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Abstract. We used evolution to shape a neural controller for keeping
a blimp at a given altitude, and as horizontal as possible, despite dis-
turbing winds. The blimp has a lenticular shape whose aerodynamic
properties make it quite different from a classical cigar-shaped airship.
Evolution has exploited these features to generate a neural network that
proved to be more efficient than a hand-designed PID-based controller
that independently controlled the blimp’s three degrees of freedom.
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1 Introduction

Over about the past ten years, attempts at evolving neural controllers for robots
have proliferated (see [4] for a review), and this approach is currently the most
popular in evolutionary robotics ([6,5]). However, it mostly involves crawling,
rolling or walking robots, i.e., robots that move on the ground, and much more
rarely swimming or flying robots, probably because such robots are still uncom-
mon in academic laboratories. This situation may well evolve quickly, at least as
far as aerial robots are concerned, if only because of the growing military and
civilian needs for machines as small and as energetically economical as possible -
a set of qualities that perfectly fits academic constraints. Moreover, the control
of robots moving in a 3D-environment, whose complex dynamics are likely to
be affected by wind or other disturbances, and whose sensory-motor equipment
may well be limited by the size and energy constraints just alluded to, raises new
and interesting challenges that will certainly trigger a number of future research
efforts.

Be that as it may, previous attempts at evolving neural controllers for flying
robots have been made by Doncieux [1,2] and by Zufferey et al. [7]. The for-
mer work produced neural networks able to combat the effects of wind and to
maintain either a constant flying speed and direction in a simulated blimp, or
a constant position with respect to the ground in a simulated helicopter. The
latter one produced neural controllers that moved a real blimp around a room
and used visual information to detect collisions with walls.



Fig. 1. A 10-meters wide lenticular blimp.

In the experiments reported here, we used an evolutionary algorithm to de-
sign a neural network that controls roll, pitch and altitude together in a simulated
lenticular blimp. Although the ultimate goal of this research is to design an en-
tirely automatic pilot, these experiments mostly contribute to an intermediate
objective, i.e., to design a system that will help a human to pilot a real blimp
10-meters wide (figure 1). Because this engine has up to ten effectors, direct
control of each motor would be too difficult for a human, and the evolved neural
controller will help him in this task. The pilot will just need to set the desired
altitude and to control the horizontal position of the aircraft, thus reducing the
number of commands from ten to only three.

The article first describes the simulation model and the evolutionary ap-
proach that were used. Then, it describes the results that were obtained and
provides details about the inner workings of an efficient controller. Directions
for future work are also indicated.

2 Simulation model

A lenticular shape affords several advantages over the traditional cigar-shaped
configuration that characterizes most blimps. In particular it renders the aircraft
less prone to wind perturbations, thus allowing it, for instance, to be parked
outside, directly tied to the ground, whereas cigar-shaped blimps, that need to
be linked to the ground by some cable, cannot withstand high winds outside
a hangar. However, the dynamic behavior of a lenticular blimp is much more
complicated than that of a cigar-shaped blimp, thus providing a richer set of
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Fig. 2. Side and above views of the blimp’s model. In the experiments reported here,
only motors 1 to 3 were used.

interactions between the robot and its environment, on the one hand, but en-
tailing greater efforts to devise realistic simulation models of such behavior, on
the other.

The actual blimp that this research is centered around is equipped with two
inclinometers - that are sensitive respectively to roll and pitch -, with an altime-
ter, a GPS, an anemometer, and a video camera. The blimp is also equipped
with seven motors and three control surfaces (figure 2). Motors 1 to 3 are used
to control pitch, roll and altitude. Motors 4 to 7 are used for propulsion, but
motors 6 and 7 may also control the yaw of the aircraft if their thrusts are set
antagonistically. Control surfaces serve the same purpose as motors, although
they waste less energy, but they are not usable in all circumstances. In the work
to be described here, we did not use them and concentrated on the control of
altitude, pitch and roll using only the inclinometers and the altimeter, on the
one hand, and motors 1 to 3, on the other.



The general equation that rules the dynamics of the model is:

MI' = Mg+ P + Aoxyz + Foxvyz

A is the aerodynamic force, F' is the resultant of command forces, and P
is Archimede’s thrust. To simplify, we suppose that the aircraft is balanced,
i.e., that the Archimede’s thrust exactly compensates gravity. The resultant of
aerodynamical forces acting on the blimp is computed according to equation:

Tocosi.cosj+ Py.sini.cosj
AGayz = | To.cosi.sinj + Py.sins. sin j (1)
—To.sin + Py.cost

where Ty is the drag and Py the lift, computed as follows:

Ty
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1 is the incidence and j the sideslip of the blimp, computed as follows:

. . Vr.
i = arcsin <— v ) (4)

rel

j = arcsin <L Vry> (5)
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Vret is the speed of the blimp relative to the surrounding air. Vr,, Vr, and
Vr, are its coordinates in the absolute reference. p = 1.2255kg/m?, S is the
reference surface: S = Vi, V. being the volume of the blimp.

Rotation speed and angles are computed as follows:

(g.sinp + r.cos p)
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2 = | q| is the rotation vector around the center of gravity. 8 is the pitch,
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respective contributions of the motors, the basket and the envelope.

The complete model is too complex to be described here in detail. Suffice
it to say that the corresponding code is more than 3000-instructions long, that
the mass of the air and the ground effect are taken into account, and that the
wind is modelled via a Drydden spectrum. Furthermore, Mt is set to 115kg and
V to 141m3, and the equations are integrated using a fourth order Runge-Kutta
method.

Numerous simulations have already been performed that validated the qual-
itative behavior of the airship. Preliminary experiments with the real blimp,
which aimed at assessing the correspondence between its behavior and that of
the simulated model, have also been carried out and yield encouraging results.

3 Evolutionary procedure

The procedure that serves to evolve neural networks able to control the blimp
calls upon an indirect encoding scheme that favors the discovery of symmetries
and the reuse of useful modules. Only a simplified version of this general scheme,
which will be described elsewhere, has been used here.

3.1 The chromosome

A chromosome encodes a list of modules, a list of links, and a list of template-
weight values. In this simplified version, a module is composed of just a single
connection between an input neuron and an output neuron, and links between
modules fuse the output neuron of a module with the input neuron of another
module. Other links serve to connect the input neuron of a module with a sensory
neuron whose activity level equals the error currently detected by the blimp’s
corresponding sensor. Likewise, other links serve to connect the output neuron
of a module with a motor neuron whose activity level, which varies between +1
and -1, modulates the maximum thrust that the blimp’s corresponding motor
exerts. By convention, these two categories of links are given connexion weights
of +1. Figure 3 illustrates how a chromosome is decoded into a neural network
that may exhibit symmetries and modular redundancies.

During the course of evolution, several mutation operators make it possible
to create or suppress some template-weights, links or modules. A single crossover
operator is used to exchange modules between chromosomes.
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Fig. 3. The chromosome on the left of the figure codes for the neural network on the
right, in which ¢,, are sensory neurons, and o0, are motor neurons. The chromosome
includes three lists. The list of modules and the list of template-weights specify the
synaptic weight associated with the inner connection of each module. The list of links
specifies how a given module is connected to a sensory neuron, a motor neuron or
to another module. Note that some modules or some weights may be defined in the
corresponding lists, but without being actually used in the final network.

3.2 Experimental set-up

The task to be performed was both to maintain the blimp at a target altitude
that changed over time, and to keep it as horizontal as possible, despite wind
disturbance. Therefore, the fitness function we used takes into account the error
on the three degrees of freedom we wanted to control, together with the energy
consumption, in order to encourage low cost solutions. Its expression is:

Sl - i) + So(l = 4200 + X1 - £15) + $r(1 - £2)
4xT
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in which 06(t) and dp(t) are the pitch and roll errors with respect to 0,
the desired values for these variables, and §z(t) is the difference between the
real altitude and the current target value. E(t) is the total energy consumed
during time step t. Epq, is the maximum energy motors can consume during
one time-step.

The neural networks that were generated could include three sensory neurons
whose activity levels were respectively equal to 06(t), dp(t) and 0z(t), and three
motor neurons whose activity levels determined the command forces. In other
words, the neural controllers could use the information provided by the blimp’s
inclinometers and altimeter to set the thrust that each of the three vertical
motors should exert.

Using a classical GA algorithm, we ran experiments lasting 1000 generations
with a population of 100 individuals to generate efficient controllers. The max-



imum number of modules that could be included in a given controller was set
to 20. The mutation and crossover rates were empirically chosen and did not
pretend to optimality. Template-weights were coded on 8 bits and varied be-
tween -10 and 10. Each neuron’s transfert function was a simple tanh function.
Fitness evaluations were performed along four different runs, each lasting 4 min
10 s of simulated time, a period near the middle of which the wind conditions
were changed, the corresponding speed and orientation being randomly chosen
between respectively Om/s and 6m/s and 0° and 360°. However, because of the
rudder, the blimp passively lined itself up with the wind direction in approx-
imately 2 seconds. Likewise, at some instant during each evaluation run, the
desired altitude was also randomly changed to some value between 100m and
200m,, while the roll and pitch errors were abruptly perturbed around their tar-
get 0 values. In other words, the fitness of each controller was assessed through
1000 sec of simulated time, a period during which both the wind conditions and
the control objectives were changed four times.

These experiments were performed using the SFERES framework [3] which
makes it easy to change every major option in the simulation set-up, be it the
evolutionary algorithm, the genotype-phenotype coding, the simulation model
or the fitness evaluation procedure.

4 Results

4.1 Observed behavior

Figure 4 shows the behavior generated by the best controller evolved in this
manner. It thus appears that, following each imposed disturbance, the altitude
(z) and roll () are effectively kept at desired values, whereas the pitch (6) tem-
porarily deviates from the desired null value, although it eventually does return
to it. This behavior exploits the dynamic properties of the blimp, whose lenticu-
lar shape makes it behave like a wing in the wind. Thus, when the blimp has to
go up or down, the pitch angle must be negative in the former case and positive
in the latter!. This makes it that, in order to improve fitness, the horizontal
trim of the blimp must not be maintained during the whole experiment. Similar
behavior has been observed with every controller getting a high fitness rating.

4.2 Comparison with a hand-designed controller

To evaluate the efficiency of this strategy, we hand-designed a reference controller
whose behavior was compared to that of the evolved network. This reference
controller called upon three PID modules that separately managed each degree
of freedom. The input of each such PID module was the error of the degree of
freedom it was supposed to keep, while its output was sent to an interface that
set the three motor thrusts. Thus, the altitude error generated identical thrusts

1jt is traditional in aeronautics to count as positive the angle of an aircraft steering
towards the ground.
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Fig. 4. Typical behavior generated by the best selected neural controller. 6 (pitch
angle) and ¢ (roll angle) must be kept at 0 (corresponding to a horizontal trim), while
the altitude must be adjusted to a target value. Wind conditions, altitude target, and
pitch and roll values are randomly changed every 2500 time-steps. It should be noted
that, when the blimp has to go up or down in order to reach the new target value, the
pitch is not kept at zero, but around a non-null value (approximately 0.17 radians, i.e.
10 degrees) whose sign depends upon the vertical direction the blimp has to follow. A
time-step corresponds to 25 ms, angles are in radians and altitude in meters (altitudes
are divided by 1000).

at the level of each motor, the roll error generated thrusts of opposite signs
for motors 2 and 3, and the pitch error generated thrusts of opposite signs for
motor 1, on the one hand, and for motors 2 and 3, on the other hand. The three
inner parameters of each PID module were also optimized with an evolutionary
algorithm.

A thorough comparison of the behaviors respectively generated by a hand-
designed controller and an evolved neural network reveals that the former, which
does not call upon any dynamic specificity of the lenticular shape, always main-
tains the horizontal trim of the blimp, a behavior fundamentally different from
that of the evolved neural controller. However, the neural controller is about
three times faster than the hand-designed one as far as the control of altitude is
concerned (figure 5) because it is able to exploit the dynamic couplings between
the blimp’s degree of freedom, as explained in the next subsection.
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Fig. 5. Comparison of the behaviors generated by an evolved neural network and by
a hand-designed system with respect to the control of altitude. The evolved controller
is three times faster than the hand-designed one. A time step corresponds to 25 ms,
altitudes are given in meters.

4.3 Experimental study of the neurocontroller

Figure 6 shows the evolved neurocontroller that generated the experimental re-
sults presented above. It consists of three sensory neurons, three motor neurons
and eight hidden neurons, encapsulated into nine modules. Hidden neurons 2
and 3 exhibit a recurrent connection.

As a consequence of this structure, altitude control calls upon the three
motors, as might have been expected. Pitch and roll control exploits only one
motor, a solution that would probably not be chosen by a human designer, but
which results in nearly the same effect on the blimp control.

In particular, it appears that, when there is no error in altitude, neuron
2 oscillates at a constant frequency, with a constant amplitude. At the level
of neuron 1, these oscillations are modulated in amplitude by the activity of
neuron 7 (figure 7). On average, these oscillations force the blimp to revert to a
null pitch.

When there is an error in altitude, the activity value of neuron 2 always
remains saturated, either at +1 - when the blimp is above the target altitude -
or at -1 - when the blimp is below the desired altitude. This constant value acts
as a bias on neuron 1, thus shifting the equilibirum point of pitch control from
zero to a non null value whose sign depends on the sign of the error on altitude.
Motor 1 accordingly inclines the blimp in order to generate the force that will



List of weights

0: w=2.5

1:w=-1.41
2: w=-8.89
3: w=-1.65
4: w=-8.11

5:
6:
7
8:
9:

List of modules

m0| m1|m2|m3|m4|m5|m6|m7|m8|m9|m10

w=7.08
w=1.49
=-3.46
w=-8.74
w=-1.25

9/5/8[4/8[2[1][5]5] 2|9

List of links

m6—>03 m8->m6 ml->m2
m4->03 il->m8 m2->m9
i0->m7 i2->m9  i2->m3
m7->01 m9->02 m3->m8
ml->m4 ml->ml0

i2->m1 m10->o01

Fig. 6. Structure of the best neural network obtained (right) together with the corre-
sponding chromosome (left). 79,i1 and i» are sensory neurons that measure pitch, roll
and altitude errors. o1, 02, and o3 are motor neurons that are used to set the blimp’s
horizontal trim and altitude.
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Fig. 7. Outputs of neurons 1, 2 and 7. Left: when the current altitude does not match
the target value, the activity level of neuron 2 is saturated (here, it equals -1), thus
acting as a bias on neuron 1. The activity level of this neuron, in turn, determines
how much, and in which direction, the blimp will be inclined to help getting back to
the target altitude. Right: when the altitude is correct, neuron 2 oscillates between its
saturation values. Its activity, as well as that of neuron 1, is modulated by the output

variations of neuron 7 to keep the blimp horizontal.
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reduce the altitude error, as previously explained (figure 7). Similar dynamic
couplings explain how roll error is controlled.

Concerning the oscillations, it can be shown that, when a pitch or roll error
is detected, because of the influence of the recurrent connection between neurons
2 and 3, a periodic activity is generated at the level of neuron 0, and that the
corresponding period (200 ms) is precisely the one that best exploits the time
constants of the blimp’s dynamic behavior. In other words, evolution discovered
a solution that capitalizes on the complex sensory-motor coupling that a lentic-
ular shape affords, and it ultimately converged towards a periodic signal that
minimizes pitch and roll oscillations at the same time.

5 Discussion and directions for future work

The above controller basically calls upon a ’bang-bang’ strategy that has proba-
bly been favored by the large range of values that could be assigned to connection
weights (4+10,-10), thus easily saturating the activation levels of the neurons.
Although it is efficient in simulation, it should not be implemented on the real
blimp because it would probably be too demanding at the motor level and liable
to cause damage. New evolutionary runs will accordingly be carried out with a
limited weight range.

Likewise, additional experiments are required to assess the respective roles
of the various implementation choices that have been made here on a purely
empirical basis, notably as far as mutation operators are concerned. This way,
an optimal evolutionary set-up could be used to tackle more complex problems
than those this article was focused upon. In particular, future experiments will
involve the camera, and all available motors and control surfaces, at the same
time, in order to minimize the energy spent in keeping the blimp at a given
altitude, as horizontal as possible, and directly above a given objective. This
will entail using a higher number of sensors and actuators than currently done
in evolutionary robotics, in order to control up to five degree of freedom, and
will in particular help in assessing the scalability of our approach.

Naturally, our ultimate goal is to implement the resulting controllers on the
real blimp and to demonstrate their effectiveness.

6 Conclusion

This work demonstrates that it is possible to automatically evolve neural con-
trollers able to exploit the highly specific dynamic couplings between a lenticular
blimp’s degrees of freedom. In particular, these controllers are more efficient than
humanly designed ones that do not exploit such couplings, while remaining sim-
ple enough to be easily implemented on an on-board computer.
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