A Comparison between ATNoSFERES and XCSM

Sébastien Picault*
*Laboratoire d’Informatique
de Paris 6
8 rue du Capitaine Scott
75 015 Paris

Samuel Landau*

Abstract

In this paper we present ATNoSFERES, a
new framework based on an indirect encoding
Genetic Algorithm which builds finite-state
automata controllers able to deal with per-
ceptual aliasing. We compare it with XCSM,
a memory-based extension of the most stud-
ied Learning Classifier System, XCS, through
a benchmark experiment. We then discuss
the assets and drawbacks of ATNoSFERES
in the context of that comparison.

Keywords

Evolutionary Algorithms, Learning Classifier Systems,
perceptual aliazing, Augmented Transition Networks

1 Introduction

Most Learning Classifier Systems (LCS) (5) are used
to tackle problems where situated and adaptive agents
are involved in a sensori-motor loop with their environ-
ment. Such agents perceive situations through their
sensors as vectors of several attributes, each represent-
ing a perceived feature. The task of the agents is to
learn the optimal policy — ¢.e. which action to per-
form in every situation, in order to fulfill their goals
the best way they can. Like in the general Reinforce-
ment Learning (RL) framework (17), the goals of LCS
are defined by scalar rewards provided by the envi-
ronment. The policy is defined by a set of rules — or
classifiers — specifying which action to choose accord-
ing to conditions about the perceived situations.

In real world environments, it may happen that agents
perceive the same situation in several different loca-
tions, some requiring different optimal actions, giving
rise to perceptual aliazing problems. In such cases,

Olivier Sigaud* Pierre Gérard***
**Dassault Aviation
DGT/DPR/ESA
78, Quai Marcel Dassault

92552 St-Cloud Cedex

the environment is said non-Markov, and agents can-
not perform optimally if their decision at a given time
step only depends on their perceptions at the same
time step. Though they are more often used to solve
Markov problems, there are several attempts to ap-
ply LCS to non-Markov problems, like (18, 10) for in-
stance.

Within this framework, explicit internal states were
added to the classical (condition, action) pair of the
classifiers (11, 10, 20). These internal states provide
additional information to choose the optimal action
when the problem is non-Markov. The problem of
properly setting the classifiers, and setting the internal
states in particular, is devoted to Genetic Algorithms
(GA).

In this paper, we will compare LCS to “ATNoS-
FERES”, a new system that also uses GA to automat-
ically design the behavior of agents facing problems in
which they perceive situations as vectors of attributes,
and have to select actions in order to fulfill their goals,
in non-Markov environments. In ATNoSFERES, the
goals are defined thanks to a fitness measure.

In the first section, we present the features and prop-
erties of the ATNoSFERES model (9, 15). It relies
upon oriented, labeled graphs (§ 2.1) for describing
the behavior and the action selection procedure. The
specificity of the model consists in building this graph
from a bitstring (§ 2.2) that can be handled exactly like
any other bitstring of a Genetic Algorithm, with addi-
tional operators. Then we show that the graph-based
representation is formally very similar to LCS repre-
sentations, and, in particular, to XCSM (§ 3.2); thus
we compare both approaches through classical experi-
ments (§4). As a result of this comparison, we discuss
the assets and drawbacks of both representations ac-
cording to different criteria (§5). Finally, we conclude
by stating what should be added to ATNoSFERES so
as to improve it further where the comparison is not

in its favor.

2 Description of ATNoSFERES

2.1 Graph-based expression of behaviors

The architecture provided by our model involves an
“Augmented Transition Networks” (ATN)-like graph
(21) which is basically an oriented, labeled graph with
a Start (or initial) node and an End (or final) node (see
figure 5). Nodes represent states and edges represent
transitions of an automaton.

Such graphs have already been used for describing the
behavior of agents (9). The labels on edges specify
a set of conditions (e.g. ¢l ¢3 7) that have to be
fulfilled to enable the edge, and in a sequence of actions
(e.g. ab a2 a4!) that are performed when the edge
is chosen. We use those graphs as follows:

e At the beginning (when the agent is initialized),
the agent is in the Start node (S).

e At each time step, the agent crosses an edge:

1. It computes the set of eligible edges among
those starting from the current node. An
edge is eligible when either it has no condi-
tion label or all the conditions on its label are
simultaneously true.

2. If the set is empty, then an action is chosen
randomly; else an edge is randomly chosen in
the set.

3. The edge occurs by performing the actions
on the label of the current edge. When the
action part of the label is empty, an action is
chosen randomly.

4. The new current node becomes the destina-
tion of the edge.

e The agent stops when it is in the End node (E).

Note that most of behavioral structures involved in
classical evolutionary approaches, e.g. program trees
in Genetic Programming (7), are entirely interpreted
at each time step to determine the actions to perform.
It is not the case in our approach which relies on inter-
nal nodes. An example of the perception-action cycle
performed during each time step is given further on
figure 3.

2.2 The graph-building process

The behavioral graph is built from an hereditary sub-
strate, by adding nodes and edges to a basic structure
containing only the Start and End nodes.

There are many different evolutionary techniques to
automatically design structures such as finite-state
machines (2), neural networks (22) or program trees
(7). Very roughly, we can sketch an opposition be-
tween, on the one hand, approaches that use the geno-
type as an encoding of a set of parameters (like Ge-
netic Algorithms (5, 1, 3) or Evolution Stategies (16))
and, on the other hand, approaches that use the geno-
type as a structure producing the phenotype (such as
Genetic Programming (7, 14), Evolutionary Program-
ming (2), L-systems (12), developmental program trees
(6, 4, 13)...).

In the ATNoSFERES model, we try to conciliate ad-
vantages from both kind of approaches: on the one
hand, since the behavioral phenotype is produced by
the interpretation of a graph, we want it to be of any
complexity; on the other hand, we use a fine-grain
genotype (a bitstring) to produce it, in order to allow
a gradual exploration of the solution space through
“blind” genetic operators.

Therefore, we follow a two-step process (see figure 1) !:
1. The bitstring (genotype) is translated into a se-

quence of tokens.

2. The tokens are interpreted as instructions of a ro-
bust programming language, dedicated to graph
building.

tokens stack

= =%

]
|
D e —> (% —
[
translator —
—
TN / structure
bitaring/ interpreter

Figure 1: The principles of the genetic expression we
use to produce the behavioral graph from the bitstring
genotype. The string is first decoded into tokens (a),
which are interpreted in a second step as instructions
(b) to create nodes, edges, and labels (¢).

2.2.1 Translation

Translation is a simple process that reads the bitstring
genotype and decodes it into a sequence of tokens
(symbols). It uses therefore a genetic code, i.e. a func-
tion G : {0,1}" — T (|T| < 2") where T is the set

"More details about those mechanisms and the nature
of the tokens are provided in (9, 15)

of possible tokens (the different roles of which will be
described in the next paragraph). Depending on the
number of available tokens, the genetic code might be
more or less redundant. Binary substrings of size n
(decoded into a token each) are called “codons”.

2.2.2 Interpretation

Tokens are instructions of the ATNoSFERES graph-
building language. They operate on a stack in which
data tokens or parts of the future graph are stored.
All tokens fall into the following categories:

e condition or action tokens, which only put data
in the stack, which will be used to label edges
between nodes;

e node creation or node connection tokens (the lat-
ter use nodes and action/condition tokens already
in the stack);

e stack manipulation tokens (swap, copy...) which
have an action upon the stack containing nodes
and action/condition tokens.

In order to cope with a “blind” evolutionary process
(i-e. based on random mutations on a fine-grain geno-
type), the graph built has to be robust to mutations
(15). For instance, the replacement of a token by an-
other, or its deletion, should only have a local impact,
rather than transforming the whole graph.

If an instruction cannot be executed successfully, it
is simply ignored; for the same reasons, when all to-
kens have been interpreted, the graph is made consis-
tent, e.g. by linking some nodes to Start/End nodes.
Any sequence of tokens is meaningful, thus the graph-
building language is robust to variations affecting the
genotype (there is no specific syntactical nor semanti-
cal constraint on the genetic operators).

2.3 Integration into an evolutionary
framework

In this paper, the ATNoSFERES model has been ap-
plied to produce agents behaviors within an evolution-
ary algorithm.

Therefore, each agent has a bitstring genotype from
which it can produce a graph (the genetic code de-
pends on the perception abilities of the agent and on
the actions it can perform). The fitness of each agent
is computed by evaluating its behavior in an envi-
ronment. Then individuals are selected depending on
their fitness and bred to produce offspring.

Selected Action
[E] : Move East

™

Local Perception - ‘ *

1 (@

E-N7?
st

Current Situation
[E ~NE N ~NW-W-SW'S ~SE]

l Matching

e

@ & Selection @ 8
? E-N?
]

s E-N?
st st s!

O O

Figure 2: In this example, the agent, located in a cell
of the maze, perceives the presence/absence of blocks
in each of the eight surrounding cells. It has to de-
cide whether to try to move towards one of the eight
adjacent cells. From its current location, the agent
perceives [E —NE N —NW —W —SW S —SE] (token E is
true when the east cell is empty). From the current
state (node) of its graph, two edges (in bold) are eli-
gible, since the condition part of their label match the
perceptions. One is randomly selected, then its action
part (move East) is performed and the current state is
updated.

The genotype of the offspring is produced by a classi-
cal crossover operation between the genotypes of the
parents. Additionally, we use two different mutation
strategies to introduce variations into the genotype of
new individuals: classical bit-flipping mutations, and
random insertions or deletions of one codon. This
modifies the sequence of tokens that will be produced
by translation, so that the complexity of the graph it-
self may change. Nodes or edges can in fact be added
or removed by the evolutionary process, as can condi-
tion/action labels.

3 Learning Classifier Systems

As explained in the introduction, the problems tackled
by LCS are characterized by the fact that situations
are defined by several attributes representing perceiv-
able properties of the environment. A LCS has to learn
classifiers, which define the behavior of the system as
shown in figure 3. Within the LCS framework, the
use of don’t care symbols “#” in the condition parts
of the classifiers results in generalization, since don’t
care symbols make it possible to use a single descrip-
tion to describe several situations. Indeed, a don’t care
symbol matches any particular value of the considered

Local Perception 4—‘ +7 Selected Action
[E] :MoveEast
1 1 -
1 (@
1 Hom 1

{

Current Situation
[01010111]

LM atching

Condition Action
[#00#0#1#] [N
[#10104#1] [9]
[#10##1#1] [E]
[10###101] [NE]
[0#10#0#0] [W

}$} [#10##1#1] [

ClassifiersList

Figure 3: The agent perceives the presence/absence
(resp. 1/0) of blocks in each of the eight surround-
ing cells (considered clockwise, starting with the north
cell). Thus from its current location, the agent per-
ceives [01010111]. Within the list of classifiers char-
acterizing it, the LCS first selects those matching the
current situation. Then, it selects one of the matching
classifiers and the corresponding action is performed.

attribute.

The main issue with generalization is to organize con-
ditions and actions so that the don’t care symbols are
well placed. To do so, LCS usually call upon a GA.

In the Pittsburg style, the GA evolves a population of
LCS with their whole lists of classifiers. The lists of
classifiers are combined thanks to crossover operators
and modified with mutations. The LCS are evaluated
according to a fitness measure and the more efficient
ones — with respect to the fitness — are kept. Thus, like
in the ATNoSFERES model, a Pittsburg style LCS
evolves a population of controllers.

On the contrary, in the Michigan style, the GA evolves
a population of classifiers within the list of classifiers
of a single agent. Here, this is the classifiers which
are combined and modified. A fitness is associated
to each classifier and the best ones are kept. Thus
Michigan style LCS use GA to perform online learning:
the classifiers are improved during the life time of the
agent. Usually, such LCS rely on utility functions that
depend on scalar rewards given by the environment, as
defined in the RL framework (17).

In most of the early LCS (5), the fitness was defined
directly according to the utility associated to the clas-
sifier. After having defined a very simple LCS called
ZCS in (19), Wilson found much more efficient to de-
fine the fitness according to the accuracy of the utility

prediction. TIts system, XCS (20), is now the most
widely used LCS to solve Markov problems.

3.1 XCSM

Dealing with simple Condition-Action classifiers
does not endow an agent with the ability to behave op-
timally in perceptually aliazed problems. In this kind
of problems, it may happen that the current perception
does not provide enough information to always choose
the optimal action: as soon as the agent perceives the
same situation in different states, it will choose the
same action though this action may be inappropriate
in some of these states (see figure 4).

For such problems, it is necessary to introduce inter-
nal states in the LCS. Tomlinson and Bull (18) pro-
posed a way to probalistically link classifiers in or-
der to bridge aliazed situations. Lanzi (10) proposed
XCSM, where M stands for Memory, as an extension
of XCS with explicit internal states. XCSM manages
an internal memory register composed of several bits
that explicitely represent the internal state of the LCS.
Therefore, a classifier contains four parts (cf. table 1)
an external condition about the situation, an internal
condition about the internal state, an external action
to perform in the environment and an internal action
that may modify the internal state.

The internal condition and the internal action contain
as many attributes as there are bits in the memory
register. In order to be selected by the LCS, a clas-
sifier has to match with both external and internal
conditions. When it is selected, the LCS performs the
corresponding action in the environment and modifies
the internal state if the internal action is not composed
only of don’t change symbols “#”. When a classifier is
fired, a don’t care symbol in the internal action re-
sults in letting the corresponding bit in the memory
register at its value before applying the classifier. As
XCS, XCSM draws benefits from generalization in the
external condition, but also in the internal condition
and the internal action.

The memory register provides XCSM with more than
just the environmental perceptions. It permits to deal
with perceptual aliazing by adding information from
the past experience of the agent.

3.2 Formal relations between ATNoSFERES
and Learning Classifier Systems

An ATN such as those evolved by ATNoSFERES can
be translated into a list of classifiers, whether they
have been obtained through a Michigan or a Pitts-
burgh style process. The nodes of the ATN play the

role of internal states and permit ATNoSFERES to
deal with perceptual aliazing. The edges of the ATN
carry several informations which can be translated in
a rule-based formalism: the source and destination
nodes of the edge can be respectively represented by
an internal condition and an internal action; the condi-
tions associated to the edges correspond to the exter-
nal conditions of the classifiers; the actions associated
to the edges correspond to the external actions of the
classifiers.

It is clear in our example that an important differ-
ence between both formalisms is due to the possibility
to perform a sequence of actions (such as a3-ab) as
a consequence of matching conditions. We restricted
this feature to a single action in the experiments de-
scribed below (§ 4.3).

There are two other differences, that have been kept
in our experiments:

e When the action part of the edge label is empty
(represented by a # on the graphs), an action is
randomly chosen among possible ones. We repre-
sent it by a classifier containing only # in the LCS-
like formalism. The consequences of that feature
will be discussed in §5.

e In XCSM, the “internal state” is regarded as an
extension, while it is an inherent feature of the
graph-based approach. Hence XCSM may have
general rules that match in any situation (what-
ever the internal state can be, i.e. #).

4 Experiments

4.1 The perceptual aliazing problem

In some environments (like Maze10 on figure 4), some
states may induce identical perceptions by the agent,
though different actions must be performed. This de-
fines the “perceptual aliazing” issue that is frequently
encountered in real-world environments.

We have compared the nature of the results that have
been obtained through Evolution to those produced by
a LCS like XCSM (10) in the Maze10 environment.

4.2 Experimental setup

We tried to reproduce an experimental setup close to
that used in Lanzi (10) with the Maze10 environment,
with regards to the specificities of our model.

The agents used for the experiments are able to per-
ceive the presence/absence of blocks in the eight adja-
cent, cells of the grid. They can move in those adjacent

S8 $41:S51 42 S52 43 9

Figure 4: The Mazel0 environment. F represents the
goal to reach (food) from any cell of the maze; a few
cells are unambiguous (S;) but in the other ones the
same perceptual situations may require either similar
actions or different ones (e.g. go north in Sy {154y
but go south in 5'2_3)

cells (the move will be effective when the cell is empty
or contains food). Thus the genetic code includes 16
condition and 8 action tokens. In order to encode 24
condition-action tokens together with 7 stack manipu-
lation and 4 node creation/connection tokens, we need
at least 6 bits to define a token (26 = 64 tokens, which
means that some tokens are encoded twice).

Each experiment involves the following steps:

1. Initialize the population with N = 300 agents
with random bitstrings.

2. For each generation, build the graph of each agent
and evaluate it in the environment.

3. Select the individuals with higher fitness (namely,
20 % of the population) and produce new ones by
crossing over the parents. The system performs
probabilistic mutations and insertions or deletions
of codons on the bitstring of the offspring.

4. Tterate the process with the new generation.

In order to evaluate the individuals, they are put into
the environment, starting on any blank cell in the grid,
and they have to find the food within a limited amount
of time (20 time steps). The agent can perform only
one action per time step; when this action is incom-
patible with the environment (e.g. go towards a wall),
it is simply discarded (the agent loses one time step).
Its fitness for each runis: F=D - K+ B+ 2% R (F":
fitness for the run; D: number of blank cells that have
been discovered during the run; K: time steps spent
on already known cells; B: bonus when the food is
found (30 points); R: remaining time if the food has
been found within the time limit (R < 19)). It was
designed to advantage exploring agents (see D and K)

that reach quicker the food (thanks to the R coeffi-
cient, remaining time steps are more rewarding than
the discovering of any more new cells). Since there
is no reinforcement learning during the run, the fit-
ness has to provide delayed information to measure
the quality of the behavior. Each agent is evaluated 4
times starting on each empty cell, then its total fitness
is the sum of the fitnesses computed for each run. In
the optimal case, the fitness is 4500.

The experiments reported here were carried out on var-
ious initial genotype sizes, from 300 to 540 bits. The
original population genotype sizes change during evo-
lution. Each experiment has been bounded by 10,000
generations, which in most cases is sufficient to reach
high enough fitness values.

4.3 Results

Figure 5: Graph of the best individual in a represen-
tative experiment

A representative example is reported on figure 6, which
shows the best and average fitness values.

Table 1: A LCS-like representation of the graph on fig-
ure 5. EC: external conditions, IC: internal conditions,
EA: external actions, IA: internal actions

EC IC||EA|IA
E NE N NW W SW S SE
1 # # # # # # # |00|| N |01
O # # 1 # # # # |00l E |O1
0O # # # # # # |[O0O|[NE|O1
1 0 # # # # # |01 N |##
0 # # # # # # |O1l| NE|##
O # # # # # # # |O1L|| E |##
1 # 1 # # # # #|01|| W |10
0 # # # # # # 10| S |##
1 1 # # # # |10 || SW|##

Figure 5 presents a behavioral graph obtained by the
best individual in a representative experiment. It has
also been represented in a LCS-like formalism (ta-
ble 1).

The agent whose graph is described in figure 5 has the

4500
max fitness
avg fitness -------
4000

3500

3000

2500

2000

fitness

1500

1000

500

-500

-1000
0 2000 4000 6000 8000 10000

generations

Figure 6: Best and average fitness obtained with 360-
bit genotypes

following behavior: from any vertical corridor, it first
reaches horizontal corridor, then the NE corner, and
finally goes straight to the food. This is a nearly op-
timal solution. The graph presented in figure 5 shows
that a nearly optimal behavior can be obtained. Espe-
cially, there are clear distinctions between the bottom
of vertical corridors (N —NE identifies cells Sg1 93 »),
the top of vertical corridors (NE — Sg,S7,S53 »), the
horizontal corridor (E — Ss, S{4,53 n) and the crucial
NE corner (Sy is identified by —=E —N —NW).

5 Discussion

5.1 Readability and Minimality of
Representation

One important advantage of ATNoSFERES with re-
spect to XCSM is that the ATN resulting from the
evolution is very easy to understand. But this feature
is not only a question of graphical representation.

XCSM produces a constant size list of classifiers into
which the size of the external conditions part and of
the memory register must be chosen in advance. As
a result, there are generally more classifiers and more
internal states than necessary.

By contrast, ATNoSFERES builds a graph whose
number of nodes, edges, and labels on the edges are
not given in advance. Thus it can build a minimal
controller to solve the given problem.

Another key difference is that, in XCSM, the sequence
of internal states of the agent during one run is not ex-
plicitely stated and must be derived by hand through
careful examination. On the contrary, this sequence is
perfectly clear when one reads an ATN. Furthermore,
the internal state is very stable in ATNoSFERES. But
this advantage of ATNoSFERES has its counterpart

that will be discussed in § 5.2: ATNoSFERES cannot
represent Condition-Action rules that can be fired
whatever the internal state is, as it is the case in XCSM
with an internal condition composed of “#” only.

5.2 Generalization

An important difference between XCSM and ATNoS-
FERES formalisms call upon the elements on which
generalization can take place. In the current imple-
mentation of ATNoSFERES, generalization is not pos-
sible with respect to the internal conditions and ac-
tions. This prevents ATNoSFERES from dealing with
a default behavior, regardless of the internal state.

In XCSM, a # in the internal condition allows the clas-
sifier to be applied whatever the internal state repre-
sented by the memory register is. This mechanism
permits to act regardless of the internal state.

Furthermore, in the current implementation of AT-
NoSFERES, there is no explicit selection pressure on
the generality of the conditions on the labels, while
the production of generalized classifiers is inherent to
the LCS approach. Thus, we do not necessarily obtain
general rules and the condition labels still contain re-
dundant information, e.g. in the identification of the
NE corner.

However, the conditions that are actually encountered
in the graphs are quite general. In fact, once a good
solution has been found, the population tends to be-
come homogeneous and the size of genotypes stabi-
lizes. Many different genotypes can lead to similar
behaviors, but we assume that there is a bias towards
compact solutions.

5.3 Reinforcement Learning and Classifier
Selection

Another important difference between the ATN pro-
duced by ATNoSFERES and the list of classifiers pro-
duced by XCSM is that in the latter each classifier
is endowed with a prediction representing its propen-
sity to be fired, while in the former the edges get an
equal probability to be selected if their condition token
matches with the current situation.

Thus, in ATNoSFERES, if two edges can be selected
simultaneously, the selection will not be deterministic.
Since the optimal behavior is compatible with non-
determinism only if both behaviors are strictly equiva-
lent, the selection pressure in ATNoSFERES will pre-
vent non-determinism in situations where it is detri-
mental. This provides a strong bias towards minimal
controllers.

By contrast, in XCSM, several classifiers can match
with the same situation, but only the strongest will be
fired. Thus, it is not necessary that the other matching
classifiers are deleted.

However, one important advantage of LCS with re-
spect to ATNoSFERES is that the strength of classi-
fiers are learned through a RL algorithm. Combining
GA with RL is well known to help finding better indi-
viduals faster. In the Markov decision process (MDP)
context, RL algorithms use more information about
the experience of the agent than GA. While the GA
only selects agents according to a global fitness func-
tion, RL algorithms distribute the reward obtained
when the goal is reached only to the rules which have
contributed to the behavior, taking into account the
exact sequence of actions performed by the agent in
the way the reward is back-propagated.

In order to remedy the fact that ATNoSFERES does
not use RL, it has been necessary to include into the
fitness function elements that carry some information
about the actual behavior of the agent (see §4.2). But
tuning such a fitness function is both difficult and cru-
cial for the success of the experiment.

5.4 Optimality

The behaviors that have been obtained are still not
completely optimal: when the agent starts from the
west corridor, it should recognize the NW corner and
then go directly in the third vertical corridor without
checking the NE corner as it does. This is partly due
to the fitness function we used: part of the time lost in
exploring the NE corner is balanced by the exploration
reward. Additionally, the structure for recognizing the
NW corner would require at least two nodes and five
edges and associated condition/action tokens. Thus
it would constitute a major structural change in the
graph with respect to the small selective advantage.

6 Conclusion and Future Work

From the perspective adopted in this paper, ATNoS-
FERES is similar to a Pittsburgh style LCS endowed
with the ability to tackle non-Markov problems. By
contrast with Michigan style LCS like XCSM, ATNoS-
FERES is deprived from any RL mechanism. We have
shown that ATNoSFERES can produce controllers
that are both very efficient in terms of the behavior
they generate and very parsimonious in the way they
specify that behavior. Thus we believe that ATNoS-
FERES is a good starting point to address more com-
plex non-Markov problems than the benchmark exper-
iment studied here.

The comparison with XCSM suggests two points in
our agenda of research. First, it seems useful to inves-
tigate the possibility of adding a parameter equivalent
to the classifier force, so as to combine RL with the
GA already in use.

Second, it seems necessary to address the sub-
optimality problem highlighted in §5.4. It seems that
finding an optimal individual in the Maze10 environ-
ment from the one presented in figure 5 requires a very
expensive structural modification. As a result, it is
unlikely that the GA will find this modification with-
out further improvements in the representation or the
mechanisms. In that respect, the ability of classifiers
to deal with unspecified internal states seems a key
advantage, and we should try to find a way to give
that property to ATNoSFERES. Though this feature
has not been implemented at this time in the model,
it would only consist in copying the same edge on each
existing node, by adding one special connection token
to the genetic code.

References

[1] K. A. De Jong. An Analysis of the Behavior of a
Class of Genetic Adaptive Systems. PhD thesis,
Dept. of Computer and Communication Sciences,
University of Michigan, 1975.

[2] L. J. Fogel, A. J. Owens, and M. J. Walsh. Ar-
tificial Intelligence through Simulated Evolution.
John Wiley & Sons, 1966.

[3] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, 1989.

[4] F. Gruau. Neural Network Synthesis Using Cel-
lular Encoding and the Genetic Algorithm. Ph.D.
thesis, ENS Lyon — Université Lyon I, 1994.

[5] J. H. Holland. Adaptation in Natural and Artifi-
cial Systems: An Introductory Analysis with Ap-
plications to Biology, Control, and Artificial Intel-
ligence. University of Michigan Press, Ann Arbor,
MI, 1975.

[6] J. Kodjabachian and J.-A. Meyer. Evolu-
tion and Development of Neural Controllers for
Locomotion, Gradient-Following, and Obstacle-
Avoidance in Artificial Insects. IEEE Transac-
tions on Neural Networks, 9:796-812, 1998.

[7] J. R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection. MIT Press, Cambridge, MA, 1992.

[8] J. R.Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, editors. Genetic Programming 1996: Pro-

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

ceedings of the First Annual Conference, Stanford
University, CA, 1996. MIT Press.

S. Landau, S. Picault, and A. Drogoul. AT-
NoSFERES: a Model for Evolutive Agent Behav-
iors. In Proceedings of the AISB’01 Symposium on
Adaptive Agents and Multi-Agent Systems, 2001.

P. L. Lanzi. An Analysis of the Memory Mecha-
nism of XCSM. In Proceedings of the Third Ge-
netic Programming Conference, 1998.

P. L. Lanzi and S. W. Wilson. Toward optimal
classifier system performance in non-markov en-
vironments. Evolutionary Computation, 8(4):393—
418, 2000.

A. Lindenmayer. Mathematical Models for Cel-
lular Interaction in Development, parts I and II.
Journal of theoretical biology, 18, 1968.

S. Luke and L. Spector. Evolving Graphs and Net-
works with Edge Encoding: Preliminary Report.
In Koza et al. (8), pages 117-124.

D. J. Montana. Strongly Typed Genetic Program-
ming. In Evolutionary Computation, volume 3.
1995.

S. Picault and S. Landau. FEthogenetics and
the Evolutionary Design of Agent Behaviors. In
N. Callaos, S. Esquivel, and J. Burge, editors,
Proceedings of the 5th World Multi-Conference on
Systemics, Cybernetics and Informatics (SCI'01),
volume I11, pages 528-533, 2001.

H.-P. Schwefel. Evolution and Optimum Seeking.
John Wiley and Sons, Inc., 1995.

R. S. Sutton and A. G. Barto. Reinforcement
Learning, an introduction. MIT Press, Cam-
bridge, MA, 1998.

A. Tomlinson and L. Bull. CXCS. In P. Lanzi,
W. Stolzmann, and S. Wilson, editors, Learning
Classifier Systems: from Foundations to Applica-
tions, pages 194—208. Springer Verlag, Heidelberg,
2000.

S. W. Wilson. ZCS, a Zeroth level Classifier Sys-
tem. Evolutionary Computation, 2(1):1-18, 1994.

S. W. Wilson. Classifier Fitness Based on Ac-
curacy. Evolutionary Computation, 3(2):149-175,
1995.

W. A. Woods. Transition Networks Grammars
for Natural Language Analysis. Communications
of the Association for the Computational Machin-
ery, 13(10):591-606, 1970.

X. Yao. Evolving Artificial Neural Networks. Pro-
ceedings of the IEEFE, 87, 1999.

