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Abstract

We present a new robotic implementation of
a brain-inspired model of action selection de-
scribed by Gurney et al. (Gurney et al., 2001a,
Gurney et al., 2001b) based on neural circuits lo-
cated in the basal ganglia and thalamus of the ver-
tebrate brain. Compared to an earlier robot im-
plementation (Montes-Gonzalez et al., 2000), the
new model demonstrates the capacity of the selec-
tion system to produce eÆcient `energy' consump-
tion/conversion in a `feeding/resting' task whilst
maintaining essential state variables within a
`zone of viability'. Generating appropriate action
selection in this new setting entailed using biolog-
ically plausible Sigma-Pi units that can exploit
correlated and anti-correlated dependencies be-
tween input signals when computing the `salience'
(urgency) of competing actions. A comparison
between this brain-inspired selection mechanism
and classical `winner-takes-all' showed that the
former can provide better behavioral persistence
leading to more eÆcient energy intake.

1 Introduction

If the behavior of an animal or a robot is viewed as
a discrete sequence of actions, then an understanding
is needed of the mechanisms underlying the switching
of behavior from one action to the next. In ethology
several speculative hypotheses have been proposed con-
cerning the action selection mechanisms underlying an-
imal behavior switching. These hypotheses generally
suppose that the motivational systems associated with
a given act could win because they directly or indi-
rectly activate, inhibit, or disinhibit their competitors.
In the 1970's and 1980's, the mechanisms proposed for
such interactions tried to explain the transitions be-
tween various behaviors in �shes, birds and rodents
(Baerends et al., 1970, Ludlow, 1976, McFarland, 1977,
Slater, 1978, Houston and Sumida, 1985). Eventually,

ethologists lost interest in these models as they were
unable to �nd a relationship between these speculative
mechanisms and plausible biological equivalents.

Since the 1990's, with the rise of the animat approach,
these models have been rediscovered and, with the im-
provement of computer methods, more precisely inves-
tigated (see Prescott et al. 1999, Guillot and Meyer,
2000, for reviews). However, many of the issues deriving
from the earlier animal studies remain to be resolved (see
Snaith and Holland 1991, Tyrrell, 1993, for reviews).

In recent years, a growing number of neurobiologists
have become interested in a group of centrally-located
brain structures known as basal ganglia as a possible
neural substrate for action selection (for reviews see
Redgrave et al., 1999, Prescott et al. 1999). Accord-
ing to Redgrave et al. (1999) centralised action selec-
tion could be important for large brains in order to
achieve e�ective conict resolution between competing
sensorimotor systems whilst maintaining a cap on the
connectivity and energy costs of the arbitration mech-
anisms. Several computational models of these neural
structures have been investigated in a variety of sim-
ulation tasks (see Houk et al., 1995 for a represen-
tative selection). However, only that due to Gurney,
Prescott and Redgrave (2001a,b) (henceforth the GPR
model) has demonstrated the capacity of the basal gan-
glia to provide e�ective action selection in a real robot
(Montes-Gonzalez et al., 2000). Based on the connec-
tivity of the rat's basal ganglia, the GPR model (more
precisely described below) is composed of two main cir-
cuits, one that computes the selection of the action per
se and another that modulates the function of the �rst
and which controls how this selection is done. The in-
puts to the model are variables called `saliences', that are
weighted functions computed from sensory, propriocep-
tive and contextual information, denoting the urgency
associated with each act. The outputs of the model are
inhibitions assigned to each potential action. At each
time-step, the act which is least inhibited is performed.
A third circuit provides, via the thalamus and cortex, a



feedback loop whereby the output of the basal ganglia
can inuence its own future input, and in particular, en-
hance the salience signals of currently selected actions
(Humphries and Gurney, 2001).

As noted by the authors, the GPR model exhibits
three properties that are important for such mechanisms
(Snaith and Holland, 1991, Prescott et al., 1999). The
�rst is clean switching between actions: a competitor
with a slight edge over its rivals should see the competi-
tion resolved rapidly in its favor. The second is lack of
distortion: the presence of other candidates for the con-
trol of an e�ector should not interfere with the perfor-
mance of the winning sub-system, once the competition
has been resolved. The third is persistence: a winning
act should remain active with lower input levels than
were initially required for it to overcome the competi-
tion.

When embedded in a complete `creature', in
this case a Khepera robot, the GPR model dis-
played e�ective transitions between �ve actions
(Montes-Gonzalez et al., 2000). The task of this robot
was to mimic some of the behaviors of a hungry rat
placed in a novel environment. Speci�cally, the robot
was required to avoid open-spaces by moving towards
wall and corners when the level of simulated fear was
high at the start of the experiment, and to forage (by
collecting wooden cylinders) when simulated hunger
was relatively high (and fear relatively low) later in
the experiment. This work also focussed on the e�ects
of simulated dopamine modulation on the behavioral
display. Dopamine is a neuromodulator known to have
a critical e�ect on the function of the basal ganglia and
behavioral switching more generally (see Redgrave et
al., 1999).

In the current paper, we describe a second robot imple-
mentation of this model using a di�erent robot platform,
the Lego Mindstorms robot, and a task more typical of
the type used in earlier action selection studies. Here the
robot is required to select eÆciently between four actions
{wandering, avoiding obstacles, `feeding' and `resting'{
in order to `survive' in an environment where it can �nd
`food places' and `rest places'. Its control architecture
should be suÆciently adaptive to generate sequences of
actions allowing it to remain as long as possible in its so-
called viability zone (Ashby, 1952). This requires main-
taining two essential state variables above minimal lev-
els: Potential energy (obtained via `feeding') and Energy
(converted from Potential energy via resting). Spier and
McFarland (1996) note that a 'two resource' problem of
this type is a minimal scenario for evaluating an action
selection or decision-making mechanism.

A further objective of this work is to investigate if
and how the GPR model implements more than a sim-
ple `winner-takes-all' (WTA) mechanism; a classical se-
lection mechanism proposed long ago by engineers and

ethologists (Atkinson and Birch, 1970). The WTA is
based on selecting for execution the action that corre-
sponds to the highest `motivation' (integration of in-
ternal and external factors), whilst inhibiting all com-
petitors. Whilst the GPR model has a super�cially
similar property of selecting (albeit by disinhibition)
the most highly motivated action, this is modulated by
the e�ects of the control and feedback circuits, poten-
tially resulting in di�erent pattern of behavior switch-
ing compared to simple WTA. For instance, accord-
ing to Prescott et al. (1999), although a WTA can
display both clean switching and lack of distortion,
the lack of a mechanism to support appropriate per-
sistence could lead it to generate unadaptive `dither-
ing' between actions, an issue in action selection pre-
viously noted by ethologists (Atkinson and Birch, 1970,
Houston and Sumida, 1985). A comparison of the two
control architectures, embedded in the same robot in the
same environment, should therefore demonstrate pre-
cisely what bene�ts the GPR control circuits can bring
to the action selection process.
Following a summary of the GPR model in section 2,

we will describe, in section 3, how this model was re-
implemented within the control architecture of a Lego
Mindstorms robot. In section 4, the results obtained
with the model will be presented and compared with
those of a WTA, and these will be discussed, in section
5, from the perspective of biological plausibility.

2 The GPR model

The details of the computational model and its corre-
spondence with the neural anatomy are fully described
in Gurney et al.(2001a,b). We will only summarize here
the main features of the model as shown in Fig. 1.
The terminology used for component structures is

based on those comprising the basal ganglia: the stria-
tum, the globus pallidus (with subcomponents GPe and
GPi), the sub-thalamic nucleus (STN), and the substan-
tia nigra (SNr). The selection and control sub-circuits of
the Basal Ganglia-based model are designated here for
conciseness by BGI and BGII respectively.

In each compoment structure, each action is associated
with a discrete channel, which is represented by a sin-
gle arti�cial neuron. Each arti�cial neuron consists of a
leaky integrator whose activation is driven by a weighted
sum of inputs (in the work presented here, this is mod-
i�ed to include nonlinear contributions). Each neuron
is supposed to represent a biological neural population
so that the activity in the model of each unit represents
the mean activity of the population as a whole. While
these model neurons are not as physiologically realistic
as those that use conductance based methods with mul-
tiple membrane compartments, they are con�gured in
circuits that are anatomically realistic and a�ord a use-
ful tool for investigating models at the systems level of
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Figure 1: The GPR model. Arrows represent excitatory connections, blobs inhibitory connections. Weights are shown next

to their respective pathways. See text for details.

description.

In BGI, selection is mediated by two separate mecha-
nisms. First, there are local recurrent inhibitory circuits
within the input component D1 striatum. 1 The sec-
ond selection mechanism is comprised of an o�-centre
on-surround, feedforward network in which the `on-
surround' is supplied by excitation from STN and the
`o�-centre' via inhibition from D1 striatum.

A similar arrangement prevails in BGII, except the
`output' of this structure (provided by the GPe) sends
signals to BGI. In particular, it may be shown that the
inhibition supplied to STN {the source of excitation for
the feedforward selection network{ is just suÆcient to
automatically scale this excitation with the number of
channels n in the model, in such a way as to ensure ap-
propriate selection. If this were not the case, the magni-
tude of the weights from STN and striatum would have
to be crafted to be in an approximate ratio of 1 : n. In
the model, these weights have approximately the same
magnitude and the scaling is performed by the automatic
`gain control' supplied by outputs from BGII.

Humphries and Gurney (2001) embedded the two cir-
cuits BGI, BGII into a wider anatomical context that
included the thalamo-cortical excitatory recurrent loop.
The thalamus was decomposed into two constituent
structures: the thalamic reticular nucleus (TRN) and the
ventro-lateral thalamus (VL). Both thalamic structures
have the same segregated channels as BGI and BGII.
This entire circuit is designated by TH in Fig. 1. The
TH circuit not only improves the clean switching and
lack of distortion mechanisms of the basic model, but
also reinforces the salience of selected actions thereby
fostering persistence of their state of being selected.

1the labels D1, D2 refer to types of dopamine synaptic receptor.

3 Implementation

3.1 The robot and its environment

The environment is a 2m x 1.60m at surface surrounded
by walls. It is covered by 40cm x 40cm tiles of three
di�erent kinds: 16 uniformly gray tiles (this neutral-
gray represents `barren' locations), 2 tiles with a gray
to black gradient (`food' locations), and 2 tiles with gray
to white gradient (`nest' locations) (Fig. 2). The robot
is equipped with two frontal light sensors pointed to the
ground {one behind the other{ and with two bumpers,
on the front-right and front-left sides (Fig. 2). These
sensors provide the four extrinsic variables used in the
salience calculations (see 3.4 below). Each light sensor
produces a raw value corresponding to the color of the
ground. The mean of these two values is �ltered using a
median �lter with a 10 time-step window and then used
to compute two variables, Brightness and Darkness, des-
ignated LB ; LD respectively. LB (resp. LD) is equal to
0 for all grays darker (resp. brighter) than the neutral-
gray, and increases linearly with brighter (resp. darker)
grays, reaching 1 for the central white (resp. black)
spots. Each of the two bumpers produces a binary value,
BL; BR set to 1 when the robot hits an obstacle on the
left and right respectively.
The `metabolism' of the robot is based on two intrinsic

variables: Potential Energy, EPot and Energy, E, that
initially take on values between 0 and 255. Any action
sub-system consumes Energy at a rate of 0.5 units per
second (except for the variable rate of the resting behav-
ior, see below). Then, these variables are normalised to
lie between 0 and 1 for the salience computation.
When E reaches zero, the robot `dies'. The procedure

to reload Energy is:

1. to `eat' on a black place, in order to get Potential
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Figure 2: Left: The environment showing `food' (A) and `nest' (B) locations. Right: the Lego Mindstorm robot. (A): the

light sensors; (B): the bumpers. See text for further details.

Energy, EPot. The gain �EPot in EPot during this
time is proportional to the duration Teat (in seconds)
of the eating behavior and to the Darkness :

�EPot = 7TeatLD

2. to `rest' on a white place, in order to `assimilate'
Potential Energy and convert it into Energy. When
there is no Potential Energy to assimilate, Energy is
decreased with the standard 0.5 units/sec rate, oth-
erwise the changes in Energy and Potential Energy
are proportional to the resting duration Trest

�E = Trest(7LB � 0:5)

�EPot = �7TrestLB

These relations imply that, when the robot activates
these action sub-systems at an inappropriate location
(eating on a neutral-gray or bright place or resting on a
neutral-gray or dark place), it consumes Energy without
any bene�t.

3.2 Robot: hardware details

The controller (the RCX) for the Lego Mindstorms robot
has only 32 KB of memory, some of which is used by
the operating system (LegOS). This limited the com-
putation available on-board the robot to the sensory,
metabolism and action sub-systems. A Linux-based PC
performed all the GPR model-speci�c computations, cal-
culating and returning inhibitory output signals based
on the sensory inputs received from the RCX.
The RCX-PC communication occurred through the

Lego MindStorms standard IR transceivers at roughly
10 Hz. This low communication rate required that the
GPR model be allowed to compute up to four cycles with
the same sensory data in order to have the GPR model
working at equilibrium.

3.3 The action sub-systems

In all experiments, the robot has to select eÆciently be-
tween four action sub-systems. Note that each of these

sub-systems corresponds to one channel in the GPR
model. When activated, each action sub-system gen-
erates a prede�ned, but interruptible, sequence of ele-
mentary acts chosen among the following four available
commands for the wheel actuators: move forward, move
backward, turn on the spot, stop.
The action sub-systems are:

1. Wander : a random walk in the environment, pro-
grammed as a succession of forward and turning acts
of random duration. This action provides the only
means for the robot to move around and �nd the
black or white areas; it should, for instance, be acti-
vated when the robot is on neutral-gray places, when
the current level of either Energy or Potential Energy
is low.

2. AvoidObstacles : a short backward movement fol-
lowed by a rotation triggered when one or both
bumpers are activated. Note that there is no move-
ment if the behavior is selected while no bumper is
active, therefore it should only be activated when the
robot detects it hit an obstacle.

3. ReloadOnDark : the robot stops, and, as previously
stated, it `eats' on a dark place, that is, it reloads the
Potential Energy. This action should therefore only
be activated when the robot is on a dark place while
Potential Energy is low.

4. ReloadOnBright : the robot stops and `rests', that
is, it reloads Energy and consumes Potential Energy
when activated on a white place. This action should
therefore be activated only when the robot is on a
white place while Energy is low and Potential Energy
is high enough for assimilation to be productive.

3.4 The GPR model implementation

The con�guration and parameters of the GPR model
used in these experiments are the same as in the `full'
embodied model (with normal dopamine modulation)
described in Montes-Gonzalez (2001) (see Fig. 1), but



there are also several key di�erences. These are con-
cerned with modi�cations to processing of inputs and
basal ganglia outputs which have been modi�ed to take
into account our di�erent embodiment, environment,
and tasks.
One important di�erence concerns the calculation of

input saliences. In Montes-Gonzalez (2001), these were
always computed as a linear, weighted sum of sensory,
proprioceptive, and contextual variables. However, us-
ing any simple weighted sum does not allow salience to
depend on a coupling of two variables. For instance, in
our setting, the activation of ReloadOnDark should be
correlated to the extrinsic variable Darkness and anti-
correlated to the intrinsic variable Potential Energy (i.e.
activated when the one is high and the other low). Ac-
tivating it on a neutral-gray (or bright) place or while
there is no need for Potential Energy just wastes En-
ergy without any bene�t. This situation can eventu-
ally lead to `death', because the salience corresponding
to this channel is reinforced by its feedback persistence
and prevents other behavior from taking control of the
robot. A similar problem also arises with ReloadOn-
Bright. We therefore modi�ed the salience computa-
tion to use Sigma-Pi units. These are arti�cial neurons
that allow non-linear (multiplicative) combinations of in-
puts that can convey interdependencies between vari-
ables (Feldman and Ballard, 1982).
For the GPR and the WTA architectures, the weights

of salience calculations were `hand-crafted' over a series
of pilot experiments in an attempt to �nd setting that
were close to optimal. The following equations2 show
how the salience for each sub-system was computed as
a function of the extrinsic sensory variables (Brightness
LB , Darkness LD, Bump left BL, Bump right BL), the
intrinsic sensory variables (Potential Energy EPot, En-
ergy E) and the Persistence signal P for the given chan-
nel.
GPR salience calculations:

� Wander :
�BL �BR + 0:8(1� EPot) + 0:9(1�E)

� AvoidObstacles :
3BL + 3BR + 0:5P

� ReloadOnDark :
�2LB �BL �BR + 3LD(1�EPot) + 0:4P

� ReloadOnBright :
�2LD�BL�BR+3LB(1�E)[1�(1�EPot)

2]
1

2+0:5P

WTA salience calculations:

� Wander :
�BL �BR + 0:5(1� EPot) + 0:7(1�E)

2The term containing EPot in the ReloadOnBright salience is
not a simple product. However, it may be reduced to such a form

if we assume an intermediate variable [1� (1�EPot)
2]

1

2 has been
pre-computed �rst.

� AvoidObstacles :
3BL + 3BR

� ReloadOnDark :
�2LB �BL �BR + 3LD(1�EPot)

� ReloadOnBright :
�2LD �BL �BR + 3LB(1�E)[1� (1�EPot)

2]
1

2

A second di�erence is in our use of the inhibitory
output signal of the GPR model. A characteristic of
the GPR model is that, in some cases where there is
more than one channel with high salience, there can
be partial disinhibition of the motor output of more
than one channel. In the earlier robot implementa-
tion (Montes-Gonzalez, 2001) the motor outputs of all
action sub-systems were therefore combined by weight-
ing each one according to its degree of disinhibition,
and Gurney et al (2001a) use the term `soft switch-
ing' to describe an action selection mechanism that
can generate a mixed/combined motor output of this
kind. Clearly, when conicting action sub-systems are
involved, a merging of motor signals may result in dis-
tortion of the selected action(s). On the other hand,
however, there are circumstances in which `soft switch-
ing' may be desirable, for instance, where the outputs
of two action sub-systems are fully compatible. For the
current experiments, we were interested in making com-
parisons with the WTA mechanism which allows for only
one winner (all losers are fully inhibited), a situation
that can be termed `hard switching'. In order to make
comparisons between the two models the `soft switching'
characteristic of the GPR model was therefore disabled,
in other words, the motor output of the most fully dis-
inhibited action system was always enacted, and that of
any partially disinhibited competitors ignored.

A �nal di�erence concerns the use in that model of
an additional intrinsic variable termed the `busy sig-
nal' whereby an active action sub-system could pro-
vide an additional signal to the selection mechanism
that would give a temporary and short-term boost to
its own salience. In the current robot task setting, the
required behavior switching has so far been e�ectively
implemented without including this feature of the origi-
nal model.

Both architectures {GPR and WTA{ were tested with
the same robot, the same task, and in the same environ-
ment. As shown before, the saliences of the WTA and
GPR were computed alike with the exception of the per-
sistence signal P , which is included only in the GPR
model. In the GPR architecture, the action sub-system
with the least inhibition at each time-step is selected; in
the WTA architecture, the action sub-system with the
highest salience at each time-step is selected. In either
architecture, where there were multiple winning outputs,
the sub-system previously selected remained active.
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cycles correspond to 100 sec.

4 Results

4.1 Salience computation

Initial experiments with both architectures used simple
linear weightings to compute action saliences. However,
during the total 12hrs of experiments with the best hand-
crafted weightings obtainable, the lifespan of the GPR
and WTA robots never exceeded 1.5 time its minimum
(8 minutes). Such a situation is depicted in Fig. 3.
Here, the simple sum of Potential Energy and Darkness
(3a, b) leads, with the same set of weights, to two inap-
propriate selections of ReloadOnDark (each for di�erent
reasons), and a �nal, and fatal inappropriate selection
of ReloadOnBright. The �rst bout of ReloadOnDark oc-
curs away from a dark square because the robot lacks
Potential Energy ; the second bout, on the other hand, is
the result of a very dark sensor-reading, even though Po-
tential Energy is no longer needed. The �nal ine�ective
ReloadOnBright occurs away from a bright tile because
of a profound lack of Energy, and this act seals the fate
of the animat.

Barring technical problems (such as communication
glitches), the use of Sigma-Pi units enormously enhanced
the life expectancy of both robots architectures (GPR
and WTA), the longest uninterrupted experiment lasting
4 hrs and 20 minutes. Note that the robots can however
still die, due to the intrinsic randomness in the Wander
behavior. In the remainder of the paper we are exclu-
sively concerned with experiments using the Sigma-Pi
salience calculations.

4.2 GPR/WTA comparison

During experiments totalling more than 10hrs duration,
we did not �nd any substantial di�erence between the

activations per hour avg. duration
GPR WTA GPR WTA

W 302.3 488.0 4.0 3.8
ROD 41.7 62.5 16.0 8.8
ROB 65.1 81.6 15.1 8.0
AO 137.8 363.7 3.3 1.6

Table 1: Activation of each action sub-system showing aver-

age bouts per hour and average bout duration in seconds (W :

Wander ; ROD : ReloadOnDark ; ROB : ReloadOnBright ;

AO : Avoid Obstacle).

GPR and WTA architectures with respect to life ex-
pectancy, simply because both robot architectures can
outlive the time available for a single experiment. This
�rst result led us to further analyze the structure of the
behavior generated in the two conditions. In Fig. 4,
graphs (a-c) shows the saliences, outputs, and behavior
sequences of a typical run with the GPR model, while
graphs (d) and (e) show the salience and behavior of the
WTA architecture. Note �rst the substantial di�erence
between the input saliences in the two runs Fig. 4 (a)
and (d) which are primarily due to e�ects of persistence
(positive feedback) in the GPR model. The output sig-
nals in Fig. 4 (b) show that the control circuit (BGII )
and feedback loop (TH ) have also increased the contrast
between the action saliences (recall that, with GPR, the
action sub-system with lowest inhibition is selected). Fi-
nally, in both behavioral sequences, we can observe that
similar clean switching is displayed.

Table 1 shows that, with the exception of Wander,
bouts of individual acts generally last longer with the
GPR architecture than with WTA. This can be ex-
plained by e�ects of the persistence mechanism: posi-
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tive feedback allows a behavior to remain active for some
time after its 'raw' salience has fallen below that of other
behaviors (see Fig. 5 for an illustration). Wander is an
exception to this pattern because there is zero weighting
on the persistence input.

Although bouts of `feeding' and `resting' behavior are
shorter in the WTA condition, their frequencies are cor-
respondingly higher. This serves to substantially com-
pensate for their shorter durations, to the point that
the average Potential Energy and Energy end up hav-
ing similar values (E = 0:748; EPot = 0:711 for WTA

and E = 0:76; EPot = 0:76 for GPR). We suspect that
this was helped by the relatively short distance between
the Energy and Potential Energy sources in our environ-
ment. One may then ask whether the behavioral di�er-
ences exhibited in Table 1 are reected in the way the
energies are collected.

As can be seen in Fig. 6, there is indeed a major di�er-
ence between the temporal distribution of EPot in WTA
and GPR. Speci�cally, the GPR manages to maintain its
Potential Energy at over 95% of the maximum charge for
25% of the time, while the WTA does so for less than
10%. Unsurprisingly, since the energy sources are inex-
haustible, the fact that a reloading action is allowed to
last longer allows it to eventually reach the maximum
charge most of the time.
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Figure 6: Histograms of the percentages of overall time dur-

ing which Potential Energy (left) and Energy (right) are

reloaded at the values shown on the abscissa.

The same occurs, though to a lesser extent, with the
Energy (6.8% of maximal charge with GPR, 2.4% with
WTA). The e�ect is less pronounced, because while
Potential Energy only diminishes when assimilated by
ReloadOnBright, all actions consume Energy therefore
the constant decay levels the di�erence. Whilst per-
sistence can be increased still further, a point is soon
reached where the robot continues to recharge beyond



the point where further energy can be usefully consumed.

The preceding results showed that both models can
display clean and eÆcient switching between actions but,
due to the e�ects of Persistence, the GPR robot per-
forms fewer transitions than the WTA robot, making it
possible for it to load more energy.

5 Discussion

In the following, we discuss the biological plausibility of
the modi�cations we have made to the computation of
input and output signals and consider the role of persis-
tence in our model in relation to the notion of positive
feedback in animal behavior switching.

5.1 Merging sensory information

In our implementation, the action sub-systems are
assumed to depend on saliences, which correspond
to the causal motivational factors depicted by ethol-
ogists. The general issue of how the display of an
action is related to internal and external stimuli is
not yet resolved. It seems to depend highly on en-
vironmental context and on the animal's previous
experiences. In our work, salience is calculated using
nonlinear relationships processed by Sigma-Pi units.
Such units have been already used for solving sim-
ilar problems before, while dealing with learning in
neural networks (Rumelhart and McClelland, 1986,
Gurney, 1992) or context processing in animats
(Balkenius and Moren, 2000), but the question arises
as to whether such a computation is anything more
than an engineering solution. Mel (1993) argues that
the dendritic trees of neocortical pyramidal cells can
compute complex functions of this type, thus it is at
least plausible to assume that second-order functions of
the relevant contextual variables could be extracted by
the neurons in either the cortex or the striatum that
compute action saliences.

5.2 Merging motor signals

In the earlier robot implementation of GPR
(Montes-Gonzalez et al., 2000), the motor compo-
nents of all action sub-systems that were not fully
inhibited could inuence the displayed output behavior.
In the current work, in order to facilitate comparison
with a widely-used engineering solution to the action
selection problem, we have not merged the output
motor vectors. The literature on animal behavioral
switching seems to indicate a wide-range of possible
outcomes in situations where there is more than one
highly salient action. Possibilities include the merging of
the motor outputs (with potential positive or negative
consequences), rapid switching between alternative
actions (dithering), or the substitution of the salient

actions by a third, non-salient `displacement activity'
that is unrelated to the current context (for example
eating or grooming in a situation where both �ght/ight
are similarly primed (Hinde, 1970). The neurobiological
substrates that support these various alternatives
remain to be understood. However, it is worth not-
ing that the behavior of animals in these (generally)
unusual situations may reveal some of the processing
characteristics and limitations of the underlying neural
mechanisms.
The merging of multiple motor commands is also an

issue with respect to the problem of generating appro-
priate behavior in animats with multiple actuators. In
this case, action sub-systems with non-conicting re-
quirement to use di�erent actuators (like walking and
chewing-gum) can be selected at the same time. Neu-
robiological evidence of a somatotopic organization in
the basal ganglia (Redgrave et al., 1999) suggests that
there may, indeed, be distinct selection circuits subserv-
ing conict resolution in relation to di�erent limbs or
body parts. Some preliminary work, derived from this
idea, has been performed by replicating the GPR model
as many times as there are actuators, with each GPR
copy granting access to only one actuator.

5.3 Persistence and positive feedback in ani-
mats and animals

The main quality of the GPR model demonstrated in
this study is that it provides a mechanism for ensuring
appropriate persistence of a selected action. Though it
is possible to add persistence to a WTA via a simple
feedback loop, a control circuit (like the BGII in GPR)
is then mandatory to avoid overload. The choice of such
a circuit would divert the WTA from the zeroth-level
action-selection mechanism we need to compare our sys-
tem with.
Persistence has real adaptive e�ects. As stated before,

it can maintain the animat's internal variables more ef-
fectively within their limits, helping it to survive any
temporary upset in the availability of resources. It also
serves to avoid dithering, which may be particular dele-
terious where there are signi�cant costs associated with
unnecessary switching between one action and another.
Another less intuitive e�ect of positive feedback is that

it can `prime' the animat to anticipate forthcoming op-
portunities for action. For instance, in our experiments
we noticed that, due to the low communication frequency
between RCX and PC, the WTA-robot often stops only
after it has driven past the central brightest (or darkest)
patch on the gradient tiles whereas the GPR version gen-
erally manages to stop closer to the center-most patch.
What appears to be happening here is that the corre-
sponding salience increases slightly as the robot enters
the brighter (or darker) area. Although this is not, in
itself, enough to prompt a change in the selected action,



the positive feedback begins to build up the salience so
that, when the robot eventually reaches the center, it is
able to select the appropriate action more rapidly. This
increased responsiveness is possible because the lightness
gradient serves to prime the appropriate behavior.

The importance of persistence as an adaptive process
for animals has already been pointed out by ethologists
(e.g. McFarland, 1971). They wished to explain how
an activity could continue, in spite of a rapid decrease
in its drive. To do so, they supposed that mechanisms
of positive feedback or hysteresis are initiated at the
start of a bout, enabling the animal to maintain its ac-
tivity until suÆciently satis�ed (Wiepkema, 1971). For
instance, in the model of Houston and Sumida (1985),
persistence was induced in a competition between two in-
dependent motivational systems by a positive feedback
pathway similar to a simpli�ed version of the current
model. The current experiments provide a useful em-
bodied demonstration of this principle, and of the hy-
pothesis of Redgrave et al. (1999) that the basal ganglia
thalamo-cortical loop may serve as the neural substrate
that carries this feedback path.

Ethologists have also noted that persistence is more
than simply the consequence of closed-loop positive feed-
back, and can emerge in a variety of di�erent ways.
For instance, in the model of Ludlow (1976), hysteresis
emerges as the consequence of reciprocal inhibition be-
tween multiple motivational systems. Such a con�gura-
tion can provide for a form of persistence in the selected
action. However, the advantages and disadvantages of
this solution compared with explicit positive feedback
control remain to be fully explored. There is also a sense
in which an action may show a 'hidden' persistence, even
after its execution has been interrupted. For example, in
the 'time-sharing' model of McFarland and Lloyd (1973),
a 'dominant' act may be temporarily suspended to allow
an alternative behavior to be expressed, only later re-
suming its performance. In this case, the 'salience' of the
dominant act persists even though the behavior itself is
deselected. The neural substrate that might underlie a
time-sharing mechanism in the vertebrate brain has yet
to be investigated. Finally, the duration of any observed
behavioral persistence varies according to contextual fac-
tors. For example, McFarland (1971) pointed out that
the duration of feeding bouts in rats could be diversely
triggered by the stimulation of oral and of gut receptors.
In Le Magnen (1985) and Guillot (1988), the persistence
e�ect on feeding and drinking bouts in rats and mice was
also shown to depend on learning, diurnal and nocturnal
conditions. In the current model, the duration of be-
havioral persistence will also be sensitive to contextual
variables since salience is a function of many factors of
which positive feedback is only one. The weight on the
persistence pathway could also, itself, be subjected to
contextual modulation.

These considerations con�rm the importance for biol-
ogy of investigating biomimetic models of action selec-
tion such as the GPR model. Compared to the earlier
ethological hypotheses, this model is fully computation-
ally speci�ed, is identi�ed with speci�c neural circuits,
and has now been tested in two di�erent embodied imple-
mentations. This model is also signi�cantly more com-
plex than earlier proposals and further work is needed
to determine both the consequences of this additional
complexity for observable behavioral switching, and to
consider what potential advantages these may bring to
the animal.

6 Conclusion and Perspective

Building on the work of Gurney et al. (2001a,b) and
Montes-Gonzalez et al. (2000), our objective was to
demonstrate the robustness of the brain-inspired GPR
model of action selection. We have shown that the model
is able to generate adaptive behavioral sequences when
embedded in a di�erent robot, performing di�erent ac-
tions, and situated in a di�erent environment. The new
implementation also revealed that more exible mecha-
nisms (Sigma-Pi) can be useful for salience computations
than a simple weighted sum. Finally, the comparison
with WTA served to highlight several adaptive proper-
ties speci�c to the GPR model, and in particular, its
capacity to generate appropriate behavioral persistence.

Further research is planned in three principle direc-
tions. First, we will investigate the 'soft switching' ca-
pability of the GPR model (merging of output signals
coming from multiple sub-systems), in order to explore
the capacity of the model to generate compromise be-
haviors, and also to replicate some of the consequences
of mixed motor output observed in animals. Second,
we will submit the salience and persistence parame-
ters of the model to learning processes, which will au-
tomate the process of tuning the system to new tasks
and may also enhance switching eÆciency. Third, we
will utilise this model within an ongoing, multi-partner
project which aims to synthesizing an `arti�cial rat' in
which biomimetic mechanisms for action selection are
combined with a biomimetic mechanism for navigation,
both inspired by existing structures in the rat brain.
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