
Designing E�ient Exploration with MACS:Modules and Funtion ApproximationPierre Gérard and Olivier SigaudAnimatLab (LIP6)8, rue du Capitaine Sott75015 PARISAbstrat. MACS (Modular Antiipatory Classi�er System) is a new Anti-ipatory Classi�er System. With respet to its predeessors, ACS, ACS2 andYACS, the latent learning proess in MACS is able to take advantage of newregularities. Instead of antiipating all attributes of the pereived situationsin the same lassi�er, MACS only antiipates one attribute per lassi�er. Inthis paper we desribe how the model of the environment represented by thelassi�ers an be used to perform ative exploration and how this explorationpoliy is aggregated with the exploitation poliy. The arhiteture is validatedexperimentally. Then we draw more general priniples from the arhiteturalhoies giving rise to MACS. We show that building a model of the environmentan be seen as a funtion approximation problem whih an be solved withAntiipatory Classi�er Systems suh as MACS, but also with auray-basedsystems like XCS or XCSF, organized into a Dyna arhiteture.1 IntrodutionResearh on Learning Classi�er Systems (LCSs) has reeived inreasing attentionover the last few years. This surge of interest has onretized itself in two di�erentdiretions.First, a trend alled �lassial LCSs� hereafter omes from the simpli�ation ofHolland's initial framework [Hol85℄ by Wilson. The design of ZCS [Wil94℄ and thenXCS [Wil95℄ resulted in a dramati inrease of LCS performane and appliability.The latter system, using the auray of the reward predition as a �tness measure,has proven its e�etiveness on di�erent lasses of problems suh as adaptive behaviorlearning or data mining. XCS an be onsidered as the starting point of most newwork along this �rst line of researh.Seond, a new family of systems alled Antiipatory Learning Classi�er Systems(ALCSs) has emerged, showing the feasibility of using model-based ReinforementLearning (RL) in the LCS framework. This seond line of researh is more inlined touse heuristis rather than geneti algorithms (GAs) in order to deal with the improve-ment of lassi�ers. Several systems (e.g. ACS [Sto98,Sto00℄, ACS2 [But02a℄ and YACS[GSS02℄) have highlighted the interesting properties of this family of approahes.The way ALCSs ahieve model-based RL onsists in a major shift in the lassi�ersrepresentation. Instead of [ondition℄ [ation℄ lassi�ers, they use a [ondition℄[ation℄ [effet℄ representation, where the [effet℄ part represent what wouldresult from taking the ation if the ondition is veri�ed. As a onsequene of thisrepresentational shift, the ALCS framework is somewhat distint from the lassialLCS one.



In this paper, we want to show that one an bene�t from the model-based proper-ties of ALCSs while keeping the lassial LCS framework as is, thanks to the design ofa general arhiteture whose basi omponents an be either ALCSs or lassial LCSslike XCS or XCSF [Wil01,Wil02℄, or even other kinds of funtion approximators.More preisely, after presenting ALCSs in setion 2, we will introdue in setion 3a new ALCS alled MACS, whose generalization properties are di�erent from those ofprevious ALCSs. Classi�ers in MACS are only intended to predit one attribute of thenext situation in the environment depending on a situation and an ation, whereaslassi�ers in all previous systems try to predit the next situation as a whole. Wewill show that this new representation gives rise to more powerful generalization thanprevious ones, and an be realized with a modular approah. Then we will explain insetion 4 how suh an e�ient model-based learning proess an be integrated intoa Dyna arhiteture ombining exploration and exploitation riteria, giving empirialresults in setion 5.Then, in setion 6, we will generalize what we have learned from MACS in a widerperspetive. Prediting the value of one attribute of the environment an be seen asa funtion approximation problem, and any system able to approximate a funtionan be used in the same arhiteture. In partiular, sine XCS and XCSF are suhsystems, we will onlude in setion 7 that model-based reinforement learning withgeneralization properties an be performed as well with XCS, XCSF or even otherkinds of systems, provided that an adequate arhiteture is used.2 Antiipatory Learning Classi�er SystemsThe usual formal representation of RL problems is a Markov Deision Proess (MDP)whih is de�ned by:� a �nite state spae S;� a �nite set of ations A;� a transition funtion T : S ×A → Π(S) where Π(S) is a distribution of probabil-ities over the state spae S;� a reward funtion R : S × A × S → IR whih assoiates an immediate reward toevery possible transition.One of the most popular RL algorithm based on this representation is Q-learning[Wat89℄. This algorithm diretly and inrementally updates a Q-table representinga quality funtion q : S × A → IR, without using the transition and the immediatereward funtions. The quality q(s, a) represents the expeted payo� when the agentperforms the ation a in the state s, and follows the greedy poliy thereafter. Then,the qualities aggregate the immediate and future expeted payo�s.The main advantage of Learning Classi�er Systems with respet to other RL teh-niques like tabular Q-learning relies in their generalization apabilities. In problemssuh that situations are omposed of several attributes, generalization makes it pos-sible to aggregate several situations within a ommon desription so that the modelof the quality funtion q beomes smaller.In [Lan00℄, Lanzi shows how it is possible to shift from a tabular representationof a RL problem to a lassi�er-based representation. While tabular Q-learning on-siders triples (s, a, q) ∈ S ×A× IR, LCSs like XCS onsider C-A-p rules [ondition℄[ation℄ payoff lassi�ers). During the learning proess, the LCS learns appropri-ate general onditions and updates the payo� predition.



Within the lassial LCS framework, the use of don't are symbols # in the C part ofthe lassi�ers permits generalization, sine don't are symbols make it possible to usea single desription to desribe several situations. Indeed, a don't are symbol mathesany partiular value of the onsidered attribute. Therefore, hanging an attribute intoa don't are symbol makes the orresponding ondition more general (it mathes moresituations). The main issue with generalization in lassial LCSs is to organize C andA parts so that the don't are symbols are well plaed.XCS o�ers a generalization apability but, as Q-learning, it an only update veryfew measures of lassi�er payo� predition at eah time step, orresponding to theimmediate atual previous situation and ation st−1 and at−1. Indeed, the modelof the expeted payo� an only be updated when an atual transition ours. Sutton[Sut90℄ proposed the Dyna arhiteture to endow the system with the ability to updatemany qualities at the same time, in order to signi�antly improve the learning speedof the quality funtion. The Dyna arhiteture illustrated in �gure 1 uses a modelof the environment to build hypothetial transitions independently from the urrentexperiene. These simulated ations are used to update the model of the qualityfuntion more than one per time step, with a value iteration algorithm inspiredfrom Dynami Programming. The model of the environment is learned latently � i.e.independently from the reward.
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Fig. 1. A Dyna arhiteture to perform reinforement learning. It ombines a model of thepayo� with a model of the environment. The model of the payo� may onsist in an approx-imation of the immediate reward funtion R : S × A → IR, and in an approximation of thequality funtion q : S ×A→ IR, whih produes a salar quality for eah (situation, action)pair. To learn the funtion q inrementally, the system is given (st−1, at−1, st, rt) tuples. Themodel of the environment is an approximation of the transition funtion T : S×A→ S. Thetransition funtion and the immediate reward funtions provide hypothetial samples to thequality learning system, and subsequently speed up the reinforement learning proess.Instead of diretly learning a model of the quality funtion q as XCS does, ALCSssuh as ACS [Sto98,BGS00℄, ACS2 [But02a℄ and YACS [GS01,GSS02℄ learn a modelof the transition funtion T . They take advantage of generalization apabilities tolearn a model of the transition funtion whih is more ompat than the exhaustivelist of all the (st, at, st+1) transitions. The transition funtion provides a model of thedynamis of the interations between the agent and its environment whih takes plaein a Dyna arhiteture to speed up the plain reinforement learning proess.



In ALCSs, the lassi�ers are organized into [ondition℄ [ation℄ [effet℄parts, noted C-A-E. In suh lassi�ers, the E part represents the e�ets of ation Ain situations mathed by ondition C. It reords the pereived hanges in the envi-ronment. In ACS, ACS2 and YACS, a C part is a situation whih may ontain don'tare symbols # or spei� values (like 0 or 1), as in XCS. An E part is also dividedinto several attributes and may ontain either spei� values or don't hange symbols=. Suh a don't hange symbol means that the attribute of the pereived situation itrefers to remains unhanged when ation A is performed. A spei� value in the E partmeans that the value of the orresponding attribute hanges to the value spei�ed inthat E part.This formalism permits the representation of regularities in the interations withthe environment, like for instane �In a grid world, when the agent pereives a wallin front of itself, whatever the other features of the urrent ell are, trying to moveforward entails hitting the wall, and no hange will be pereived in the ell's features�.The latent learning proess is in harge of disovering C-A-E lassi�ers with generalC parts that aurately model the dynamis of the environment. ACS and YACSgeneralize aording to antiipated situations, and not aording to the payo�, as inXCS. As a result, it does not make sense to store information about the expetedpayo� in the lassi�ers. Therefore, the list of lassi�ers only models environmentalhanges. The information onerning the payo�s must be stored separately.3 Improved Latent Learning with MACS3.1 Representing More Regularities with MACSGeneralization makes it possible to represent regularities in the interations withthe environment. However, while ACS and YACS are able to detet if a partiularattribute is hanging or not, their formalism annot represent regularities aross dif-ferent attributes beause it onsiders eah situation as a whole. To make this pointlear, let us onsider an agent in a grid world suh as those presented in �gures 3, 4and 5, where its pereptions are de�ned as a vetor of boolean values depending onthe presene or absene of walls in the eight surrounding ells. Turning right resultsin a two-positions left shift of the attributes. For instane, the agent may experienetransitions like [11001100℄ [y℄ [00110011℄.In suh a ase, every attribute is hanging. Thus, the formalism of ACS and YACSis unable to represent this regularity. Nevertheless, the shift in the pereived situationis atually a regularity of the dynamis of the interations: whatever the situation is,when the agent turns lokwise, the value of the 1st attribute omes to the last valueof the 3rd, the value of the 2nd beomes the 4th et.The partiularity of suh a regularity is that the new value of an attribute de-pends on the previous value of another one. Expressing generalization with don'thange symbols forbids the representation of suh regularities. In the ACS/YACS for-malism, the new value of an attribute may only depend upon the previous value ofthe same attribute, a situation whih is seldom enountered in pratie. To overomethis problem, it is neessary to deorrelate the attributes in the E parts, whereas ACSand YACS lassi�ers antiipate all attributes at one.To this end, our new system, MACS, desribes the E parts with don't know sym-bols �?� rather than with don't hange symbols. This way, the aurate lassi�er[####1###℄ [y℄ [??1?????℄ means that �just after turning right, the agent always



[11001100℄ ←Situation[1#######℄ [y℄ [??????1?℄[#1######℄ [y℄ [???????1℄[##0#####℄ [y℄ [0???????℄[###0####℄ [y℄ [?0??????℄[####1###℄ [y℄ [??1?????℄[#####1##℄ [y℄ [???1????℄[######0#℄ [y℄ [????0???℄[#######0℄ [y℄ [?????0??℄[#######0℄ [y℄ [?????1??℄Antiipations → [00110011℄or [00110111℄Table 1. During the integration proess, the LCS proposed in setion 3 sans the E parts andselets lassi�ers whose A parts math the ation and whose C part math the situation. Theintegration proess builds all the possible antiipated situations with respet to the possiblevalues of every attribute. Here, the system antiipates that using [11001100℄ as a urrentsituation should lead either to [00110011℄ or to [00110111℄. In deterministi environments,if all the lassi�ers were aurate, this proess would generate only one possible antiipation.pereives a wall at its left when it pereived a wall behind itself, whatever the otherattributes were�. This lassi�er does not provide information about the new valuesof other attributes (as denoted by the ? symbol). Thus, the overall system gains theopportunity to disover regularities involving di�erent attributes in the [ondition℄and the [effet℄ parts.Again, this proposal for a new formalism leads to a new oneption of general-ization. As usual, a lassi�er is said to be maximally general if it ould not ontainany additional don't are symbol without beoming inaurate. But it is now saidto be aurate if, in every situation mathed by its ondition, taking the proposedation always sets the attributes to the values spei�ed in the e�et part, when suhattributes are not don't know symbols.As a result, the antiipating unit is not the single lassi�er anymore but the wholeLCS. Given a situation and an ation, a single lassi�er is not able to predit thewhole next situation: it antiipates only one attribute. The system needs an additionalmehanism whih integrates these partial antiipations and builds a whole antiipatedsituation, without any don't know symbol in its desription, as shown in Table 1.Experimental results presented in [GMS03℄ demonstrated that the new formal-ism used by MACS atually a�ords more powerful generalization apaities than theformalism of YACS, without any ost in terms of learning speed.The algorithms realizing the latent learning proess in MACS will not be desribedin detail here, they are presented in [GMS03℄.3.2 Modular Model of the Environment with MACSIn the previous setion, we desribed how MACS represents its model of the dynamisof the environment with antiipating lassi�ers.In all Dyna systems, this model onsists of an exhaustive list of (st−1, at−1, st)triples, eah speifying a whole transition, i.e. the expeted value of a omplete set of



attributes. ACS and YACS both improve the model by adding generalization in thetriples, but eah lassi�er still spei�es omplete transitions. Conversely, in MACS,eah lassi�er only provides a predition onerning one attribute.
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Fig. 2. MACS arhiteture. Eah module is a simple funtion approximator.Due to onditions, eah lassi�er of YACS (or (st−1, at−1, st) triple of DynaQ+) is asubfuntion of the global transition funtion T : s1×...×sd×a1×...×ae → s1×...×sd
1.Conversely, in MACS, eah lassi�er is a subfuntion of a partial transition funtion

Ti : s1 × ... × sd × a1 × ... × ae → si. Then, it is possible to onsider groups oflassi�ers, eah group antiipating one partiular attribute. Eah of these groups thenmodels a partial transition funtion. The global transition funtion an be obtainedby integrating the partial funtions.The MACS arhiteture illustrated in �gure 2 shows how the latent learning part ofMACS an be onsidered as a modular system, eah module antiipating one attribute.Eah of these modules provides an approximation of one partial transition funtion,eah prediting one single value. As we will disuss in setion 7, this arhiteturesuggests that one ould replae MACS modules by some other funtion approximationsystems like neural networks or lassial LCSs like XCS or XCSF.4 Combining Ative Exploration and Exploitation4.1 Hierarhial Aggregation of Di�erent CriteriaThe aim of ative exploration is to provide the agent with a poliy that maximizesthe information provided by the sensori-motor loop. The agent selets ations thathelp improving the model aording to this riterion.1 where e is the number of e�etors, and d is the number of pereived attributes



As illustrated by �gure 2, in order to ombine ative exploration with exploita-tion, we designed an arhiteture resulting from the hierarhial ombination of threedynami programming modules, eah trying to maximize the reward from a di�erentsoure. Indeed, we distinguish the internal reward, orresponding to a gain in infor-mation about the model of the environment, the rehearsal reward, orresponding toa measure of the time elapsed after the last visit of eah transition, and the externalreward, orresponding to a gain of food or whatever atual reward in the environmentof the agent.The preise de�nition of these immediate rewards are the following� The general idea of de�ning an immediate information reward onsists in measur-ing whether the model of the transitions an be improved or not thanks to theativation of a partiular ation.More preisely, we de�ne an estimator El(c) assoiated with eah lassi�er c. El(c)measures the evaluation level of the lassi�er. Thus El(c) must be equal to 0 ifthe lassi�er has not been evaluated yet, and must be equal to 1 if the lassi�erhas been tested enough.Thus we de�ne El(c) = min((b + g)/θe, 1), where θe is the number of evalua-tions needed to lassify a lassi�er as aurate, inaurate or osillating, and band g are respetively the number of antiipation mistakes and suesses alreadyenountered by the lassi�er in previous evaluations.Eah estimator El(c) is bound to one lassi�er, not to one situation. In order toompute the information gain bound to one situation Ri(s0), the proess is thefollowing.The lassi�ers that math s0 are grouped by ation. For eah possible ation a,MACS omputes the set Ss0,a of the possible antiipated situations as desribed insetion 32. Eah triple (s0, a, s1), where s1 ∈ Ss0,a, is one of the possible transitionsthat would be experiened if ation a were performed in situation s0. We de�nethe evaluation level El(s0, a, s1) assoiated with this transition as the produt ofthe evaluation levels El(c) of all the lassi�ers c involved in this antiipation:
El(s0, a, s1) =

∏

c≈(s0,a,s1)

El(c)The lassi�ers c mathing (s0, a, s1) are suh that their C part mathes s0, their
A part mathes a, and their E part mathes s1. The less a transition has beenevaluated, the greater the immediate information gain. Thus, if the transitionours, the assoiated immediate information gain is:

Ri(s0, a, s1) = 1 − El(s0, a, s1)We de�ne the immediate information gain assoiated with a situation and anation as the maximum information gain over the possible assoiated antiipations:
Ri(s0, a) = max

s1∈Ss0,a

Ri(s0, a, s1)If the model does not provide MACS with at least one antiipated situation s1,beause of inompleteness, then Ri(s0, a) is given the default value 1, whih is themaximum immediate information gain.2 There may be several possible antiipated situations in the ase where the lassi�ers arenot aurate.



Finally,
Ri(s0) = max

a∈A
Ri(s0, a)� The external reward is the usual soure of reward found in any reinforementlearning framework. We de�ne it as Re(s0) orresponding to the immediate rewardobtained for visiting the situation s0.� The immediate rehearsal reward leads to a poliy whih is similar to the explo-ration poliy desribed in [Sut91℄ or [But02b℄3. Then it grows until the situationis visited again and then drops to 0.In order to update Rr(s0), we use the lassial Widrow-Ho� equation:

Rr(s0) = (1 − βr)Rr(s0) + βrThen, from eah immediate reward, whether internal, rehearsal or external, a longterm expeted payo� is omputed separately thanks to the Value Iteration algorithm(see [SB98℄ for a presentation). The latent learning proess provides the system withthe model of the transitions whih is neessary for an o�ine omputing of the qualitiesassoiated to eah ation, given a situation. By doing so, the values are updatedindependently from the atual experiene of the agent, and many updates an beomputed at eah time step, as usual in a Dyna arhiteture.The last omponent of the arhiteture onsists of a hierarhial ombination ofthese three riteria. Sine an inaurate model may result in an inaurate estimationof the expeted external payo�, maximizing the information gain is given the priorityagainst the external payo� maximization. Thus, if there is a better ation with respetto the information gain riterion, this ation is hosen. Else, if at least two ationsprovide the maximal expeted information gain, then the one whih maximizes theexternal payo� is hosen. In partiular, if the information about the problem is per-fet, whih means that no ation provide any gain in information anymore, then thepoliy will be ompletely driven by the external payo� and will onverge to optimalexploitation. The last riterion, rehearsal reward, is the least often used. It is only ho-sen if at least two ations are equally likely to be �red with respet to both previousriteria.5 Experimental Results: Moving Soures of RewardIn order to illustrate the gain resulting from latent learning in reinforement learningproblems, we present in this paper new experiments where we tried to test MACS onproblems where the soures of reward are moved after the agent sueeds in reahingthem.This problem gives the opportunity to highlight two key properties of MACS. First,the neessity to have an internal model and to be able to perform Value Iteration onthat model as an o�ine mental rehearsal arises when the agent disovers that thesoure of reward has moved: it must forget all the payo� estimates orresponding toits previous model, and this forgetting proess would be very slow without suh amodel. Seond, the neessity of ative exploration arises one the model is forgotten:the agent must re-explore the whole environment to �nd the new loation of the soureof reward. This searh is muh more e�ient thanks to ative exploration.3 The latter also uses a sort of "internal reward" biasing ation seletion aording to theauray or "quality" of the predited e�ets.
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Fig. 5. Maze312CAs a benhmark problem, we tested MACS on three di�erent environments, namelyMaze216C, Maze228C and Maze312C, respetively shown on �gure 3, 4 and 5. These�maze-like� or �woods� problems are standard benhmarks in LCS researh, they ouldbe replaed by any �nite state automaton but they provide a more intuitive view.At the beginning of the experiments, the food is in the ell marked with a irledF. One the agent has reahed it twenty times, the food is moved to the ell markedwith a plain F. This is done repeatedly, the food being moved again eah time theagent has found it twenty times.Figure 6 illustrates the number of time steps MACS needs to solve Maze216C,Maze228C and Maze312C during 250 suessive trials. The results are averaged over100 experiments. The learning rates are set to 0.1 and the memory size and numberof evaluations neessary to take a speialization/generalization deision are all set to
5. The disount fator γ is set to 0.9.The results show that, though it only performs one Value Iteration step per timestep, MACS is able to re-adapt the poliy to the new soure loation very fast. Eahtwenty trials, the longer trial orresponds to the ase where the agent must �nd thenew loation of the soure of reward. It is found fast thanks to ative exploration and,as soon as it is found, the time neessary to reah it again onverges during the nexttrial. The slight variations are due to the fat that the agent always starts from arandom ell and the results are averaged over 100 trials only.Note that MACS is tested here in a deterministi environment and would notperform as e�iently in a probabilisti environment, but the lessons that we willdraw in the following disussion and onlusion still apply in the probabilisti ase.6 DisussionIn this paper, we have shown how a latent learning proess ould be ombined withseveral dynamial programming proesses into a Dyna-like arhiteture. As in Dynaarhitetures, one module learns a model of the environment and the other modulesare in harge of maximizing the payo� expetation thanks to o�ine Dynami Pro-gramming tehniques. By using several immediate rewards, we have shown how threedi�erent poliies ould be obtained and how a hierarhial ombination of these poli-ies resulted in improved performane in lassial problems onsidered di�ult in thereinforement learning framework.A �ner deomposition into modules an be obtained if one onsiders that the latentlearning proess in MACS an itself be split into one module per antiipated attribute.The global arhiteture of our system is shown in �gure 2.
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Fig. 6. MACS ombining exploration and exploitation: number of time steps to reah thesoure of reward in suessive trials in Maze216C, Maze228C and Maze312C.
As in DynaQ+, one poliy relies on the external reward and a seond one on thetime elapsed after the last visit of eah transition. But the third poliy in MACS, re-lying on the information whih an be gained by �ring eah lassi�er, is more original.It provides the agent with a systemati exploration apability whih allows it to gaina perfet knowledge of its environment muh faster than with a random exploration,as shown in [GMS03℄.The hierarhial ombination of these poliies is also a distintive feature of MACSwith respet to DynaQ+. In DynaQ+, a weighted sum of the di�erent riteria resultsin a ompromise between the di�erent poliies. First, designing a weighted sum ofdi�erent riteria while the magnitude of these riteria is not known in advane (itdepends on the amount of external reward, whih may vary from an environmentto another) is very di�ult. Thus it is likely that the weights have to be tuned foreah experiment. In MACS, on the ontrary, no weight parameter has to be tuned inorder to deal with di�erent levels of reward, sine suh weights do not exist in thehierarhial agregation.Furthermore, sine the riterion orresponding to the tendeny to explore is neverequal to zero, the overall behavior is always under-optimal with respet to payo�.In MACS, by ontrast, giving the priority to building a orret model permits theonstrution of a omplete model, and then the payo� maximization proess naturallytakes the ontrol of the agent and gives rise to an optimal behavior.
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