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Abstra
tIn this paper we present ATNoSFERES, anew framework based on an indire
t en
odingGeneti
 Algorithm whi
h builds �nite-stateautomata 
ontrollers able to deal with per-
eptual aliasing. We 
ompare it with XCSM,a memory-based extension of the most stud-ied Learning Classi�er System, XCS, througha ben
hmark experiment. We then dis
ussthe assets and drawba
ks of ATNoSFERESin the 
ontext of that 
omparison.KeywordsEvolutionary Algorithms, Learning Classi�er Systems,per
eptual aliazing, Augmented Transition Networks1 Introdu
tionMost Learning Classi�er Systems (LCS) (5) are usedto ta
kle problems where situated and adaptive agentsare involved in a sensori-motor loop with their environ-ment. Su
h agents per
eive situations through theirsensors as ve
tors of several attributes, ea
h represent-ing a per
eived feature. The task of the agents is tolearn the optimal poli
y � i.e. whi
h a
tion to per-form in every situation, in order to ful�ll their goalsthe best way they 
an. Like in the general Reinfor
e-ment Learning (RL) framework (17), the goals of LCSare de�ned by s
alar rewards provided by the envi-ronment. The poli
y is de�ned by a set of rules � or
lassi�ers � spe
ifying whi
h a
tion to 
hoose a

ord-ing to 
onditions about the per
eived situations.In real world environments, it may happen that agentsper
eive the same situation in several di�erent lo
a-tions, some requiring di�erent optimal a
tions, givingrise to per
eptual aliazing problems. In su
h 
ases,

the environment is said non-Markov, and agents 
an-not perform optimally if their de
ision at a given timestep only depends on their per
eptions at the sametime step. Though they are more often used to solveMarkov problems, there are several attempts to ap-ply LCS to non-Markov problems, like (18, 10) for in-stan
e.Within this framework, expli
it internal states wereadded to the 
lassi
al (
ondition, a
tion) pair of the
lassi�ers (11, 10, 20). These internal states provideadditional information to 
hoose the optimal a
tionwhen the problem is non-Markov. The problem ofproperly setting the 
lassi�ers, and setting the internalstates in parti
ular, is devoted to Geneti
 Algorithms(GA).In this paper, we will 
ompare LCS to �ATNoS-FERES�, a new system that also uses GA to automat-i
ally design the behavior of agents fa
ing problems inwhi
h they per
eive situations as ve
tors of attributes,and have to sele
t a
tions in order to ful�ll their goals,in non-Markov environments. In ATNoSFERES, thegoals are de�ned thanks to a �tness measure.In the �rst se
tion, we present the features and prop-erties of the ATNoSFERES model (9, 15). It reliesupon oriented, labeled graphs (� 2.1) for des
ribingthe behavior and the a
tion sele
tion pro
edure. Thespe
i�
ity of the model 
onsists in building this graphfrom a bitstring (� 2.2) that 
an be handled exa
tly likeany other bitstring of a Geneti
 Algorithm, with addi-tional operators. Then we show that the graph-basedrepresentation is formally very similar to LCS repre-sentations, and, in parti
ular, to XCSM (� 3.2); thuswe 
ompare both approa
hes through 
lassi
al experi-ments (�4). As a result of this 
omparison, we dis
ussthe assets and drawba
ks of both representations a
-
ording to di�erent 
riteria (�5). Finally, we 
on
ludeby stating what should be added to ATNoSFERES soas to improve it further where the 
omparison is not



in its favor.2 Des
ription of ATNoSFERES2.1 Graph-based expression of behaviorsThe ar
hite
ture provided by our model involves an�Augmented Transition Networks� (ATN)-like graph(21) whi
h is basi
ally an oriented, labeled graph witha Start (or initial) node and an End (or �nal) node (see�gure 5). Nodes represent states and edges representtransitions of an automaton.Su
h graphs have already been used for des
ribing thebehavior of agents (9). The labels on edges spe
ifya set of 
onditions (e.g. 
1 
3 ?) that have to beful�lled to enable the edge, and in a sequen
e of a
tions(e.g. a5 a2 a4!) that are performed when the edgeis 
hosen. We use those graphs as follows:� At the beginning (when the agent is initialized),the agent is in the Start node (S).� At ea
h time step, the agent 
rosses an edge:1. It 
omputes the set of eligible edges amongthose starting from the 
urrent node. Anedge is eligible when either it has no 
ondi-tion label or all the 
onditions on its label aresimultaneously true.2. If the set is empty, then an a
tion is 
hosenrandomly; else an edge is randomly 
hosen inthe set.3. The edge o

urs by performing the a
tionson the label of the 
urrent edge. When thea
tion part of the label is empty, an a
tion is
hosen randomly.4. The new 
urrent node be
omes the destina-tion of the edge.� The agent stops when it is in the End node (E).Note that most of behavioral stru
tures involved in
lassi
al evolutionary approa
hes, e.g. program treesin Geneti
 Programming (7), are entirely interpretedat ea
h time step to determine the a
tions to perform.It is not the 
ase in our approa
h whi
h relies on inter-nal nodes. An example of the per
eption-a
tion 
y
leperformed during ea
h time step is given further on�gure 3.2.2 The graph-building pro
essThe behavioral graph is built from an hereditary sub-strate, by adding nodes and edges to a basi
 stru
ture
ontaining only the Start and End nodes.

There are many di�erent evolutionary te
hniques toautomati
ally design stru
tures su
h as �nite-statema
hines (2), neural networks (22) or program trees(7). Very roughly, we 
an sket
h an opposition be-tween, on the one hand, approa
hes that use the geno-type as an en
oding of a set of parameters (like Ge-neti
 Algorithms (5, 1, 3) or Evolution Stategies (16))and, on the other hand, approa
hes that use the geno-type as a stru
ture produ
ing the phenotype (su
h asGeneti
 Programming (7, 14), Evolutionary Program-ming (2), L-systems (12), developmental program trees(6, 4, 13)...).In the ATNoSFERES model, we try to 
on
iliate ad-vantages from both kind of approa
hes: on the onehand, sin
e the behavioral phenotype is produ
ed bythe interpretation of a graph, we want it to be of any
omplexity; on the other hand, we use a �ne-graingenotype (a bitstring) to produ
e it, in order to allowa gradual exploration of the solution spa
e through�blind� geneti
 operators.Therefore, we follow a two-step pro
ess (see �gure 1) 1:1. The bitstring (genotype) is translated into a se-quen
e of tokens.2. The tokens are interpreted as instru
tions of a ro-bust programming language, dedi
ated to graphbuilding.
a
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Figure 1: The prin
iples of the geneti
 expression weuse to produ
e the behavioral graph from the bitstringgenotype. The string is �rst de
oded into tokens (a),whi
h are interpreted in a se
ond step as instru
tions(b) to 
reate nodes, edges, and labels (
).2.2.1 TranslationTranslation is a simple pro
ess that reads the bitstringgenotype and de
odes it into a sequen
e of tokens(symbols). It uses therefore a geneti
 
ode, i.e. a fun
-tion G : f0; 1gn �! T (jT j � 2n) where T is the set1More details about those me
hanisms and the natureof the tokens are provided in (9, 15)



of possible tokens (the di�erent roles of whi
h will bedes
ribed in the next paragraph). Depending on thenumber of available tokens, the geneti
 
ode might bemore or less redundant. Binary substrings of size n(de
oded into a token ea
h) are 
alled �
odons�.2.2.2 InterpretationTokens are instru
tions of the ATNoSFERES graph-building language. They operate on a sta
k in whi
hdata tokens or parts of the future graph are stored.All tokens fall into the following 
ategories:� 
ondition or a
tion tokens, whi
h only put datain the sta
k, whi
h will be used to label edgesbetween nodes;� node 
reation or node 
onne
tion tokens (the lat-ter use nodes and a
tion/
ondition tokens alreadyin the sta
k);� sta
k manipulation tokens (swap, 
opy...) whi
hhave an a
tion upon the sta
k 
ontaining nodesand a
tion/
ondition tokens.In order to 
ope with a �blind� evolutionary pro
ess(i.e. based on random mutations on a �ne-grain geno-type), the graph built has to be robust to mutations(15). For instan
e, the repla
ement of a token by an-other, or its deletion, should only have a lo
al impa
t,rather than transforming the whole graph.If an instru
tion 
annot be exe
uted su

essfully, itis simply ignored; for the same reasons, when all to-kens have been interpreted, the graph is made 
onsis-tent, e.g. by linking some nodes to Start/End nodes.Any sequen
e of tokens is meaningful, thus the graph-building language is robust to variations a�e
ting thegenotype (there is no spe
i�
 synta
ti
al nor semanti-
al 
onstraint on the geneti
 operators).2.3 Integration into an evolutionaryframeworkIn this paper, the ATNoSFERES model has been ap-plied to produ
e agents behaviors within an evolution-ary algorithm.Therefore, ea
h agent has a bitstring genotype fromwhi
h it 
an produ
e a graph (the geneti
 
ode de-pends on the per
eption abilities of the agent and onthe a
tions it 
an perform). The �tness of ea
h agentis 
omputed by evaluating its behavior in an envi-ronment. Then individuals are sele
ted depending ontheir �tness and bred to produ
e o�spring.
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Figure 2: In this example, the agent, lo
ated in a 
ellof the maze, per
eives the presen
e/absen
e of blo
ksin ea
h of the eight surrounding 
ells. It has to de-
ide whether to try to move towards one of the eightadja
ent 
ells. From its 
urrent lo
ation, the agentper
eives [E :NE N :NW :W :SW S :SE℄ (token E istrue when the east 
ell is empty). From the 
urrentstate (node) of its graph, two edges (in bold) are eli-gible, sin
e the 
ondition part of their label mat
h theper
eptions. One is randomly sele
ted, then its a
tionpart (move East) is performed and the 
urrent state isupdated.The genotype of the o�spring is produ
ed by a 
lassi-
al 
rossover operation between the genotypes of theparents. Additionally, we use two di�erent mutationstrategies to introdu
e variations into the genotype ofnew individuals: 
lassi
al bit-�ipping mutations, andrandom insertions or deletions of one 
odon. Thismodi�es the sequen
e of tokens that will be produ
edby translation, so that the 
omplexity of the graph it-self may 
hange. Nodes or edges 
an in fa
t be addedor removed by the evolutionary pro
ess, as 
an 
ondi-tion/a
tion labels.3 Learning Classi�er SystemsAs explained in the introdu
tion, the problems ta
kledby LCS are 
hara
terized by the fa
t that situationsare de�ned by several attributes representing per
eiv-able properties of the environment. A LCS has to learn
lassi�ers, whi
h de�ne the behavior of the system asshown in �gure 3. Within the LCS framework, theuse of don't 
are symbols �#� in the 
ondition partsof the 
lassi�ers results in generalization, sin
e don't
are symbols make it possible to use a single des
rip-tion to des
ribe several situations. Indeed, a don't 
aresymbol mat
hes any parti
ular value of the 
onsidered
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eives the presen
e/absen
e(resp. 1/0) of blo
ks in ea
h of the eight surround-ing 
ells (
onsidered 
lo
kwise, starting with the north
ell). Thus from its 
urrent lo
ation, the agent per-
eives [01010111℄. Within the list of 
lassi�ers 
har-a
terizing it, the LCS �rst sele
ts those mat
hing the
urrent situation. Then, it sele
ts one of the mat
hing
lassi�ers and the 
orresponding a
tion is performed.attribute.The main issue with generalization is to organize 
on-ditions and a
tions so that the don't 
are symbols arewell pla
ed. To do so, LCS usually 
all upon a GA.In the Pittsburg style, the GA evolves a population ofLCS with their whole lists of 
lassi�ers. The lists of
lassi�ers are 
ombined thanks to 
rossover operatorsand modi�ed with mutations. The LCS are evaluateda

ording to a �tness measure and the more e�
ientones � with respe
t to the �tness � are kept. Thus, likein the ATNoSFERES model, a Pittsburg style LCSevolves a population of 
ontrollers.On the 
ontrary, in theMi
higan style, the GA evolvesa population of 
lassi�ers within the list of 
lassi�ersof a single agent. Here, this is the 
lassi�ers whi
hare 
ombined and modi�ed. A �tness is asso
iatedto ea
h 
lassi�er and the best ones are kept. ThusMi
higan style LCS use GA to perform online learning:the 
lassi�ers are improved during the life time of theagent. Usually, su
h LCS rely on utility fun
tions thatdepend on s
alar rewards given by the environment, asde�ned in the RL framework (17).In most of the early LCS (5), the �tness was de�neddire
tly a

ording to the utility asso
iated to the 
las-si�er. After having de�ned a very simple LCS 
alledZCS in (19), Wilson found mu
h more e�
ient to de-�ne the �tness a

ording to the a

ura
y of the utility

predi
tion. Its system, XCS (20), is now the mostwidely used LCS to solve Markov problems.3.1 XCSMDealing with simple Condition-A
tion 
lassi�ersdoes not endow an agent with the ability to behave op-timally in per
eptually aliazed problems. In this kindof problems, it may happen that the 
urrent per
eptiondoes not provide enough information to always 
hoosethe optimal a
tion: as soon as the agent per
eives thesame situation in di�erent states, it will 
hoose thesame a
tion though this a
tion may be inappropriatein some of these states (see �gure 4).For su
h problems, it is ne
essary to introdu
e inter-nal states in the LCS. Tomlinson and Bull (18) pro-posed a way to probalisti
ally link 
lassi�ers in or-der to bridge aliazed situations. Lanzi (10) proposedXCSM, where M stands for Memory, as an extensionof XCS with expli
it internal states. XCSM managesan internal memory register 
omposed of several bitsthat expli
itely represent the internal state of the LCS.Therefore, a 
lassi�er 
ontains four parts (
f. table 1)an external 
ondition about the situation, an internal
ondition about the internal state, an external a
tionto perform in the environment and an internal a
tionthat may modify the internal state.The internal 
ondition and the internal a
tion 
ontainas many attributes as there are bits in the memoryregister. In order to be sele
ted by the LCS, a 
las-si�er has to mat
h with both external and internal
onditions. When it is sele
ted, the LCS performs the
orresponding a
tion in the environment and modi�esthe internal state if the internal a
tion is not 
omposedonly of don't 
hange symbols �#�. When a 
lassi�er is�red, a don't 
are symbol in the internal a
tion re-sults in letting the 
orresponding bit in the memoryregister at its value before applying the 
lassi�er. AsXCS, XCSM draws bene�ts from generalization in theexternal 
ondition, but also in the internal 
onditionand the internal a
tion.The memory register provides XCSM with more thanjust the environmental per
eptions. It permits to dealwith per
eptual aliazing by adding information fromthe past experien
e of the agent.3.2 Formal relations between ATNoSFERESand Learning Classi�er SystemsAn ATN su
h as those evolved by ATNoSFERES 
anbe translated into a list of 
lassi�ers, whether theyhave been obtained through a Mi
higan or a Pitts-burgh style pro
ess. The nodes of the ATN play the



role of internal states and permit ATNoSFERES todeal with per
eptual aliazing. The edges of the ATN
arry several informations whi
h 
an be translated ina rule-based formalism: the sour
e and destinationnodes of the edge 
an be respe
tively represented byan internal 
ondition and an internal a
tion; the 
ondi-tions asso
iated to the edges 
orrespond to the exter-nal 
onditions of the 
lassi�ers; the a
tions asso
iatedto the edges 
orrespond to the external a
tions of the
lassi�ers.It is 
lear in our example that an important di�er-en
e between both formalisms is due to the possibilityto perform a sequen
e of a
tions (su
h as a3�a5) asa 
onsequen
e of mat
hing 
onditions. We restri
tedthis feature to a single a
tion in the experiments de-s
ribed below (� 4.3).There are two other di�eren
es, that have been keptin our experiments:� When the a
tion part of the edge label is empty(represented by a # on the graphs), an a
tion israndomly 
hosen among possible ones. We repre-sent it by a 
lassi�er 
ontaining only # in the LCS-like formalism. The 
onsequen
es of that featurewill be dis
ussed in �5.� In XCSM, the �internal state� is regarded as anextension, while it is an inherent feature of thegraph-based approa
h. Hen
e XCSM may havegeneral rules that mat
h in any situation (what-ever the internal state 
an be, i.e. #).4 Experiments4.1 The per
eptual aliazing problemIn some environments (like Maze10 on �gure 4), somestates may indu
e identi
al per
eptions by the agent,though di�erent a
tions must be performed. This de-�nes the �per
eptual aliazing� issue that is frequentlyen
ountered in real-world environments.We have 
ompared the nature of the results that havebeen obtained through Evolution to those produ
ed bya LCS like XCSM (10) in the Maze10 environment.4.2 Experimental setupWe tried to reprodu
e an experimental setup 
lose tothat used in Lanzi (10) with the Maze10 environment,with regards to the spe
i�
ities of our model.The agents used for the experiments are able to per-
eive the presen
e/absen
e of blo
ks in the eight adja-
ent 
ells of the grid. They 
an move in those adja
ent
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Figure 4: The Maze10 environment. F represents thegoal to rea
h (food) from any 
ell of the maze; a few
ells are unambiguous (Si) but in the other ones thesame per
eptual situations may require either similara
tions or di�erent ones (e.g. go north in S2_f1;2;4gbut go south in S2_3)
ells (the move will be e�e
tive when the 
ell is emptyor 
ontains food). Thus the geneti
 
ode in
ludes 16
ondition and 8 a
tion tokens. In order to en
ode 24
ondition-a
tion tokens together with 7 sta
k manipu-lation and 4 node 
reation/
onne
tion tokens, we needat least 6 bits to de�ne a token (26 = 64 tokens, whi
hmeans that some tokens are en
oded twi
e).Ea
h experiment involves the following steps:1. Initialize the population with N = 300 agentswith random bitstrings.2. For ea
h generation, build the graph of ea
h agentand evaluate it in the environment.3. Sele
t the individuals with higher �tness (namely,20 % of the population) and produ
e new ones by
rossing over the parents. The system performsprobabilisti
 mutations and insertions or deletionsof 
odons on the bitstring of the o�spring.4. Iterate the pro
ess with the new generation.In order to evaluate the individuals, they are put intothe environment, starting on any blank 
ell in the grid,and they have to �nd the food within a limited amountof time (20 time steps). The agent 
an perform onlyone a
tion per time step; when this a
tion is in
om-patible with the environment (e.g. go towards a wall),it is simply dis
arded (the agent loses one time step).Its �tness for ea
h run is: F = D �K +B + 2 �R (F :�tness for the run; D: number of blank 
ells that havebeen dis
overed during the run; K: time steps spenton already known 
ells; B: bonus when the food isfound (30 points); R: remaining time if the food hasbeen found within the time limit (R < 19)). It wasdesigned to advantage exploring agents (see D and K)



that rea
h qui
ker the food (thanks to the R 
oe�-
ient, remaining time steps are more rewarding thanthe dis
overing of any more new 
ells). Sin
e thereis no reinfor
ement learning during the run, the �t-ness has to provide delayed information to measurethe quality of the behavior. Ea
h agent is evaluated 4times starting on ea
h empty 
ell, then its total �tnessis the sum of the �tnesses 
omputed for ea
h run. Inthe optimal 
ase, the �tness is 4500.The experiments reported here were 
arried out on var-ious initial genotype sizes, from 300 to 540 bits. Theoriginal population genotype sizes 
hange during evo-lution. Ea
h experiment has been bounded by 10,000generations, whi
h in most 
ases is su�
ient to rea
hhigh enough �tness values.4.3 Results
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Figure 5: Graph of the best individual in a represen-tative experimentA representative example is reported on �gure 6, whi
hshows the best and average �tness values.Table 1: A LCS-like representation of the graph on �g-ure 5. EC: external 
onditions, IC: internal 
onditions,EA: external a
tions, IA: internal a
tionsEC IC EA IAE NE N NW W SW S SE1 # # # # # # # 00 N 010 # # 1 # # # # 00 E 01# 0 # # # # # # 00 NE 01# 1 0 # # # # # 01 N ### 0 # # # # # # 01 NE ##0 # # # # # # # 01 E ##1 # 1 # # # # # 01 W 10# 0 # # # # # # 10 S ### # 1 1 # # # # 10 SW ##Figure 5 presents a behavioral graph obtained by thebest individual in a representative experiment. It hasalso been represented in a LCS-like formalism (ta-ble 1).The agent whose graph is des
ribed in �gure 5 has the
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Figure 6: Best and average �tness obtained with 360-bit genotypesfollowing behavior: from any verti
al 
orridor, it �rstrea
hes horizontal 
orridor, then the NE 
orner, and�nally goes straight to the food. This is a nearly op-timal solution. The graph presented in �gure 5 showsthat a nearly optimal behavior 
an be obtained. Espe-
ially, there are 
lear distin
tions between the bottomof verti
al 
orridors (N :NE identi�es 
ells Sf1;2g_n),the top of verti
al 
orridors (NE ! S6; S7; S3_n), thehorizontal 
orridor (E ! S8; Sf4;5g_n) and the 
ru
ialNE 
orner (S9 is identi�ed by :E :N :NW).5 Dis
ussion5.1 Readability and Minimality ofRepresentationOne important advantage of ATNoSFERES with re-spe
t to XCSM is that the ATN resulting from theevolution is very easy to understand. But this featureis not only a question of graphi
al representation.XCSM produ
es a 
onstant size list of 
lassi�ers intowhi
h the size of the external 
onditions part and ofthe memory register must be 
hosen in advan
e. Asa result, there are generally more 
lassi�ers and moreinternal states than ne
essary.By 
ontrast, ATNoSFERES builds a graph whosenumber of nodes, edges, and labels on the edges arenot given in advan
e. Thus it 
an build a minimal
ontroller to solve the given problem.Another key di�eren
e is that, in XCSM, the sequen
eof internal states of the agent during one run is not ex-pli
itely stated and must be derived by hand through
areful examination. On the 
ontrary, this sequen
e isperfe
tly 
lear when one reads an ATN. Furthermore,the internal state is very stable in ATNoSFERES. Butthis advantage of ATNoSFERES has its 
ounterpart



that will be dis
ussed in � 5.2: ATNoSFERES 
annotrepresent Condition-A
tion rules that 
an be �redwhatever the internal state is, as it is the 
ase in XCSMwith an internal 
ondition 
omposed of �#� only.5.2 GeneralizationAn important di�eren
e between XCSM and ATNoS-FERES formalisms 
all upon the elements on whi
hgeneralization 
an take pla
e. In the 
urrent imple-mentation of ATNoSFERES, generalization is not pos-sible with respe
t to the internal 
onditions and a
-tions. This prevents ATNoSFERES from dealing witha default behavior, regardless of the internal state.In XCSM, a # in the internal 
ondition allows the 
las-si�er to be applied whatever the internal state repre-sented by the memory register is. This me
hanismpermits to a
t regardless of the internal state.Furthermore, in the 
urrent implementation of AT-NoSFERES, there is no expli
it sele
tion pressure onthe generality of the 
onditions on the labels, whilethe produ
tion of generalized 
lassi�ers is inherent tothe LCS approa
h. Thus, we do not ne
essarily obtaingeneral rules and the 
ondition labels still 
ontain re-dundant information, e.g. in the identi�
ation of theNE 
orner.However, the 
onditions that are a
tually en
ounteredin the graphs are quite general. In fa
t, on
e a goodsolution has been found, the population tends to be-
ome homogeneous and the size of genotypes stabi-lizes. Many di�erent genotypes 
an lead to similarbehaviors, but we assume that there is a bias towards
ompa
t solutions.5.3 Reinfor
ement Learning and Classi�erSele
tionAnother important di�eren
e between the ATN pro-du
ed by ATNoSFERES and the list of 
lassi�ers pro-du
ed by XCSM is that in the latter ea
h 
lassi�eris endowed with a predi
tion representing its propen-sity to be �red, while in the former the edges get anequal probability to be sele
ted if their 
ondition tokenmat
hes with the 
urrent situation.Thus, in ATNoSFERES, if two edges 
an be sele
tedsimultaneously, the sele
tion will not be deterministi
.Sin
e the optimal behavior is 
ompatible with non-determinism only if both behaviors are stri
tly equiva-lent, the sele
tion pressure in ATNoSFERES will pre-vent non-determinism in situations where it is detri-mental. This provides a strong bias towards minimal
ontrollers.

By 
ontrast, in XCSM, several 
lassi�ers 
an mat
hwith the same situation, but only the strongest will be�red. Thus, it is not ne
essary that the other mat
hing
lassi�ers are deleted.However, one important advantage of LCS with re-spe
t to ATNoSFERES is that the strength of 
lassi-�ers are learned through a RL algorithm. CombiningGA with RL is well known to help �nding better indi-viduals faster. In the Markov de
ision pro
ess (MDP)
ontext, RL algorithms use more information aboutthe experien
e of the agent than GA. While the GAonly sele
ts agents a

ording to a global �tness fun
-tion, RL algorithms distribute the reward obtainedwhen the goal is rea
hed only to the rules whi
h have
ontributed to the behavior, taking into a

ount theexa
t sequen
e of a
tions performed by the agent inthe way the reward is ba
k-propagated.In order to remedy the fa
t that ATNoSFERES doesnot use RL, it has been ne
essary to in
lude into the�tness fun
tion elements that 
arry some informationabout the a
tual behavior of the agent (see �4.2). Buttuning su
h a �tness fun
tion is both di�
ult and 
ru-
ial for the su

ess of the experiment.5.4 OptimalityThe behaviors that have been obtained are still not
ompletely optimal: when the agent starts from thewest 
orridor, it should re
ognize the NW 
orner andthen go dire
tly in the third verti
al 
orridor without
he
king the NE 
orner as it does. This is partly dueto the �tness fun
tion we used: part of the time lost inexploring the NE 
orner is balan
ed by the explorationreward. Additionally, the stru
ture for re
ognizing theNW 
orner would require at least two nodes and �veedges and asso
iated 
ondition/a
tion tokens. Thusit would 
onstitute a major stru
tural 
hange in thegraph with respe
t to the small sele
tive advantage.6 Con
lusion and Future WorkFrom the perspe
tive adopted in this paper, ATNoS-FERES is similar to a Pittsburgh style LCS endowedwith the ability to ta
kle non-Markov problems. By
ontrast with Mi
higan style LCS like XCSM, ATNoS-FERES is deprived from any RL me
hanism. We haveshown that ATNoSFERES 
an produ
e 
ontrollersthat are both very e�
ient in terms of the behaviorthey generate and very parsimonious in the way theyspe
ify that behavior. Thus we believe that ATNoS-FERES is a good starting point to address more 
om-plex non-Markov problems than the ben
hmark exper-iment studied here.



The 
omparison with XCSM suggests two points inour agenda of resear
h. First, it seems useful to inves-tigate the possibility of adding a parameter equivalentto the 
lassi�er for
e, so as to 
ombine RL with theGA already in use.Se
ond, it seems ne
essary to address the sub-optimality problem highlighted in �5.4. It seems that�nding an optimal individual in the Maze10 environ-ment from the one presented in �gure 5 requires a veryexpensive stru
tural modi�
ation. As a result, it isunlikely that the GA will �nd this modi�
ation with-out further improvements in the representation or theme
hanisms. In that respe
t, the ability of 
lassi�ersto deal with unspe
i�ed internal states seems a keyadvantage, and we should try to �nd a way to givethat property to ATNoSFERES. Though this featurehas not been implemented at this time in the model,it would only 
onsist in 
opying the same edge on ea
hexisting node, by adding one spe
ial 
onne
tion tokento the geneti
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