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AbstratIn this paper we present ATNoSFERES, anew framework based on an indiret enodingGeneti Algorithm whih builds �nite-stateautomata ontrollers able to deal with per-eptual aliasing. We ompare it with XCSM,a memory-based extension of the most stud-ied Learning Classi�er System, XCS, througha benhmark experiment. We then disussthe assets and drawbaks of ATNoSFERESin the ontext of that omparison.KeywordsEvolutionary Algorithms, Learning Classi�er Systems,pereptual aliazing, Augmented Transition Networks1 IntrodutionMost Learning Classi�er Systems (LCS) (5) are usedto takle problems where situated and adaptive agentsare involved in a sensori-motor loop with their environ-ment. Suh agents pereive situations through theirsensors as vetors of several attributes, eah represent-ing a pereived feature. The task of the agents is tolearn the optimal poliy � i.e. whih ation to per-form in every situation, in order to ful�ll their goalsthe best way they an. Like in the general Reinfore-ment Learning (RL) framework (17), the goals of LCSare de�ned by salar rewards provided by the envi-ronment. The poliy is de�ned by a set of rules � orlassi�ers � speifying whih ation to hoose aord-ing to onditions about the pereived situations.In real world environments, it may happen that agentspereive the same situation in several di�erent loa-tions, some requiring di�erent optimal ations, givingrise to pereptual aliazing problems. In suh ases,

the environment is said non-Markov, and agents an-not perform optimally if their deision at a given timestep only depends on their pereptions at the sametime step. Though they are more often used to solveMarkov problems, there are several attempts to ap-ply LCS to non-Markov problems, like (18, 10) for in-stane.Within this framework, expliit internal states wereadded to the lassial (ondition, ation) pair of thelassi�ers (11, 10, 20). These internal states provideadditional information to hoose the optimal ationwhen the problem is non-Markov. The problem ofproperly setting the lassi�ers, and setting the internalstates in partiular, is devoted to Geneti Algorithms(GA).In this paper, we will ompare LCS to �ATNoS-FERES�, a new system that also uses GA to automat-ially design the behavior of agents faing problems inwhih they pereive situations as vetors of attributes,and have to selet ations in order to ful�ll their goals,in non-Markov environments. In ATNoSFERES, thegoals are de�ned thanks to a �tness measure.In the �rst setion, we present the features and prop-erties of the ATNoSFERES model (9, 15). It reliesupon oriented, labeled graphs (� 2.1) for desribingthe behavior and the ation seletion proedure. Thespei�ity of the model onsists in building this graphfrom a bitstring (� 2.2) that an be handled exatly likeany other bitstring of a Geneti Algorithm, with addi-tional operators. Then we show that the graph-basedrepresentation is formally very similar to LCS repre-sentations, and, in partiular, to XCSM (� 3.2); thuswe ompare both approahes through lassial experi-ments (�4). As a result of this omparison, we disussthe assets and drawbaks of both representations a-ording to di�erent riteria (�5). Finally, we onludeby stating what should be added to ATNoSFERES soas to improve it further where the omparison is not



in its favor.2 Desription of ATNoSFERES2.1 Graph-based expression of behaviorsThe arhiteture provided by our model involves an�Augmented Transition Networks� (ATN)-like graph(21) whih is basially an oriented, labeled graph witha Start (or initial) node and an End (or �nal) node (see�gure 5). Nodes represent states and edges representtransitions of an automaton.Suh graphs have already been used for desribing thebehavior of agents (9). The labels on edges speifya set of onditions (e.g. 1 3 ?) that have to beful�lled to enable the edge, and in a sequene of ations(e.g. a5 a2 a4!) that are performed when the edgeis hosen. We use those graphs as follows:� At the beginning (when the agent is initialized),the agent is in the Start node (S).� At eah time step, the agent rosses an edge:1. It omputes the set of eligible edges amongthose starting from the urrent node. Anedge is eligible when either it has no ondi-tion label or all the onditions on its label aresimultaneously true.2. If the set is empty, then an ation is hosenrandomly; else an edge is randomly hosen inthe set.3. The edge ours by performing the ationson the label of the urrent edge. When theation part of the label is empty, an ation ishosen randomly.4. The new urrent node beomes the destina-tion of the edge.� The agent stops when it is in the End node (E).Note that most of behavioral strutures involved inlassial evolutionary approahes, e.g. program treesin Geneti Programming (7), are entirely interpretedat eah time step to determine the ations to perform.It is not the ase in our approah whih relies on inter-nal nodes. An example of the pereption-ation yleperformed during eah time step is given further on�gure 3.2.2 The graph-building proessThe behavioral graph is built from an hereditary sub-strate, by adding nodes and edges to a basi strutureontaining only the Start and End nodes.

There are many di�erent evolutionary tehniques toautomatially design strutures suh as �nite-statemahines (2), neural networks (22) or program trees(7). Very roughly, we an sketh an opposition be-tween, on the one hand, approahes that use the geno-type as an enoding of a set of parameters (like Ge-neti Algorithms (5, 1, 3) or Evolution Stategies (16))and, on the other hand, approahes that use the geno-type as a struture produing the phenotype (suh asGeneti Programming (7, 14), Evolutionary Program-ming (2), L-systems (12), developmental program trees(6, 4, 13)...).In the ATNoSFERES model, we try to oniliate ad-vantages from both kind of approahes: on the onehand, sine the behavioral phenotype is produed bythe interpretation of a graph, we want it to be of anyomplexity; on the other hand, we use a �ne-graingenotype (a bitstring) to produe it, in order to allowa gradual exploration of the solution spae through�blind� geneti operators.Therefore, we follow a two-step proess (see �gure 1) 1:1. The bitstring (genotype) is translated into a se-quene of tokens.2. The tokens are interpreted as instrutions of a ro-bust programming language, dediated to graphbuilding.
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Figure 1: The priniples of the geneti expression weuse to produe the behavioral graph from the bitstringgenotype. The string is �rst deoded into tokens (a),whih are interpreted in a seond step as instrutions(b) to reate nodes, edges, and labels ().2.2.1 TranslationTranslation is a simple proess that reads the bitstringgenotype and deodes it into a sequene of tokens(symbols). It uses therefore a geneti ode, i.e. a fun-tion G : f0; 1gn �! T (jT j � 2n) where T is the set1More details about those mehanisms and the natureof the tokens are provided in (9, 15)



of possible tokens (the di�erent roles of whih will bedesribed in the next paragraph). Depending on thenumber of available tokens, the geneti ode might bemore or less redundant. Binary substrings of size n(deoded into a token eah) are alled �odons�.2.2.2 InterpretationTokens are instrutions of the ATNoSFERES graph-building language. They operate on a stak in whihdata tokens or parts of the future graph are stored.All tokens fall into the following ategories:� ondition or ation tokens, whih only put datain the stak, whih will be used to label edgesbetween nodes;� node reation or node onnetion tokens (the lat-ter use nodes and ation/ondition tokens alreadyin the stak);� stak manipulation tokens (swap, opy...) whihhave an ation upon the stak ontaining nodesand ation/ondition tokens.In order to ope with a �blind� evolutionary proess(i.e. based on random mutations on a �ne-grain geno-type), the graph built has to be robust to mutations(15). For instane, the replaement of a token by an-other, or its deletion, should only have a loal impat,rather than transforming the whole graph.If an instrution annot be exeuted suessfully, itis simply ignored; for the same reasons, when all to-kens have been interpreted, the graph is made onsis-tent, e.g. by linking some nodes to Start/End nodes.Any sequene of tokens is meaningful, thus the graph-building language is robust to variations a�eting thegenotype (there is no spei� syntatial nor semanti-al onstraint on the geneti operators).2.3 Integration into an evolutionaryframeworkIn this paper, the ATNoSFERES model has been ap-plied to produe agents behaviors within an evolution-ary algorithm.Therefore, eah agent has a bitstring genotype fromwhih it an produe a graph (the geneti ode de-pends on the pereption abilities of the agent and onthe ations it an perform). The �tness of eah agentis omputed by evaluating its behavior in an envi-ronment. Then individuals are seleted depending ontheir �tness and bred to produe o�spring.
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Figure 2: In this example, the agent, loated in a ellof the maze, pereives the presene/absene of bloksin eah of the eight surrounding ells. It has to de-ide whether to try to move towards one of the eightadjaent ells. From its urrent loation, the agentpereives [E :NE N :NW :W :SW S :SE℄ (token E istrue when the east ell is empty). From the urrentstate (node) of its graph, two edges (in bold) are eli-gible, sine the ondition part of their label math thepereptions. One is randomly seleted, then its ationpart (move East) is performed and the urrent state isupdated.The genotype of the o�spring is produed by a lassi-al rossover operation between the genotypes of theparents. Additionally, we use two di�erent mutationstrategies to introdue variations into the genotype ofnew individuals: lassial bit-�ipping mutations, andrandom insertions or deletions of one odon. Thismodi�es the sequene of tokens that will be produedby translation, so that the omplexity of the graph it-self may hange. Nodes or edges an in fat be addedor removed by the evolutionary proess, as an ondi-tion/ation labels.3 Learning Classi�er SystemsAs explained in the introdution, the problems takledby LCS are haraterized by the fat that situationsare de�ned by several attributes representing pereiv-able properties of the environment. A LCS has to learnlassi�ers, whih de�ne the behavior of the system asshown in �gure 3. Within the LCS framework, theuse of don't are symbols �#� in the ondition partsof the lassi�ers results in generalization, sine don'tare symbols make it possible to use a single desrip-tion to desribe several situations. Indeed, a don't aresymbol mathes any partiular value of the onsidered
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[#10##1#1] [E]Figure 3: The agent pereives the presene/absene(resp. 1/0) of bloks in eah of the eight surround-ing ells (onsidered lokwise, starting with the northell). Thus from its urrent loation, the agent per-eives [01010111℄. Within the list of lassi�ers har-aterizing it, the LCS �rst selets those mathing theurrent situation. Then, it selets one of the mathinglassi�ers and the orresponding ation is performed.attribute.The main issue with generalization is to organize on-ditions and ations so that the don't are symbols arewell plaed. To do so, LCS usually all upon a GA.In the Pittsburg style, the GA evolves a population ofLCS with their whole lists of lassi�ers. The lists oflassi�ers are ombined thanks to rossover operatorsand modi�ed with mutations. The LCS are evaluatedaording to a �tness measure and the more e�ientones � with respet to the �tness � are kept. Thus, likein the ATNoSFERES model, a Pittsburg style LCSevolves a population of ontrollers.On the ontrary, in theMihigan style, the GA evolvesa population of lassi�ers within the list of lassi�ersof a single agent. Here, this is the lassi�ers whihare ombined and modi�ed. A �tness is assoiatedto eah lassi�er and the best ones are kept. ThusMihigan style LCS use GA to perform online learning:the lassi�ers are improved during the life time of theagent. Usually, suh LCS rely on utility funtions thatdepend on salar rewards given by the environment, asde�ned in the RL framework (17).In most of the early LCS (5), the �tness was de�neddiretly aording to the utility assoiated to the las-si�er. After having de�ned a very simple LCS alledZCS in (19), Wilson found muh more e�ient to de-�ne the �tness aording to the auray of the utility

predition. Its system, XCS (20), is now the mostwidely used LCS to solve Markov problems.3.1 XCSMDealing with simple Condition-Ation lassi�ersdoes not endow an agent with the ability to behave op-timally in pereptually aliazed problems. In this kindof problems, it may happen that the urrent pereptiondoes not provide enough information to always hoosethe optimal ation: as soon as the agent pereives thesame situation in di�erent states, it will hoose thesame ation though this ation may be inappropriatein some of these states (see �gure 4).For suh problems, it is neessary to introdue inter-nal states in the LCS. Tomlinson and Bull (18) pro-posed a way to probalistially link lassi�ers in or-der to bridge aliazed situations. Lanzi (10) proposedXCSM, where M stands for Memory, as an extensionof XCS with expliit internal states. XCSM managesan internal memory register omposed of several bitsthat expliitely represent the internal state of the LCS.Therefore, a lassi�er ontains four parts (f. table 1)an external ondition about the situation, an internalondition about the internal state, an external ationto perform in the environment and an internal ationthat may modify the internal state.The internal ondition and the internal ation ontainas many attributes as there are bits in the memoryregister. In order to be seleted by the LCS, a las-si�er has to math with both external and internalonditions. When it is seleted, the LCS performs theorresponding ation in the environment and modi�esthe internal state if the internal ation is not omposedonly of don't hange symbols �#�. When a lassi�er is�red, a don't are symbol in the internal ation re-sults in letting the orresponding bit in the memoryregister at its value before applying the lassi�er. AsXCS, XCSM draws bene�ts from generalization in theexternal ondition, but also in the internal onditionand the internal ation.The memory register provides XCSM with more thanjust the environmental pereptions. It permits to dealwith pereptual aliazing by adding information fromthe past experiene of the agent.3.2 Formal relations between ATNoSFERESand Learning Classi�er SystemsAn ATN suh as those evolved by ATNoSFERES anbe translated into a list of lassi�ers, whether theyhave been obtained through a Mihigan or a Pitts-burgh style proess. The nodes of the ATN play the



role of internal states and permit ATNoSFERES todeal with pereptual aliazing. The edges of the ATNarry several informations whih an be translated ina rule-based formalism: the soure and destinationnodes of the edge an be respetively represented byan internal ondition and an internal ation; the ondi-tions assoiated to the edges orrespond to the exter-nal onditions of the lassi�ers; the ations assoiatedto the edges orrespond to the external ations of thelassi�ers.It is lear in our example that an important di�er-ene between both formalisms is due to the possibilityto perform a sequene of ations (suh as a3�a5) asa onsequene of mathing onditions. We restritedthis feature to a single ation in the experiments de-sribed below (� 4.3).There are two other di�erenes, that have been keptin our experiments:� When the ation part of the edge label is empty(represented by a # on the graphs), an ation israndomly hosen among possible ones. We repre-sent it by a lassi�er ontaining only # in the LCS-like formalism. The onsequenes of that featurewill be disussed in �5.� In XCSM, the �internal state� is regarded as anextension, while it is an inherent feature of thegraph-based approah. Hene XCSM may havegeneral rules that math in any situation (what-ever the internal state an be, i.e. #).4 Experiments4.1 The pereptual aliazing problemIn some environments (like Maze10 on �gure 4), somestates may indue idential pereptions by the agent,though di�erent ations must be performed. This de-�nes the �pereptual aliazing� issue that is frequentlyenountered in real-world environments.We have ompared the nature of the results that havebeen obtained through Evolution to those produed bya LCS like XCSM (10) in the Maze10 environment.4.2 Experimental setupWe tried to reprodue an experimental setup lose tothat used in Lanzi (10) with the Maze10 environment,with regards to the spei�ities of our model.The agents used for the experiments are able to per-eive the presene/absene of bloks in the eight adja-ent ells of the grid. They an move in those adjaent
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Figure 4: The Maze10 environment. F represents thegoal to reah (food) from any ell of the maze; a fewells are unambiguous (Si) but in the other ones thesame pereptual situations may require either similarations or di�erent ones (e.g. go north in S2_f1;2;4gbut go south in S2_3)ells (the move will be e�etive when the ell is emptyor ontains food). Thus the geneti ode inludes 16ondition and 8 ation tokens. In order to enode 24ondition-ation tokens together with 7 stak manipu-lation and 4 node reation/onnetion tokens, we needat least 6 bits to de�ne a token (26 = 64 tokens, whihmeans that some tokens are enoded twie).Eah experiment involves the following steps:1. Initialize the population with N = 300 agentswith random bitstrings.2. For eah generation, build the graph of eah agentand evaluate it in the environment.3. Selet the individuals with higher �tness (namely,20 % of the population) and produe new ones byrossing over the parents. The system performsprobabilisti mutations and insertions or deletionsof odons on the bitstring of the o�spring.4. Iterate the proess with the new generation.In order to evaluate the individuals, they are put intothe environment, starting on any blank ell in the grid,and they have to �nd the food within a limited amountof time (20 time steps). The agent an perform onlyone ation per time step; when this ation is inom-patible with the environment (e.g. go towards a wall),it is simply disarded (the agent loses one time step).Its �tness for eah run is: F = D �K +B + 2 �R (F :�tness for the run; D: number of blank ells that havebeen disovered during the run; K: time steps spenton already known ells; B: bonus when the food isfound (30 points); R: remaining time if the food hasbeen found within the time limit (R < 19)). It wasdesigned to advantage exploring agents (see D and K)



that reah quiker the food (thanks to the R oe�-ient, remaining time steps are more rewarding thanthe disovering of any more new ells). Sine thereis no reinforement learning during the run, the �t-ness has to provide delayed information to measurethe quality of the behavior. Eah agent is evaluated 4times starting on eah empty ell, then its total �tnessis the sum of the �tnesses omputed for eah run. Inthe optimal ase, the �tness is 4500.The experiments reported here were arried out on var-ious initial genotype sizes, from 300 to 540 bits. Theoriginal population genotype sizes hange during evo-lution. Eah experiment has been bounded by 10,000generations, whih in most ases is su�ient to reahhigh enough �tness values.4.3 Results
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Figure 6: Best and average �tness obtained with 360-bit genotypesfollowing behavior: from any vertial orridor, it �rstreahes horizontal orridor, then the NE orner, and�nally goes straight to the food. This is a nearly op-timal solution. The graph presented in �gure 5 showsthat a nearly optimal behavior an be obtained. Espe-ially, there are lear distintions between the bottomof vertial orridors (N :NE identi�es ells Sf1;2g_n),the top of vertial orridors (NE ! S6; S7; S3_n), thehorizontal orridor (E ! S8; Sf4;5g_n) and the ruialNE orner (S9 is identi�ed by :E :N :NW).5 Disussion5.1 Readability and Minimality ofRepresentationOne important advantage of ATNoSFERES with re-spet to XCSM is that the ATN resulting from theevolution is very easy to understand. But this featureis not only a question of graphial representation.XCSM produes a onstant size list of lassi�ers intowhih the size of the external onditions part and ofthe memory register must be hosen in advane. Asa result, there are generally more lassi�ers and moreinternal states than neessary.By ontrast, ATNoSFERES builds a graph whosenumber of nodes, edges, and labels on the edges arenot given in advane. Thus it an build a minimalontroller to solve the given problem.Another key di�erene is that, in XCSM, the sequeneof internal states of the agent during one run is not ex-pliitely stated and must be derived by hand throughareful examination. On the ontrary, this sequene isperfetly lear when one reads an ATN. Furthermore,the internal state is very stable in ATNoSFERES. Butthis advantage of ATNoSFERES has its ounterpart



that will be disussed in � 5.2: ATNoSFERES annotrepresent Condition-Ation rules that an be �redwhatever the internal state is, as it is the ase in XCSMwith an internal ondition omposed of �#� only.5.2 GeneralizationAn important di�erene between XCSM and ATNoS-FERES formalisms all upon the elements on whihgeneralization an take plae. In the urrent imple-mentation of ATNoSFERES, generalization is not pos-sible with respet to the internal onditions and a-tions. This prevents ATNoSFERES from dealing witha default behavior, regardless of the internal state.In XCSM, a # in the internal ondition allows the las-si�er to be applied whatever the internal state repre-sented by the memory register is. This mehanismpermits to at regardless of the internal state.Furthermore, in the urrent implementation of AT-NoSFERES, there is no expliit seletion pressure onthe generality of the onditions on the labels, whilethe prodution of generalized lassi�ers is inherent tothe LCS approah. Thus, we do not neessarily obtaingeneral rules and the ondition labels still ontain re-dundant information, e.g. in the identi�ation of theNE orner.However, the onditions that are atually enounteredin the graphs are quite general. In fat, one a goodsolution has been found, the population tends to be-ome homogeneous and the size of genotypes stabi-lizes. Many di�erent genotypes an lead to similarbehaviors, but we assume that there is a bias towardsompat solutions.5.3 Reinforement Learning and Classi�erSeletionAnother important di�erene between the ATN pro-dued by ATNoSFERES and the list of lassi�ers pro-dued by XCSM is that in the latter eah lassi�eris endowed with a predition representing its propen-sity to be �red, while in the former the edges get anequal probability to be seleted if their ondition tokenmathes with the urrent situation.Thus, in ATNoSFERES, if two edges an be seletedsimultaneously, the seletion will not be deterministi.Sine the optimal behavior is ompatible with non-determinism only if both behaviors are stritly equiva-lent, the seletion pressure in ATNoSFERES will pre-vent non-determinism in situations where it is detri-mental. This provides a strong bias towards minimalontrollers.

By ontrast, in XCSM, several lassi�ers an mathwith the same situation, but only the strongest will be�red. Thus, it is not neessary that the other mathinglassi�ers are deleted.However, one important advantage of LCS with re-spet to ATNoSFERES is that the strength of lassi-�ers are learned through a RL algorithm. CombiningGA with RL is well known to help �nding better indi-viduals faster. In the Markov deision proess (MDP)ontext, RL algorithms use more information aboutthe experiene of the agent than GA. While the GAonly selets agents aording to a global �tness fun-tion, RL algorithms distribute the reward obtainedwhen the goal is reahed only to the rules whih haveontributed to the behavior, taking into aount theexat sequene of ations performed by the agent inthe way the reward is bak-propagated.In order to remedy the fat that ATNoSFERES doesnot use RL, it has been neessary to inlude into the�tness funtion elements that arry some informationabout the atual behavior of the agent (see �4.2). Buttuning suh a �tness funtion is both di�ult and ru-ial for the suess of the experiment.5.4 OptimalityThe behaviors that have been obtained are still notompletely optimal: when the agent starts from thewest orridor, it should reognize the NW orner andthen go diretly in the third vertial orridor withoutheking the NE orner as it does. This is partly dueto the �tness funtion we used: part of the time lost inexploring the NE orner is balaned by the explorationreward. Additionally, the struture for reognizing theNW orner would require at least two nodes and �veedges and assoiated ondition/ation tokens. Thusit would onstitute a major strutural hange in thegraph with respet to the small seletive advantage.6 Conlusion and Future WorkFrom the perspetive adopted in this paper, ATNoS-FERES is similar to a Pittsburgh style LCS endowedwith the ability to takle non-Markov problems. Byontrast with Mihigan style LCS like XCSM, ATNoS-FERES is deprived from any RL mehanism. We haveshown that ATNoSFERES an produe ontrollersthat are both very e�ient in terms of the behaviorthey generate and very parsimonious in the way theyspeify that behavior. Thus we believe that ATNoS-FERES is a good starting point to address more om-plex non-Markov problems than the benhmark exper-iment studied here.
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