦Ẍ◦

d
dt

Eπ = −πẊT
πBπ Ẋ − π ẊT

πKπX − Ẋ◦TΛ◦Ẍ◦ − Ẋ◦TA(πX)

d
dt

Q = π ẊT
πKπX − �Ẋ◦TW(Ñη̃0 + W̃�C̃◦) −m◦ ẊGT

g

= π ẊT
πKπX + Ẋ◦TA(πX)

with

A(πX)
def= C◦ − W(Ñη̃0 + W̃�C̃◦) (33)

Summing the time derivatives above, we find that

Ġ = − πẊT
πBπ Ẋ (34)

which is always negative or null.
According to Lassale’s theorem, the system con-

verges and remains in the largest subset of πX, such
that

Ġ = 0 (35)
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We now shall prove that the system is globally
asymptotically stable; that is, the subset defined by
(35) is reduced to the desired state π X̃.

First, since πB is nonsingular, (35) is equivalent
to πẊ = 0, which in turn is equivalent to V◦ = 0 as
V◦ =πW−T

π Ẋ. In Appendix 3, we show that V◦ = 0
implies

−πWπKπ�X + W(Ñη̃ + W̃�C̃◦) − C̃◦ = 06×1 (36)

Multiplying each side of (36) by πW−1, we get

πKπ�X − πW−1WÑη̃−π
W−1(WW̃W� − II)C̃◦ = 06×1

(37)

This last result, introduced into (17), gives

dQ
dπX

= 0

which has been proven in Section 3.1 to be equivalent
to

πX = π X̃ or X◦ = X̃◦

3.4. Conclusion

In this section, we have determined sufficient con-
ditions for the distributed impedance controller of
Figure 8 to be stable. Practically, object configuration
and internal loadwill tend toward their desiredvalues
with no steady-state error as soon as

• we ensure the real positiveness of the force con-
trol through conditions (24) and (25), and

Capteurs d’effort

Effecteurs

Puma 560

IBM Scara 7576 Transport dynamique Manipulation au contact

cba

Force sensors

Effectors

Transportation task Contact task

Figure 10. Experimental setup and task realizations.

• we choose stiffness parameters of position con-
trolled interactions sufficiently high, such that
πK > πK∗ (condition (21)).

4. EXPERIMENTAL SETUP

Distributed impedance control has been applied to an
experimental dual arm cell, involving an IBM 7576
Scara and a Puma 560 manipulator (Figure 10(a)).
Each manipulator is featured with a six-axis force/
torque sensor, and fingers with sharp extremities that
establish frictional and almost punctual contacts with
the manipulated object.

Each manipulator uses a VME bus–based inde-
pendent controller. Real-time control of motions and
applied forces is implemented at a 5 ms sampling rate
on two Motorola 68020 CPUs. Software development
was achieved using C language programs on a stan-
dard personal computer. Only the reference trajectory
computation is common to the two subsystems.

5. DYNAMIC TRANSPORTATION TASK

The first experiment consists in transporting an object
(15 cm × 5 cm × 3 cm, 0.5 kg) in a horizontal plane
(Figure 10(b)). In such a planar case, we have shown
(Section 2) that four object/manipulator interac-
tion components must be controlled (Figure 7(a)).
Three components of at least nπ ≥ 3 must be purely
impedance controlled, while the remaining compo-
nent is featured with a force control loop. Thus, the
repartition shown in Figure 7(c) is applied here. The
y- component of the interaction with the SCARA is
selected to be force controlled.
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5.1. Stability considerations

In case of the grasp of Figure 7(a), and when contact
frames are correctly orientedwith respect to the object
(Figure 11(a)), the grasp matrix W has the ideal form

W = W̃ =



cos(θ) −sin(θ) −cos(θ) sin(θ)

sin(θ) cos(θ) −sin(θ) −cos(θ)

r 0 r 0



(38)

where r is the object half-length and θ the object ori-
entation in the plane. In this case, a base for the null
space ofW is given by the vectorN = Ñ = (0 1 0 1)T.

When the object deviates from its desired orienta-
tion (δθ = θ̃ −θ �= 0), contact frames are no longer cor-
rectly orientedwith respect to the object (Figure 11(b))
and the grasp matrix W becomes

W =

 cos(θ) −sin(θ) −cos(θ) sin(θ)

sin(θ) cos(θ) −sin(θ) −cos(θ)

r cos(δθ) r sin(δθ) r cos(δθ) r sin(δθ)



(39)

As we can see, the resulting applied moment, which
depends on the last row of W, is affected. Moreover,
within the context of a decentralized control scheme,
the actual object orientation error δθ can not be eval-
uated in-line. Indeed, from the single manipulator
point of view, the only available piece of informa-
tion concerning the object configuration is the loca-
tion of the corresponding contact point on the object
surface. Thus, in-line compensation of the aforemen-
tioned grasp matrix discrepancy (through, for exam-

2r

��

(a) Zero angular deviation (�� � 0)

(b) Nonzero angular deviation (�� � 0)

Figure 11. Influence of object angular positioning.

ple, a suitable in-line adaptation of the commanded
efforts F̃i ) is not possible. This makes the system very
sensitive to object angular deviations.

However, according to the proposed grasp repar-
tition, the submatrices πW and ϕW extracted from W
are

πW =




cos(θ) −cos(θ) sin(θ)

sin(θ) −sin(θ) −cos(θ)

r cos(δθ) r cos(δθ) r sin(δθ)


 (40)

ϕW =




−sin(θ)

cos(θ)

r sin(δθ)


 (41)

Note that πW remainsnonsingular as longas δθ < 90o,
which is always true in practice.

Moreover, since for this planar horizontal case
gravity is not involved, condition (21) relative to the
system stability yields



k1x 0 0

0 k2x 0

0 0 k2y


 − d (πW−1W)

dθ

dθ

dπX

∣∣∣∣ X◦ = X̃◦

θ = θ̃

Ñ η̃◦ >0

(42)
According to (41), this inequality can be reduced to

πK =



k1x 0 0

0 k2x 0

0 0 k2y


>



k1x − η̃◦

2 r − η̃◦
2 r 0

− η̃◦
2 r k2x − η̃◦

2 r 0

0 0 k2y


= πK∗

(43)

which is verified when

k1x k
2
x

k1x + k2x
>

η̃◦

2 r
and k2y > 0 (44)

From a physical point of view, the first inequality in
(44) can be interpreted as a condition on the serial
combinationof the two tangential stiffnesses k1x and k2x.
Equation (44) also implies that k1x +k2x > 2 η◦/r , which
is, in turn, a condition on the parallel combination of
k1x and k2x. Practically, this combinationmust overcome
the angular destabilizing effect of the object internal
loading η◦. As we can see, increasing the object width
2 r increases stability boundaries.
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Table I. Parameter Tuning for Transportation Task.

mi
β ki

β bi
β ki

Fβ

(Ns2/m) (N/m) (Ns/m) (m/sN)

F 1
x 30–60 18900 1260 0

F 1
y 30–60 6200 1930 7 · 10−3

F 2
x 40–60 5400 85 0

F 2
y 40–60 6100 170 0

5.2. Tuning of the Controllers

The controller parameters are fixed according to the
following four-steps reasoning.

1. Individual target impedances are initialized at
values that consider manipulators performing
independent tasks.

2. These values are then adjusted according to the
type of closed kinematic chain constituted. Par-
ticular attention must be paid to the apparent
impedance reflected at each contact point.

3. Preliminary tests have been achieved along el-
ementary trajectories leading to an empirical
final adjustment of impedance parameters and
force feedback gains.

4. We then check that stability requirements (25)
and (21) are met.

Applying this reasoning to the transportation task of
Figure (10(b)), we obtain the set of parameters given
in Table I.

5.3. Results

Here, the object trajectory involves both linear and an-
gular object motions within a wide range of velocities
and accelerations (the dotted lines in Figure 12(b–d)).
The path of the object center of mass is a horizon-
tal square interpolated using a fifth-order polynomial
profile. Its orientation has a 20-degree alternative mo-
tion. The desired internal force is set to 12 N. Indi-
vidual reference trajectories are computed according
to task specification and Eqs. (11–14), and the kine-
matic redundancy of the system is solved by choosing
a constant orientation of the two end-effectors while
the task is performed.

Figure 12 shows results in trajectory tracking and
internal force regulation. With linear and angular er-
rors less than 1 mm and 0.03 radian, respectively,
the trajectory is accurately followed. Internal load
(Figure 12(a)) has been filtered for noise measure-
ment attenuation using a low-pass filter with 30 Hz

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8
–0.26

–0.24

–0.22

 –0.2

–0.18

–0.16

–0.14

–0.12

0 1 2 3 4 5 6 7 8
0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0 1 2 3 4 5 6 7 8
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

(a) Internal loading (N) versus time (s)

(b) Object x-position (m) versus time (s)

(c) Object y-position (m) versus time (s)

(d) Object orientation (radian) versus time (s)

actual
desired

actual
desired

actual
desired

actual
desired

Figure 12. Results of the transportation task.
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bandwidth. The largest errors occur when the system
starts or completely stops (i.e., beginning,middle, and
end of the trajectory). This is mainly due to important
joint stiction effects. Anywhere else (and particularly
for phases at maximal velocity), internal load is cor-
rectly regulated.

6. CONTACT TASK

To illustrate the generality and flexibility of the dis-
tributed impedance approach, we also performed a
contact task using the same dual-arm cooperative cell,
without any modification in the controller structure.
This task is illustrated in Figure 10(c). The manipu-
lated object is a rigid cylinder with radius 0.05 m. It
comes into contact with a planar, vertical, rigid sur-
face. Since there is no friction between the object and
the environment, the applied external force Fext is nor-
mal to the contact surface (Figure 7(b)).

As depicted in Figure 7(d), two active force-
control loops can be implemented here. They are ap-
plied along the two y-directions of the two contact
frames. They match the directions of contact forces
needed for producing both the object internal force
(12 N) and the desired contact force Fext (between
0.5N and 7.5N). Because Fext changes during the task,
contact-frame orientations also change.

6.1. Tuning of the Controllers

Controller parameters are tuned based on the same
reasoning used for the transportation task. Here, we
just consider the contact between the object and the
environment as an additional object-effector interac-
tion involving an infinite target impedance in the di-
rection normal to the contact and a null impedance in
its tangential direction.

We obtain the parameters given in Table II.

6.1.1. Results

The object internal and contact forces that we obtain
are represented inFigure 13.Aswe can see, both forces

Table II. Parameter Tuning for Contact Task.

mi
β ki

β bi
β ki

Fβ

(Nm/s2) (N/m) (Ns/m) (m/sN)

f 1x 30–60 5800 630 0

f 1y 30–60 5800 630 7 · 10−3

f 2x 40–60 5400 85 0

f 2y 40–60 5400 85 6 · 10−3

Object internal loading (N) versus time (s)

Contact force (N) versus time (s)

Desired value

Actual value
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Figure 13. Results for the contact task.

are correctly regulated around their desired values,
with final deviation less than 1 N in both cases.

7. CONCLUSION

In this article, a distributed impedance approach is
proposed to solve the problem of controlling coopera-
tive systems (such as multiarm systems or articulated
hands.)

Details of the implementation are discussed, con-
sidering the example of an object being grasped
through a set of punctual frictional contacts. An ex-
tended stability analysis is performed based on the
hyperstability principle. Finally, experimental results
arepresented fordifferent kindsofmanipulation tasks
performed with a Scara-Puma dual-arm system.

Distributed impedance is basically a decentral-
ized control approach. Thus, it provides simplicity
and modularity in hardware development and task
planning over centralized solutions. In this article, for
example, the same controller is used to achieve a dy-
namic free transporation task and a static task where
theobject comes into contactwitha rigidenvironment.

Moreover, impedance control is implemented
at the end-effector level. Thus, it also provides an
efficient regulation of object-effector interactions.
Particularly, it allows the introduction of a local,
active force control at theobject-effector interface. This
brings robustness in object internal force controlwhile
the object position is still controlled in a closed loop.
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APPENDIX 1

Deriving Eq. (16) with respect to πX, we find

dQ
dπXT = πK π�X − dXT

dπXT (Ñη̃ + W̃� C̃◦) − m◦ dXGT

dπXT g

Regarding (5), and the fact that πW (which is extracted
from W) is a 6 × 6 full rank matrix, yields

Ẋ = WT
πW−T

πẊ (45)

Moreover, because the components of πX constitute a
set of generalized coordinates for the system, we have

Ẋ = dX
dπXπẊ (46)

Comparing (45) and (46) gives

(
dXT

dπXT

)T

= dX
dπX

= WT
πW−T (47)

Similarly to (46), we can write

ẊG = dXG

dπX πẊ (48)

On the other hand, we have

ẊG = d
dt

(X◦ + O◦G◦) = Ẋ◦ + ˙(O◦G◦) (49)

and

˙(O◦G◦) = Ω◦ × O◦G◦ = S(O◦G◦)Ω◦ (50)

Thus,

ẊG = (II3, S(O◦G◦)) V◦ = (II3, S(O◦G◦))πW−T
πẊ
(51)

Comparing (48) with (51) leads to

(
dXGT

dπXT

)T

= d XG

d πX
= (II3, S(O◦G◦))πW−T (52)

and then, according to (3),

m◦ d XGT

d πXT g = πW−1(II3, S(O◦G◦))Tm◦g

= πW−1
(

m◦g
S(O◦G◦)m◦g

)
= −πW−1C̃◦ (53)

Introducing (53) and (47) into (45) gives (17).

APPENDIX 2

Summation at the entrance of the nonlinear block of
Figure 9 yields

W (Ñη̃◦ + W̃� C̃◦) + πF◦ + ϕF◦ = Λ◦ V̇
◦ + C◦ (54)

which is equivalent to

ϕF◦ = −W(Ñη̃◦ + W̃� C̃◦) − πF◦ + Λ◦ V̇
◦ + C◦ (55)

On the other hand, we have also (eq. 3 and 8).

−πF◦ = πW(πMπ Ẍ + πBπ Ẋ + πK π�X) (56)

Introducing (55), (56), and the relationV◦T =π ẊT
πW−1

into (26) gives the condition

∫ t

0

[
V◦TΛ◦ V̇◦ + V◦TC◦ + π ẊT(πMπ Ẍ + πBπ Ẋ

+ πK π�X) − ẊT(Ñ η̃◦ + W̃� C̃◦)
]
dt > −∞

(57)

Moreover, using the definition of C̃◦ in (2), we have

∫ t

0
V◦TC◦ dt =

∫ t

0
−m◦ Ẋ◦T g − m◦ G◦O◦ × Ω◦T g dt

=
∫ t

0
−m◦ ẊGT g dt

= −m◦ �XGT g (58)

and (58) combined with (57) gives (27).

APPENDIX 3

Introducing π Ẋ = 0 and π Ẍ = 0 into (56) gives

−πF◦ = πW πK π�X (59)

Moreover, we have shown that commanded forces ϕF
tend to their desired values, which implies that

ϕF◦ = ϕW �ϕF = 06×1 (60)

Introducing (59) and (60) into (54) gives

W(Ñη̃◦ + W̃� C̃◦) − πW πK π�X =Λ◦ V̇
◦ + C◦ (61)
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Finally, because the object is at rest, we have V̇
◦ = 06×1

and C̃◦ = C◦ (see the definition of C◦ in (2)), and then,

−πW πK π�X + W(Ñη̃ + W̃� C̃◦) − C̃◦ = 06×1 (62)
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