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Abstract

In this paper, we address the problem of solv-
ing coordination problems in a continuous space
with as few design effort as possible. Our ap-
proach relies on Potential Fields Methods com-
bined with Genetic Algorithms. We compare it
with other frameworks relying on Learning Clas-
sifier Systems and on Potential Fields Methods
alone. Quantitatively, we show that we obtain
better results than with Learning Classifier Sys-
tems. Qualitatively, we show that our framework
requires less design effort than any other. The
counterpart is that the controllers we obtain are
harder to understand. We analyze a particularly
efficient controller and conclude to the necessity
of designing more formal tools to provide further
insight on more complex controllers.

1. Introduction

There are two main motivations in the animat approach.
This first one is to better understand nature by design-
ing computational models used to validate hypotheses of
natural mechanisms. The second one is to draw inspira-
tion from nature in order to design efficient adaptive al-
gorithms that can be used as software engineering tools.
Using such tools can in turn contribute in significantly
reducing the design effort necessary to solve many engi-
neering problems. This paper is mainly concerned with
the second motivation.

Outside of the animat research community, to solve an
engineering problem, the prevailing methodology con-
sists in a functional decomposition of the problem into
smaller and easier subproblems. This top-down method-
ology has proved its efficiency as far as the problem is
simple enough: it just stops when it reaches a level at
which solutions to problems are obvious.

But, in the context of this paper, we will focus on
specific problems which do not belong to that category:
the design of controllers to solve collective problems re-

quiring an efficient spatial coordination between several
agents. These agents have to be:

e situated, i.e. they have only a local perception of the
environment and are able to act on that environment;

e endowed with autonomous navigation capabilities,
i.e. they are able, without any external assistance,
of complex trajectories in a cluttered environment;

e adaptive, i.e. they are able to modify their nominal
behavior to manage unpredictable situations as well
as possible;

e coordinated, i.e. the global task must be achieved
through the interdependent behavior of several
agents.

Faced with these complex problems, the functional
decomposition methodology performs poorly, because
functional decomposition is not adapted to deal with
interdependencies: the elementary interactions between
agents cannot be isolated efficiently from one another.
As a result, human designers spend a lot of time tuning
low level parameters so as to adapt as much as possible
their decomposition to the problem they face.

A minor improvement to this situation consists in
adding to the top-down approach the use of adaptive
algorithms in order to optimize the discretization bound-
aries that result from the functional decomposition. Op-
timizing the parameters of a system with adaptive al-
gorithms makes it possible to spare a costly human in-
tervention. Genetic Algorithms (GA) or Reinforcement
Learning Algorithms can be used in that way, but this
use does not, imply reconsidering the functional decom-
position approach itself.

In this paper, we show that a more radical improve-
ment can be achieved on these complex coordination
problems by giving up the functional decomposition ap-
proach. As an alternative, we present another methodol-
ogy consisting in tuning the elementary interactions be-
tween the agents at the micro level so that the required
global behavior emerges at the macro level. Relying on



that methodology based on emergence gives us the abil-
ity to solve complex coordination problems with as few
design effort as possible.

Our concrete aim is to exploit the robustness proper-
ties of adaptive behaviors in collective tasks where spa-
tial coordination is necessary. Reaching this scientific
goal endows to designers the ability to treat diverse ap-
plications, like the simulation of gregarious creatures in
a video game, the test in simulation of new tactics of
aerial raid or, as we will exemplify here, the control of a
group of agents by another group.

In order to design the local interactions between
agents, we use Potential Fields Methods (PFMs) (sec-
tion 2.). But, whereas in most frameworks the potential
fields have to be designed by hand, we use a GA to auto-
mate the tuning of the potential fields so that the agents
optimize a global criterion (section 3.).

In order to evaluate the interest of our framework
through a case study (section 4.), we first compare quan-
titatively its performance with controllers implemented
with Learning Classifier Systems (section 5.). Then, we
analyze one controller obtained with our framework (sec-
tion 6.) and provide a robustness study of that controller
(section 6.1). In the discussion section, we compare it
with a similar controller obtained by hand by another re-
search team and we stress the advantages of our method-
ology with respect to functional decomposition or the
plain use of PFMs (section 7.). Finally, we highlight that
the key problem with our approach lies in understanding
rather than in designing the controller (section 8.).

2. Potential Fields Methods

At the origin of PFMs, the neurophysiological ap-
proach of Arbib demonstrated that some behaviors
in frogs may be interpreted as a combination of at-
tractions and repulsions induced by the environment
(Arbib, 1981, Arbib and House, 1985). Such research
was furthered by Partridge’s work (Partridge, 1982) on
fish schools and, above all, gave rise to Arkin’s schema
theory (Arkin, 1989) in robotics. In this framework, the
behavior of an agent results from a decomposition into
independent schemas expressed as attractive or repulsive
potential fields which are combined to act on the agent
as an electrical field acts on an electron (see figure 1).
Khatib (Khatib, 1985) was the first to apply PFMs to
path planning among obstacles for simulated and actual
robots. His approach was then generalized by Krogh
(Krogh, 1984). Later on, Brooks (Brooks, 1986) and
Arkin (Arkin, 1989) started to use these methods to
control different robots with different kinds of sensors.
Several methods were then proposed to solve the local
minima problems and oscillations problems identified by
Korenz and Borenstein (Korenz and Borenstein, 1991a),
such as the use of noise (Arkin, 1989), evolutionary
techniques  (Pearce et al., 1992), or special pur-
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Figure 1: a) Repulsive field around an obstacle in B(-4,4);
b) Attractive field towards a target in C(4,-4) c¢) Global field
combining (a) with (b) and resulting trajectory of a mobile
sensitive to both fields

pose dead-lock detectors to avoid local minima
(Korenz and Borenstein, 1991b,  Piaggio et al., 2000).
These new works raised a new surge of inter-
est in PFMs in mobile robotics ((Matarié¢, 1994,
Barraquand et al., 1992, Balch and Arkin, 1995)).

Nowadays, the methodology is renewed by a trend ap-
plying it to collective behavior problems, giving rise to so
called “Social Potential Fields”. For instance, Panatier
(Panatier et al., 2000) uses potential fields to build an
internal model of the behavior of other agents expressed
in tropistic terms. Then the agent can anticipate the
behavior of other agents and to coordinate its behav-
iors with theirs. In the same vein, Simonin and Ferber
(Simonin and Ferber, 2000) have shown the efficiency of
potential fields methods to support signal communica-
tion between agents in a reactive multiagent coordina-
tion context.

Sharing common goals with our work and a sim-
ilar formalism, Balch extends Arkin’s schema theory
(Balch and Arkin, 1995) to solve multiagent problems.
In particular, his work was intended to keep a group of
military ground vehicles in formation. More recently,
drawing inspiration from crystal structures, Balch and
Hybinette (Balch and Hybinette, 2000) also added to
the classical framework a set of one to four attachment
sites, arranged regularly around each agent, attracting
other agents according to a maintain formation schema,
giving rise to different group geometries depending on



the positions of the sites.

The framework presented below can be seen
as an extension of the original framework from
(Balch and Arkin, 1995) towards less design effort from
the designer. We also added the equivalent of attach-
ment sites to our framework, but this is not presented
here (see (Flacher, 2001)).

3. Our framework

3.1  The formalism

In multiagent simulations, entities of different types are
present in the environment of each agent. We call such
entities “landmarks” when they are relevant to the be-
havior of an agent. At each time step, the agent is lo-
cated in a point A and sorts all its landmarks into lists
depending on their type, according to their relative dis-
tance. With this way of sorting landmarks, we can im-
plement easily a local perception limited to some range,
so as to define situated agents in the sense given in the in-
troduction. From the landmarks lists, the agent defines
a set of points of interest P; , each being the barycentre
of some landmarks L;. Hence, AP, = X7, Bik.A—Lk),
where ;; are barycentric coefficients associated to P;.

A normalized function of magnitude F; modulates the
influence exerted by the point P; on the agent according
to the distance || ﬁ |- This function is piecewise lin-
ear and defined by a set of ¢; points whose coordinates
are (i, yi)- Each function Fj generates an attractive
or repulsive force towards P; which acts on the agent.
The force is attractive when the function is positive and
repulsive when it is negative. This formalism general-
izes the classical obstacle/target dichotomy in a unified
formalism since the same function of magnitude can be
either attractive or repulsive. The corresponding force is
modulated by a coefficient G;, which represents the rel-
ative gain of the point of interest with respect to other
points.

Finally, the movement B resulting from the combina-
tion of all forces on the agent is given by the equation:

D = =N, [Gix F(I 4P, |) x AP,] (1)

This equation defines the controller of our agents.
Each controller can be expressed by the set of all pa-
rameters involved in equation 1. The GA is applied to
this set of parameters, so as to select controllers which
perform well on the task they have to solve and discard
controllers which get trapped into local minima.

3.2 FEwvolution of the Model

3.2.1 Genetic encoding

A genome is encoded as N vectors of real numbers
representing all the parameters of our framework.These

parameters are initially uniformly distributed over the
range [—1,41]. These parameters are the following:

o the coefficient G; of all functions of magnitude,

e the ranges and types (7, ti), together with the co-
efficient (;; of all landmarks k defining a point of
interest P;;

e the coordinates (x;,y;) of the segment extremities
defining all piecewise linear functions of magnitude.

A vector containing these parameters is called a chro-
mosome, and each chromosome codes for one association
(gain + point of interest + magnitude function).

3.2.2  Genetic Operators

The genetic operators, mutation and crossover, are
adapted to our formalism to prevent the generation of
meaningless controllers.

e mutation : a random value depending on a normal
law is added with a probability P,s to each parameter
of the genome. These parameters are then mapped
using linear maps from [—1, +1] to a given range of
parameters values as follows:

— type values € {0,1,...N},

— range values € {1, .., fraans(type)},

— barycentric weights
€ [-10,10],

gain values € [—5000, 5000],

of points of interest

e crossover : individuals I; and I> respectively have
N; and N5 chromosomes. The crossover is realized
by selecting, with a probability Pc, N3 chromosomes
in the set (N1 + N2) of chromosomes from [; and I>.
The selected chromosomes are then copied into the
genome of the new individual.

As a result of the crossover operator, the number of chro-
mosomes in genomes varies from one individual to an-
other.

3.2.8 Description of the algorithm

The evolutionary algorithm used in the experiments
described here is similar to the one proposed by
(Kodjabachian, 1998). Thanks to the use of ecological
niches, it prevents a premature convergence by distribut-
ing the population on a wheel and selecting candidates
for evaluation into local windows around that wheel. A
new individual is generated according to the following
algorithm:

e a neighborhood window of size Ny which is propor-
tional to the size of the population Np is positioned
on the wheel;



e two individuals I; and Is are selected in this win-
dow with a probability proportional to their fit-
ness according to a roulette wheel selection scheme
(Goldberg, 1989);

e genetic operators are applied to I; and I, to generate
a new individual Igop;

e 3 bad individual Ig is selected in the window with a
probability proportional to the inverse of its fitness;

o JIg,, is tested;

e if the new individual Is,, is better than its parents,
it replaces Ip.

We consider that the next generation is generated
when this operation is repeated Np times.

4. A Case Study

Our environment is inspired from the Robot Sheep-
dog Project, which involves a robot driving a flock
of ducks towards a goal position in a circular arena
(Vaughan et al., 1998). We extend this experimental
setup to the case where the same task has to be solved
by the coordinated effort of several simulated agents.
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Figure 2: The arena, ducks and shepherds

The simulator shown on figure 2 includes a flock of
ducks and some shepherds which must drive the flock
towards a goal area. In the following experiments, all
simulations always involve six ducks. The ducks and the
shepherds have the same maximum velocity. The goal
is achieved as soon as all the ducks are inside the goal
area.

The behavior of the ducks results from a combination
of three tendencies. They tend:

e to keep away from the walls of the arena;

e to join their mates when they are within their visual
range;

e to flee from the shepherds which are within their vi-
sual range.

In the context of that case study, the type values and
ranges for these values are given by the table 1.

Type Landmark frtazns(type)
0 goal area 1
1 wall landmark 12
2 duck 6
3 shepherd 20

Table 1: Table of the parameters of our simulations

5. Empirical results

5.1 Experiments with Learning Classifier Sys-
tems

Basically, a Learning Classifier Systems (LCS) is a rule-
based system able to improve its set of rules thanks
to both GA and Reinforcement Learning Algorithms.
Since the rules are (condition, action) couples, a LCS
can define a controller, and its adaptive algorithms
can be used to optimize this controller with respect
to some criterion. For an introduction to LCS, the
reader is referred to (Stolzmann et al., 2001). The work
presented in this section is a very brief summary of
(Sigaud and Gérard, 2001). In order to apply LCS to
the problem defined in section 4., it is necessary to first
design the set of inputs and actions considered by the
classifiers. This in turn implies that a designer defines a
general strategy to fulfill the task even before applying
adaptive algorithms.

isLeftToFlock

Flock limit

isinLeftGuidingArea

/
islnPushingArea .

isBehindFlock

isinRightGuidingAreg
g

isRightToFlock

Figure 3: Representation used by Learning Classifier Systems

The strategy defined in our case consists in first sur-
rounding the ducks so that there flock do not scatter
when the agents get too close to them, and then drive
the flock towards the goal.



It appeared difficult to implement this simple strategy
with LCS. The inputs of the shepherds are shown on
figure 3. There are 16 basic behaviors, among which 8
are shown below:

egoToFlockCenter efollowFlockToGoal
egoBehindFlock egoToPushingPoint
egoToLeft OfFlock egoToClosestDuck

egoToOutmostDuck egoAwayFromFlock

We finally had to attribute to each agent a role, either
pushing the flock or guiding it by the left hand side or
by the right hand side. Since a role binds to each agent a
particular function, this solution can be seen as translat-
ing a spatial coordination problem into a functional coor-
dination problem. A further improvement was achieved
by giving to the shepherds the ability to exchange their
roles. All the corresponding research is described in de-
tails in (Sigaud and Gérard, 2001).

From figure 4, it appears that despite an important
design effort, we did not succeed in obtaining a sys-
tem whose performance is improved when the number
of agents is augmented. We will come back to the rea-
sons for this failure in section 7.

The purpose of testing the controllers with shep-
herds groups of increasing size was to check whether
these controllers were scalable. Scalability in terms
of number of agents is an important issue in com-
plex coordination problem studies. For instance, scal-
ability is one of the key features of the approach of
(Balch and Hybinette, 2000) presented in section 2., and
we had to check this was the case of ours.

5.2 Experiments with PFM and AG
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Figure 4: Average number of time steps to reach the goal
over 100 trials of different controllers w.r.t. the number of
shepherds (the lower, the better)

In our experiments with the framework presented in

section 3., all the shepherds share the same controller.
Their fitness function is defined by the remaining time
after completing the task with respect to the maximum
time allowed to fulfill it '. The population size Np is
100 individuals, the size of the neighborhood window
Nw is 5 individuals, the maximum time 500 time steps,
and each evaluation of an individual involves 25 trials,
with a random number of shepherds ranging between 3
and 20. The probability of mutation Py is 5% and the
probability of crossover P is 80%.

T T T
_'Sheperds

Figure 5: Various trajectories of ducks and shepherds en-
dowed with the controller C159. Positions are initialized ran-
domly

Figure 4 shows the performance of a particularly effi-
cient, controller, called C159, obtained among many oth-
ers, compared to results of the previous studies based on
LCS described in section 5.1 From figure 4, it is strik-
ing that the controller C'59 is much more efficient than
all controllers based on LCS. It can be seen that the
controller C5¢ is scalable, since its performance hardly
decreases as the number of agents is augmented.

6. Explaining the results

Figure 5 shows several trajectories of the agents obtained
with the controller C'i59. We only depict the behavior
of 3 ducks and 2 shepherds for keeping the figure read-
able, but the trajectories shown are representative of the

Hence, the higher, the better, in contrast with the performance
shown in figure 4



whole group. These trajectories can be analyzed as fol-
lows: at initialization time, all the agents are randomly
scattered in the arena. Then the completion of the task
can be decomposed into two stages. During a first stage,
the shepherds move away from the ducks, behind them
with respect to the goal, leaving them form a flock. In
the second stage, they surround the flock by the back
with respect to the goal, and they drive the ducks to-
wards the goal area by moving towards them.

Since the controller C59 is quite simple, it has been
possible to understand how it works qualitatively. It
only involves three points of interest:

e P, associated to the first 2 duck (with a coefficient
Bp1 = 0.85),

e P associated to the third (8p3 = 9.13) and fifth
ducks (Bps = 2.61),

e P associated to the goal (B¢ = 9.08), to the fourth
shepherd (8s4 = 2.42), and to the closest wall land-
mark (Bwo = 0.77).

The functions of magnitude generated by the GA are
shown on figure 6. The corresponding G coefficients are:
Gy = 1271.62, G, = 1758.97 and G5 = 2918.08. In or-
der to compare the relative forces exerted by these three
points of interest on the agent, we define H; = G; X f;,
where f; is the value of the function of magnitude F;
in its constant part, i.e. for a distance greater than
0.6. Then we have Hy = 771.13, Hy = 660.73 and
H, = 1161.59. The explanation of the behavior is the
following;:

e Thanks to their three tendencies, if they are left
alone, the ducks tend to converge from random
widespread locations to form a single flock away from
the walls of the arena.

e If they are alone in the arena, the shepherds are only
sensitive to P» (Py and P; are dedicated to ducks).
Since F; is negative for a distance over 0.5 and since
the main contribution to P> is the landmark associ-
ated to the goal, the shepherds tend to be repulsed
from the goal towards the walls of the arena. The
point, of interest P, stays close to the goal because
Ba is bigger than Sg4. But [g4 guarantees that,
if there are more than 3 shepherds, they won’t stay
grouped into a compact pack.

e Since H- is bigger than Hy and Hi, as long as the
ducks and shepherds are located randomly, the effect
of P, is stronger than the effects of Py and P;. As
a consequence, the shepherds scatter away from the
goal. That helps the ducks to form a flock. Further-
more, when the flock gets formed, the shepherds are

2i.e. closest at that particular time step, since the landmarks
are sorted according to their distance to the agent at each time

step
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Figure 6: Functions of magnitude associated to the three
points of interest

already positioned behind the flock with respect to
the goal (see figure 7).

e But, as soon as the flock is formed, Py and P, are
close to each other, the attraction vectors they gener-
ate get collinear, their attractive effects are combined
and, since Hy + H; is bigger than Hs, the shepherds
move towards the ducks (see figure 8).

e Thanks to P,, while they are attracted by P, and
Py, the shepherds also tend to go exactly behind the
ducks with respect to the goal, which ensures that all
agents finally reach the goal (see figure 9).

6.1 Robustness study

Robustness is a crucial issue of the validation of the solu-
tions obtained by GA. We have already shown that the
controller Ci59 is scalable, i.e. robust with respect to
the number of shepherds. But the variation of the num-
ber of shepherds was introduced into the evaluation of
a controller by our GA, though not systematically. It is
also robust with respect to the initial positions changes.
Indeed, in figure 4, the performance of the evolved con-
trollers was the average performance over 1000 different
initial situations. In spite of the fact that these con-
trollers were evolved on 25 runs only, the obtained con-
trollers are not only better than the LCS controllers, but



Figure 7: Initialization: initial positions are random. The
shepherds go away from the goal, the ducks towards each
other

they are also robust with respect to the initial positions
changes.

Another important robustness test is about the varia-
tion of the speed of shepherds. A higher speed may be a
very detrimental factor since, if the shepherds can move
faster than the ducks, they can rush into the flock and
the ducks will scatter, which might be very detrimental
to the completion of their task. This new criterion was
not varied among the different runs during the evolution
of controllers. Thus we must check if there is a mech-
anism in the controller Ci59 which prevents the agents
to get too close to the flock. In order to investigate this
question, we doubled the speed of our agents so that
they could be twice faster than the ducks and tested the
controller C'159 again. As it can be seen on figure 10, un-
der high speed conditions the controller C'5q is a bit less
adapted with few agents, but it gets even better than at
normal speed when there are more agents. This good
result is all the more striking than controller C'59 was
not evolved at that higher speed. Furthermore, it ap-
pears in these new experiments that the agents, even if
they are faster than ducks, do not get too close to them.
This proves that there is a mechanism in controller C5q
which prevents the agents to do so.

There are two candidates for such a mechanism, that
we will call My and Ms.

e M, is provided by the shape of the magnitude func-
tions: as can be seen on figure 6, when the distance
between the agent and the flock gets too small, the
attractions towards the ducks generated by Fy and Fy
become repulsions. The distance between the agent
and a point of interest should stabilize where the at-
traction/repulsion function is null.

e M, is the mechanism explained on figure 8: if the

Shepherd 1 Target area

Duck

ofe

Shepherd 2

(b)

Figure 8: Balance between attraction towards the ducks and
repulsion from the goal: if the ducks are scattered, repulsion
wins (cf. shepherd 1). If the ducks are close to each other,
attraction gets stronger than repulsion (cf. shepherd 2)

agent gets too close, the ducks will scatter, but then
the repulsive force from F; will get bigger again than
the combination of Fy and Fi, and the agent will stop
getting closer.

So as to determine which of these mechanisms is in-
volved in the regulation of the distance to the flock, we
conducted a further experiment which consists in replac-
ing the magnitude functions of the controller C5¢ by the
constant functions obtained by extending the constant
part of Fy, F; and Fs up to d = 0, both at normal and
double speed. The results are shown on figure 10.

In the case of normal speed, the controller with con-
stant magnitude functions is even more efficient than the
controller Cy59. This is not a complete surprise, since in
our explanation of the behavior given in section 6., the
only part of the magnitude functions considered are the
constant parts after d = 0.6. Thus having a piecewise
linear magnitude function is a useless feature in that par-
ticular context. In particular, the attractive part of Fj
is of no use since the agents never get into the goal area
before the trial ends. We can also conclude that M, is
not involved in that case: if the agents do not rush into
the flock, this is both because the ducks are as fast as
them and because of the mechanism M.

In the case where the agents have a double speed, on
the contrary, the controller C'59 performs better than
the controller with constant magnitude functions. In
that case, thus, M is clearly involved.

As a conclusion of this further study, a nice feature
of the controller C;5¢ is the fact that several dynamical
mechanisms are involved in the spatial coordination of
the behavior of the agents. This results in a very robust
performance in varying conditions of use.



Target area

Figure 9: Driving the flock towards the goal: repulsion from
the goal guarantees that the shepherds go behind the flock
until they finally get aligned w.r.t. the goal

7. Discussion

Since our experiments were conducted on a task inspired
from (Vaughan et al., 1998), comparing the strategy im-
plemented by our controller with the one hand-crafted
by Vaughan is insightful.

In (Vaughan et al., 1998), Vaughan proposes an equa-
tion to control his robot on the same flock control task:

B = K\.RE — (22 ) RP — K,.RC

|RE|?

where G is the center of the goal area, F is the center
of the flock, R the position of the shepherd robot and
K,, K> and K3 are manually tuned parameters. This
equation can be seen as the combination of three terms.

e The first two terms generate an attraction of the
robot towards the flock, but if |RF| gets too small,
the negative term _|}£{T2‘2 repulses the robot away
from the flock. Thus this combination should sta-
bilize the robot at a distance from the flock, thus
prevent the ducks from scattering.

e The third term, —Kg.m repulses the robot away
from the goal.

In a latter paper (Vaughan et al., 2000), a new equa-
tion was proposed:

D = (K.|GF|).RF — K,5.RG

where K1, K> are also manually tuned parameters.

This time, the first term, (K,1|GF|).RF, attracts the
robot towards the flock but according to its distance to
the goal. The further the flock is from the goal, the more
the robot is attracted by the flock. The second term,
—K,-Q.ﬁ was already present in the previous equation
and repulses the robot away from the goal.

T T T
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Figure 10: Performance of the controller Ci50 when the speed
of the shepherds is normal or doubled and when the mag-
nitude functions are normal or constant. The results are
averaged over 1000 runs, each starting with random initial

positions

Thus the general approach of the strategies hand-
crafted by Vaughan is very similar to the one imple-
mented by the controller Ci5¢9 and explained in sec-
tion 6.: it consists in a careful combination of at-
traction towards the flock and repulsion from the goal
which drives the robot to get aligned with the goal
and the flock from behind and, thereafter, pushes it
towards the goal, as explained on figure 9. Unfortu-
nately, since the various K parameters are not given in
(Vaughan et al., 1998, Vaughan et al., 2000) and since
they use one robot only, we cannot provide a quanti-
tative comparison of the performance of our controllers.

Anyway, our framework has found without human in-
tervention a very robust and smart solution similar to
another one that was carefully designed by a research
team through successive publications.

Thus it seems necessary to stress in this discussion the
issue of amount of design effort necessary to solve com-
plex coordination problems with different frameworks.

On the experimental problem described in section 4.,
the less efficient methodology probably consists in dis-
cretizing the description of the problem and tuning by
hand a controller to solve the problem in this discretized
representation. With that respect, applying adaptive
techniques such as LCS to this discretized representa-
tion so as to automate the tuning process is already an
improvement.

But, as explained in section 5.1, our experiments de-
scribed in (Sigaud and Gérard, 2001) have shown that
applying LCS to such a problem requires that the de-
signer identifies an ad hoc set of discrete inputs and ba-
sic behaviors. This identification is generally achieved



through a functional decomposition: decomposing the
global problem into subproblems leads to designing ba-
sic behaviors, and identifying in which conditions these
behaviors should be fired results in a list of discrete in-
puts. Since the controller of the agents is expressed in
terms of rules connecting inputs to basic behaviors, the
quality of the resulting behavior heavily depends on this
preliminary design effort, even if the rules themselves are
optimized by some adaptive algorithms.

Rather than using discrete representations and basic
behaviors, another family of methodologies consists in
trying to use directly a continuous representation. The
resulting continuous controller can be defined by hand
in a purely ad hoc fashion. This is the case for instance
of Vaughan’s work described in the previous section.

A better methodology of the same family consists in
defining a set of continuous basic attraction or repul-
sion schemas and combining them to solve a particular
problem. One argument in favor of this methodology is
that the same schemas can be reused in different con-
texts. An example of such a methodology is the PFM
defined by Arkin and Balch. By designing by hand their
schemas, they succeed in generating effective controllers
for navigation and spatial coordination without any pre-
liminary discretization of the environment, and schemas
like obstacle avoidance are reused on different problems.

One of the key differences between the use of basic be-
haviors and basic attraction or repulsion schemas is that,
in the case of basic behaviors, what must be found is the
correct sequencing of the activation of these behaviors.
This is done through tuning the conditions of activation
of each basic behavior and it turns out to be difficult
and time consuming. In the case of basic schemas, on
the contrary, all schemas can be active at all time, thus
the sequencing problem simply disappears.

Our formalism is very close to the one defined by Balch
and Arkin. Indeed our concept of point of interest is
equivalent to that of point aimed by the schema, our
function of magnitude is equivalent to Balch and Arkin’s
one and we both modulate it by a gain. Our approach
shares with that of Balch and Arkin the design simplicity
provided by PFM. But, instead of defining a set of basic
schemas by hand, we just let a GA find a global com-
bination of a set of local attraction/repulsion functions.
The only thing that the designer has to do in our frame-
work is to state, for each agent, which other landmarks
in the simulation are of interest to it.

Our position with respect to schema reuse, as Balch
and Arkin do, is twofold. First, since in our method
involving PFMs and GAs, the design effort necessary to
define each basic schemas is not required anymore, the
system will find by itself each time new schemas adapted
to the particular problem at hand.

But the situation might be different if we were pre-
tending to address even more complex problems imply-

ing a set of different goals and of different strategies to
reach sequentially these different goals. In such a case,
relying on a GA might prove infeasible because of con-
straints on the time it takes to converge to a satisfying
solution. In that case, our formalism does not prevent
us from reusing and combining already evolved basic
schemas exactly as Balch and Arkin do. We have tested
this possibility in experiments not described here.

Thus we are quite confident about the fact that our
approach is among the ones which requires the smallest
design effort. However, what we have spared in design
must now be spent in understanding the obtained solu-
tion. In the case of the controller presented in section 6.,
understanding the behavior has been possible because it
was simple and because the underlying mechanism did
not involve too many interactions between agents. In
particular, in section 6., we have shown how we could in-
vestigate fine grained phenomena in the behavior of our
agents without calling upon complex mathematical tools
from dynamical systems theory. However, such favorable
circumstances will probably be uncommon in more com-
plex problems.

8. Future Work and Conclusion

The fact that controllers generated through the method-
ology advocated in this paper are probably difficult to
analyze suggests an agenda of research devoted to iden-
tifying useful formal tools, possibly calling upon dynam-
ical systems theory, that would help understanding how
and why such controllers work. What we have shown
here needs to be generalized to other applications in or-
der to identify which mechanisms deserve a more precise
formalization. We are already engaged in new exper-
iments where we try to apply our formalism to main-
taining a patrol of military aircrafts into formation dur-
ing a mission involving incursion in enemy territory (see
(Flacher, 2001)).

As a general conclusion, we have shown that combin-
ing PFMs with GAs is a very powerful methodology
which requires a very small design effort and is more
efficient in terms of performance than functional decom-
position. Our framework extends Arkin and Balch’s ap-
proach in a promising direction, which extensively relies
on the self-organization mechanisms provided by GA, re-
sulting in a lesser involvement of the designer. As a con-
sequence, however, this methodology requires additional
research on analysis tools that would help understanding
more accurately how the corresponding controllers really
work.
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