Designing Efficient Exploration with MACS:
Modules and Function Approximation

Pierre Gérard and Olivier Sigaud

AnimatLab (LIP6)
8, rue du Capitaine Scott
75015 PARIS

Abstract. MACS (Modular Anticipatory Classifier System) is a new Antic-
ipatory Classifier System. With respect to its predecessors, ACS, ACS2 and
YACS, the latent learning process in MACS is able to take advantage of new
regularities. Instead of anticipating all attributes of the perceived situations
in the same classifier, MACS only anticipates one attribute per classifier. In
this paper we describe how the model of the environment represented by the
classifiers can be used to perform active exploration and how this exploration
policy is aggregated with the exploitation policy. The architecture is validated
experimentally. Then we draw more general principles from the architectural
choices giving rise to MACS. We show that building a model of the environment
can be seen as a function approximation problem which can be solved with
Anticipatory Classifier Systems such as MACS, but also with accuracy-based
systems like XCS or XCSF, organized into a Dyna architecture.

1 Introduction

Research on Learning Classifier Systems (LCSs) has received increasing attention
over the last few years. This surge of interest has concretized itself in two different
directions.

First, a trend called “classical LCSs” hereafter comes from the simplification of
Holland’s initial framework [Hol85] by Wilson. The design of ZCS [Wil94] and then
XCS [Wil95] resulted in a dramatic increase of LCS performance and applicability.
The latter system, using the accuracy of the reward prediction as a fitness measure,
has proven its effectiveness on different classes of problems such as adaptive behavior
learning or data mining. XCS can be considered as the starting point of most new
work along this first line of research.

Second, a new family of systems called Anticipatory Learning Classifier Systems
(ALCSs) has emerged, showing the feasibility of using model-based Reinforcement
Learning (RL) in the LCS framework. This second line of research is more inclined to
use heuristics rather than genetic algorithms (GAs) in order to deal with the improve-
ment of classifiers. Several systems (e.g. ACS [St098,St000], ACS2 [But02a] and YACS
[GSS02]) have highlighted the interesting properties of this family of approaches.

The way ALCSs achieve model-based RL consists in a major shift in the classifiers
representation. Instead of [condition] [action] classifiers, they use a [condition]
[action] [effect] representation, where the [effect] part represent what would
result from taking the action if the condition is verified. As a consequence of this
representational shift, the ALCS framework is somewhat distinct from the classical
LCS one.

In this paper, we want to show that one can benefit from the model-based proper-
ties of ALCSs while keeping the classical LCS framework as is, thanks to the design of
a general architecture whose basic components can be either ALCSs or classical LCSs
like XCS or XCSF [Wil01,Wil02], or even other kinds of function approximators.

More precisely, after presenting ALCSs in section 2, we will introduce in section 3
a new ALCS called MACS, whose generalization properties are different from those of
previous ALCSs. Classifiers in MACS are only intended to predict one attribute of the
next situation in the environment depending on a situation and an action, whereas
classifiers in all previous systems try to predict the next situation as a whole. We
will show that this new representation gives rise to more powerful generalization than
previous ones, and can be realized with a modular approach. Then we will explain in
section 4 how such an efficient model-based learning process can be integrated into
a Dyna architecture combining exploration and exploitation criteria, giving empirical
results in section 5.

Then, in section 6, we will generalize what we have learned from MACS in a wider
perspective. Predicting the value of one attribute of the environment can be seen as
a function approximation problem, and any system able to approximate a function
can be used in the same architecture. In particular, since XCS and XCSF are such
systems, we will conclude in section 7 that model-based reinforcement learning with
generalization properties can be performed as well with XCS, XCSF or even other
kinds of systems, provided that an adequate architecture is used.

2 Anticipatory Learning Classifier Systems

The usual formal representation of RL problems is a Markov Decision Process (MDP)
which is defined by:

— a finite state space S

— a finite set of actions A;

— a transition function T : S x A — II1(S) where I1(S) is a distribution of probabil-
ities over the state space S;

— a reward function R : S x A x S — IR which associates an immediate reward to
every possible transition.

One of the most popular RL algorithm based on this representation is Q-learning
[Wat89]. This algorithm directly and incrementally updates a Q-table representing
a quality function ¢ : S x A — IR, without using the transition and the immediate
reward functions. The quality ¢(s,a) represents the expected payoff when the agent
performs the action a in the state s, and follows the greedy policy thereafter. Then,
the qualities aggregate the immediate and future expected payoffs.

The main advantage of Learning Classifier Systems with respect to other RL tech-
niques like tabular Q-learning relies in their generalization capabilities. In problems
such that situations are composed of several attributes, generalization makes it pos-
sible to aggregate several situations within a common description so that the model
of the quality function g becomes smaller.

In [Lan00], Lanzi shows how it is possible to shift from a tabular representation
of a RL problem to a classifier-based representation. While tabular Q-learning con-
siders triples (s, a,q) € S x A x IR, LCSs like XCS consider C-A-p rules [condition]
[action] payoff classifiers). During the learning process, the LCS learns appropri-
ate general conditions and updates the payoff prediction.

Within the classical LCS framework, the use of don’t care symbols # in the C part of
the classifiers permits generalization, since don’t care symbols make it possible to use
a single description to describe several situations. Indeed, a don’t care symbol matches
any particular value of the considered attribute. Therefore, changing an attribute into
a don’t care symbol makes the corresponding condition more general (it matches more
situations). The main issue with generalization in classical LCSs is to organize C and
A parts so that the don’t care symbols are well placed.

XCS offers a generalization capability but, as @Q-learning, it can only update very
few measures of classifier payoff prediction at each time step, corresponding to the
immediate actual previous situation and action s;_; and a;_1. Indeed, the model
of the expected payoff can only be updated when an actual transition occurs. Sutton
[Sut90] proposed the Dyna architecture to endow the system with the ability to update
many qualities at the same time, in order to significantly improve the learning speed
of the quality function. The Dyna architecture illustrated in figure 1 uses a model
of the environment to build hypothetical transitions independently from the current
experience. These simulated actions are used to update the model of the quality
function more than once per time step, with a wvalue iteration algorithm inspired
from Dynamic Programming. The model of the environment is learned latently — i.e.
independently from the reward.

S reward |
situation
v i i z
<
® =
model of the S model of the 3
- : z
payoff] environment =
- z
1 S
action

Fig.1. A Dyna architecture to perform reinforcement learning. It combines a model of the
payoff with a model of the environment. The model of the payoff may consist in an approx-
imation of the immediate reward function R : S x A — IR, and in an approximation of the
quality function ¢ : S x A — IR, which produces a scalar quality for each (situation,action)
pair. To learn the function g incrementally, the system is given (s¢—1, at—1, s¢,7¢) tuples. The
model of the environment is an approximation of the transition function 7': S x A — S. The
transition function and the immediate reward functions provide hypothetical samples to the
quality learning system, and subsequently speed up the reinforcement learning process.

Instead of directly learning a model of the quality function ¢ as XCS does, ALCSs
such as ACS [St098,BGS00], ACS2 [But02a] and YACS [GS01,GSS02] learn a model
of the transition function 7. They take advantage of generalization capabilities to
learn a model of the transition function which is more compact than the exhaustive
list of all the (s¢, at, s¢41) transitions. The transition function provides a model of the
dynamics of the interactions between the agent and its environment which takes place
in a Dyna architecture to speed up the plain reinforcement learning process.

In ALCSs, the classifiers are organized into [condition] [action] [effect]
parts, noted C-A-E. In such classifiers, the E part represents the effects of action A
in situations matched by condition C. It records the perceived changes in the envi-
ronment. In ACS, ACS2 and YACS, a C part is a situation which may contain don’t
care symbols # or specific values (like 0 or 1), as in XCS. An E part is also divided
into several attributes and may contain either specific values or don’t change symbols
=. Such a don’t change symbol means that the attribute of the perceived situation it
refers to remains unchanged when action A is performed. A specific value in the E part
means that the value of the corresponding attribute changes to the value specified in
that E part.

This formalism permits the representation of regularities in the interactions with
the environment, like for instance “In a grid world, when the agent perceives a wall
in front of itself, whatever the other features of the current cell are, trying to move
forward entails hitting the wall, and no change will be perceived in the cell’s features”.

The latent learning process is in charge of discovering C-A-E classifiers with general
C parts that accurately model the dynamics of the environment. ACS and YACS
generalize according to anticipated situations, and not according to the payoff, as in
XCS. As a result, it does not make sense to store information about the expected
payoff in the classifiers. Therefore, the list of classifiers only models environmental
changes. The information concerning the payoffs must be stored separately.

3 Improved Latent Learning with MACS

3.1 Representing More Regularities with MACS

Generalization makes it possible to represent regularities in the interactions with
the environment. However, while ACS and YACS are able to detect if a particular
attribute is changing or not, their formalism cannot represent regularities across dif-
ferent attributes because it considers each situation as a whole. To make this point
clear, let us consider an agent in a grid world such as those presented in figures 3, 4
and 5, where its perceptions are defined as a vector of boolean values depending on
the presence or absence of walls in the eight surrounding cells. Turning right results
in a two-positions left shift of the attributes. For instance, the agent may experience
transitions like [11001100] [~] [00110011].

In such a case, every attribute is changing. Thus, the formalism of ACS and YACS
is unable to represent this regularity. Nevertheless, the shift in the perceived situation
is actually a regularity of the dynamics of the interactions: whatever the situation is,
when the agent turns clockwise, the value of the 1st attribute comes to the last value
of the 3rd, the value of the 2nd becomes the 4th etc.

The particularity of such a regularity is that the new value of an attribute de-
pends on the previous value of another one. Expressing generalization with don’t
change symbols forbids the representation of such regularities. In the ACS/YACS for-
malism, the new value of an attribute may only depend upon the previous value of
the same attribute, a situation which is seldom encountered in practice. To overcome
this problem, it is necessary to decorrelate the attributes in the E parts, whereas ACS
and YACS classifiers anticipate all attributes at once.

To this end, our new system, MACS, describes the E parts with don’t know sym-
bols “?” rather than with don’t change symbols. This way, the accurate classifier
[#ansi#n#t] [~] [77177777] means that “just after turning right, the agent always

[11001100] —Situation
[1assunas] [~] [?7777717]
[#1#usas] [~] [?7777771]
[##o##t###t] [~] [07777777
[###o####t] [~] [P0777777
[###a1#a] [~] [?7177777
[#anaige] [~] [?7717777]
[#anano] [~] [?7770777]
[#######0] [~] [?772772077]
[#a#as#0] [~] [?7777177]
Anticipations — [00110011]
or [00110111]

Table 1. During the integration process, the LCS proposed in section 3 scans the E parts and
selects classifiers whose A parts match the action and whose C part match the situation. The
integration process builds all the possible anticipated situations with respect to the possible
values of every attribute. Here, the system anticipates that using [11001100] as a current
situation should lead either to [00110011] or to [00110111]. In deterministic environments,
if all the classifiers were accurate, this process would generate only one possible anticipation.

perceives a wall at its left when it perceived a wall behind itself, whatever the other
attributes were’. This classifier does not provide information about the new values
of other attributes (as denoted by the ? symbol). Thus, the overall system gains the
opportunity to discover regularities involving different attributes in the [condition]
and the [effect] parts.

Again, this proposal for a new formalism leads to a new conception of general-
ization. As usual, a classifier is said to be mazimally general if it could not contain
any additional don’t care symbol without becoming inaccurate. But it is now said
to be accurate if, in every situation matched by its condition, taking the proposed
action always sets the attributes to the values specified in the effect part, when such
attributes are not don’t know symbols.

As a result, the anticipating unit is not the single classifier anymore but the whole
LCS. Given a situation and an action, a single classifier is not able to predict the
whole next situation: it anticipates only one attribute. The system needs an additional
mechanism which integrates these partial anticipations and builds a whole anticipated
situation, without any don’t know symbol in its description, as shown in Table 1.

Experimental results presented in [GMS03] demonstrated that the new formal-
ism used by MACS actually affords more powerful generalization capacities than the
formalism of YACS, without any cost in terms of learning speed.

The algorithms realizing the latent learning process in MACS will not be described
in detail here, they are presented in [GMS03].

3.2 Modular Model of the Environment with MACS

In the previous section, we described how MACS represents its model of the dynamics
of the environment with anticipating classifiers.

In all Dyna systems, this model consists of an exhaustive list of (s;—1,a:—1, $t)
triples, each specifying a whole transition, i.e. the expected value of a complete set of

attributes. ACS and YACS both improve the model by adding generalization in the
triples, but each classifier still specifies complete transitions. Conversely, in MACS,
each classifier only provides a prediction concerning one attribute.

external reward
situation
Y
models of the payoffs —
§] § model of the transitions S S
imm. imm. imm
reward reward reward internal .
m;del mcF);id m;del rewards § | partial transition o
e i r f—|)
function # 1 <
' ! ' s| ———_] 3
=] } - z
payoff payoff payoff B | Si | partial transition 3 =
model model model g function #i Z
transtions | 3 | partial transition
function #d
‘ hierarchical agregation ‘ g a
action

Fig. 2. MACS architecture. Each module is a simple function approximator.

Due to conditions, each classifier of YACS (or (s¢—1, at—1, s¢) triple of DynaQ+) is a
subfunction of the global transition function T : s1 X...X8gX a1 X ... XGe — 81X ... X 84" .
Conversely, in MACS, each classifier is a subfunction of a partial transition function
T, @81 X ..X8gXay X..xa. — 8. Then, it is possible to consider groups of
classifiers, each group anticipating one particular attribute. Each of these groups then
models a partial transition function. The global transition function can be obtained
by integrating the partial functions.

The MACS architecture illustrated in figure 2 shows how the latent learning part of
MACS can be considered as a modular system, each module anticipating one attribute.
Each of these modules provides an approximation of one partial transition function,
each predicting one single value. As we will discuss in section 7, this architecture
suggests that one could replace MACS modules by some other function approximation
systems like neural networks or classical LCSs like XCS or XCSF.

4 Combining Active Exploration and Exploitation

4.1 Hierarchical Aggregation of Different Criteria

The aim of active exploration is to provide the agent with a policy that maximizes
the information provided by the sensori-motor loop. The agent selects actions that
help improving the model according to this criterion.

! where e is the number of effectors, and d is the number of perceived attributes

As illustrated by figure 2, in order to combine active exploration with exploita-
tion, we designed an architecture resulting from the hierarchical combination of three
dynamic programming modules, each trying to maximize the reward from a different
source. Indeed, we distinguish the internal reward, corresponding to a gain in infor-
mation about the model of the environment, the rehearsal reward, corresponding to
a measure of the time elapsed after the last visit of each transition, and the external
reward, corresponding to a gain of food or whatever actual reward in the environment
of the agent.

The precise definition of these immediate rewards are the following

— The general idea of defining an immediate information reward consists in measur-
ing whether the model of the transitions can be improved or not thanks to the
activation of a particular action.

More precisely, we define an estimator El(c) associated with each classifier c. Fl(c)
measures the evaluation level of the classifier. Thus El(c) must be equal to 0 if
the classifier has not been evaluated yet, and must be equal to 1 if the classifier
has been tested enough.

Thus we define El(c) = min((b + g)/0e,1), where 6. is the number of evalua-
tions needed to classify a classifier as accurate, inaccurate or oscillating, and b
and g are respectively the number of anticipation mistakes and successes already
encountered by the classifier in previous evaluations.

Each estimator El(c) is bound to one classifier, not to one situation. In order to
compute the information gain bound to one situation R;(so), the process is the
following.

The classifiers that match sy are grouped by action. For each possible action a,
MACS computes the set S, o of the possible anticipated situations as described in
section 32. Each triple (sg, a, 1), where s1 € S, 4, is one of the possible transitions
that would be experienced if action a were performed in situation sy. We define
the evaluation level El(so,a,s1) associated with this transition as the product of
the evaluation levels El(c) of all the classifiers ¢ involved in this anticipation:

El(so,a,81) = H El(c)

cx(s0,a,81)

The classifiers ¢ matching (sg, a, s1) are such that their C' part matches sg, their
A part matches a, and their E part matches s;. The less a transition has been
evaluated, the greater the immediate information gain. Thus, if the transition
occurs, the associated immediate information gain is:

Ri(s0,a,s1) =1 — FEl(sg,a,s1)

We define the immediate information gain associated with a situation and an
action as the maximum information gain over the possible associated anticipations:

Ri(so,a) = max Ri(s0,a,s1)
s 50,
If the model does not provide MACS with at least one anticipated situation si,
because of incompleteness, then R;(so,a) is given the default value 1, which is the
maximum immediate information gain.

2 There may be several possible anticipated situations in the case where the classifiers are
not accurate.

Finally,
Ri(s0) = max Ri(s0,a)

— The external reward is the usual source of reward found in any reinforcement
learning framework. We define it as Re(sg) corresponding to the immediate reward
obtained for visiting the situation sg.

— The immediate rehearsal reward leads to a policy which is similar to the explo-
ration policy described in [Sut91] or [But02b]?. Then it grows until the situation
is visited again and then drops to 0.

In order to update R, (so), we use the classical Widrow-Hoff equation:

R’I‘(SO) = (1 - BT)RT(SO) + ﬁr

Then, from each immediate reward, whether internal, rehearsal or external, a long
term expected payoff is computed separately thanks to the Value Iteration algorithm
(see [SB98] for a presentation). The latent learning process provides the system with
the model of the transitions which is necessary for an offline computing of the qualities
associated to each action, given a situation. By doing so, the values are updated
independently from the actual experience of the agent, and many updates can be
computed at each time step, as usual in a Dyna architecture.

The last component of the architecture consists of a hierarchical combination of
these three criteria. Since an inaccurate model may result in an inaccurate estimation
of the expected external payoff, maximizing the information gain is given the priority
against the external payoff maximization. Thus, if there is a better action with respect
to the information gain criterion, this action is chosen. Else, if at least two actions
provide the maximal expected information gain, then the one which maximizes the
external payoff is chosen. In particular, if the information about the problem is per-
fect, which means that no action provide any gain in information anymore, then the
policy will be completely driven by the external payoff and will converge to optimal
exploitation. The last criterion, rehearsal reward, is the least often used. It is only cho-
sen if at least two actions are equally likely to be fired with respect to both previous
criteria.

5 Experimental Results: Moving Sources of Reward

In order to illustrate the gain resulting from latent learning in reinforcement learning
problems, we present in this paper new experiments where we tried to test MACS on
problems where the sources of reward are moved after the agent succeeds in reaching
them.

This problem gives the opportunity to highlight two key properties of MACS. First,
the necessity to have an internal model and to be able to perform Value Iteration on
that model as an offline mental rehearsal arises when the agent discovers that the
source of reward has moved: it must forget all the payoff estimates corresponding to
its previous model, and this forgetting process would be very slow without such a
model. Second, the necessity of active exploration arises once the model is forgotten:
the agent must re-explore the whole environment to find the new location of the source
of reward. This search is much more efficient thanks to active exploration.

% The latter also uses a sort of "internal reward" biasing action selection according to the
accuracy or "quality" of the predicted effects.

Fig. 3. Maze216C Fig. 4. Maze228C Fig. 5. Maze312C

As a benchmark problem, we tested MACS on three different environments, namely
Maze216C, Maze228C and Maze312C, respectively shown on figure 3, 4 and 5. These
“maze-like” or “woods” problems are standard benchmarks in LCS research, they could
be replaced by any finite state automaton but they provide a more intuitive view.

At the beginning of the experiments, the food is in the cell marked with a circled
F. Once the agent has reached it twenty times, the food is moved to the cell marked
with a plain F. This is done repeatedly, the food being moved again each time the
agent has found it twenty times.

Figure 6 illustrates the number of time steps MACS needs to solve Maze216C,
Maze228C and Maze312C during 250 successive trials. The results are averaged over
100 experiments. The learning rates are set to 0.1 and the memory size and number
of evaluations necessary to take a specialization/generalization decision are all set to
5. The discount factor -« is set to 0.9.

The results show that, though it only performs one Value Iteration step per time
step, MACS is able to re-adapt the policy to the new source location very fast. Each
twenty trials, the longer trial corresponds to the case where the agent must find the
new location of the source of reward. It is found fast thanks to active exploration and,
as soon as it is found, the time necessary to reach it again converges during the next
trial. The slight variations are due to the fact that the agent always starts from a
random cell and the results are averaged over 100 trials only.

Note that MACS is tested here in a deterministic environment and would not
perform as efficiently in a probabilistic environment, but the lessons that we will
draw in the following discussion and conclusion still apply in the probabilistic case.

6 Discussion

In this paper, we have shown how a latent learning process could be combined with
several dynamical programming processes into a Dyna-like architecture. As in Dyna
architectures, one module learns a model of the environment and the other modules
are in charge of maximizing the payoff expectation thanks to offline Dynamic Pro-
gramming techniques. By using several immediate rewards, we have shown how three
different policies could be obtained and how a hierarchical combination of these poli-
cies resulted in improved performance in classical problems considered difficult in the
reinforcement, learning framework.

A finer decomposition into modules can be obtained if one considers that the latent
learning process in MACS can itself be split into one module per anticipated attribute.
The global architecture of our system is shown in figure 2.

time to complete successive trials in Maze216C time to complete successive trials in Maze228C
350

300 Bl

250 1

200 Bl

150 q

number of time steps
number of time steps

100 1

50 q

0 50 100 150 200 0 50 100 150 200
trial trial

time to complete successive trials in Maze312C
350

300 || Bl
250 “‘ 1
200 ||| Bl

150 q

number of time steps

- N |
N
0
0 50 100 150 200
trial

Fig. 6. MACS combining exploration and exploitation: number of time steps to reach the
source of reward in successive trials in Maze216C, Maze228C and Maze312C.

As in DynaQ+, one policy relies on the external reward and a second one on the
time elapsed after the last visit of each transition. But the third policy in MACS, re-
lying on the information which can be gained by firing each classifier, is more original.
It provides the agent with a systematic exploration capability which allows it to gain
a perfect knowledge of its environment much faster than with a random exploration,
as shown in [GMSO03].

The hierarchical combination of these policies is also a distinctive feature of MACS
with respect to DynaQ+. In DynaQ+, a weighted sum of the different criteria results
in a compromise between the different policies. First, designing a weighted sum of
different criteria while the magnitude of these criteria is not known in advance (it
depends on the amount of external reward, which may vary from an environment
to another) is very difficult. Thus it is likely that the weights have to be tuned for
each experiment. In MACS, on the contrary, no weight parameter has to be tuned in
order to deal with different levels of reward, since such weights do not exist in the
hierarchical agregation.

Furthermore, since the criterion corresponding to the tendency to explore is never
equal to zero, the overall behavior is always under-optimal with respect to payoff.
In MACS, by contrast, giving the priority to building a correct model permits the
construction of a complete model, and then the payoff maximization process naturally
takes the control of the agent and gives rise to an optimal behavior.

7 Future Work and Conclusion

In the MACS architecture for latent learning presented on figure 2, the functional role
of each module is to guess the value of one attribute at the next time step given the
value of several attributes (conditions and actions) at the current time step. That is,
each module tries to approximate a many-to-one function, whereas classifiers in ACS
and YACS were trying to approximate a many-to-many mapping.

The effectiveness of this approximation results from the fact that all classifiers
receive at the next time step the actual situation or attribute that they should have
anticipated. Le., though there is no supervisor, the learning process can benefit from
informations on its errors as if it were supervised.

Therefore, any system relying on the same property can be used to approximate
functions with the same effectiveness. In particular, XCS is such a system, since the
prediction of the accuracy of each eligible classifier can be corrected after each time
step.

Thus, rather than using a specialized ALCS such as MACS to solve reinforcement
learning problems with a model-based approach, it is possible to use a more general
system like XCS as a building block to implement the basic modules in the architecture
presented in figure 2.

Using XCS in such an architecture would let the system solve discrete state and
time problems verifying the Markov property as MACS does. Another possibility
would be to use XCSF [Wil01,Wil02], an XCS extension devoted to the piecewise linear
approximation of continuous functions, so as to address continuous state problems.

Our future work will consist in the investigation of that line of research : using
XCSF modules to learn both a policy and a model of the environment. It must be
mentioned that, where XCSF uses the Widrow-Hoff delta rule so as to linearly ap-
proximate a function, we envision to rather use a more powerful and efficient method
coming from the field of incremental statistical estimations.

As a conclusion, we described in this paper several LCSs, casting a new light on
the concept of generalization in the LCS framework. We presented MACS, a new LCS
using a different formalism able to use additional regularities in its latent learning pro-
cess. MACS formalism for latent learning does not consider situations as an unsecable
whole, but decorrelates the attributes, making it possible to represent regularities
across attributes. We have illustrated the effectiveness of our approach with MACS in
the context of an active exploration problem, using a hierarchical aggregation criterion
in order to tackle the exploration/exploitation tradeoff.

Beyond the presentation of MACS, we hope to have convinced the reader that
solving reinforcement learning problems with a model-based approach can be seen
as a conjunction of several function approximation problems, and that solving these
problems can be achieved efficiently with different systems as a building block, given
that they rely on a prediction process.

References

[BGS00] M. V. Butz, D. E. Goldberg, and W. Stolzmann. Introducing a genetic gener-
alization pressure to the Anticipatory Classifier System part I: Theoretical ap-
proach. In Proceedings of the 2000 Genetic and Evolutionary Computation Confer-
ence (GECCO 2000), pages 34-41, 2000.

[But02a] M. V. Butz. An Algorithmic Description of ACS2. In Lanzi et al. [LSW02], pages

211-229.

[But02b] M. V. Butz. Biasing Exploration in an Anticipatory Learning Classifier System.

In Lanzi et al. [LSWO02], pages 3-22.

[GMSO03] P. Gérard, J.-A. Meyer, and O. Sigaud. Combining latent learning with dynamic

[GSO1]

[GSS02]

[Hol85]

[Lan00]

programming. FEuropean Journal of Operation Research, to appear, 2003.

P. Gérard and O. Sigaud. YACS : Combining Anticipation and Dynamic Program-
ming in Classifier Systems. In P. L. Lanzi, W. Stolzmann, and S.W. Wilson, editors,
Advances in Learning Classifier Systems, volume 1996 of Lecture Notes in Artificial
Intelligence, pages 52—69. Springer-Verlag, Berlin, 2001.

P. Gérard, W. Stolzmann, and O. Sigaud. YACS: a new Learning Classifier System
with Anticipation. Journal of Soft Computing : Special Issue on Learning Classifier
Systems, 6(3-4):216-228, 2002.

J.H. Holland. Properties of the bucket brigade algorithm. In J.J. Grefenstette,
editor, Proceedings of the 1st international Conference on Genetic Algorithms and
their applications (ICGAS85), pages 1-7. L.E. Associates, july 1985.

P. L. Lanzi. Learning Classifier Systems from a reinforcement learning perspective.
Technical Report 00-03, Dip. di Elettronica e Informazione, Politecnico di Milano,
2000.

[LSWO02] P. L. Lanzi, W. Stolzmann, and S.W. Wilson, editors. Advances in Learning Clas-

[SBOS]

[Sto98]

[St000]

[Sut90]

[Sut91]

[Wat89]

[Wil94]

[Wil95]

[Wilo1]

[Wil02]

sifier Systems, volume 2321 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin, 2002.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

W. Stolzmann. Anticipatory Classifier Systems. In J.R. Koza, W. Banzhaf, K. Chel-
lapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba,
and R. Riolo, editors, Genetic Programming, pages 658-664. Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1998.

W. Stolzmann. An introduction to Anticipatory Classifier Systems. In P. L. Lanzi,
W. Stolzmann, and S. W. Wilson, editors, Learning Classifier Systems: from Foun-
dations to Applications, pages 175-194. Springer-Verlag, Heidelberg, 2000.

R. S. Sutton. Integrating architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning ICML’90, pages 216—224, San Mateo, CA, 1990.
Morgan Kaufmann.

R. S. Sutton. Reinforcement learning architectures for animats. In J.-A. Meyer and
S. W. Wilson, editors, From animals to animats: Proceedings of the First Inter-
national Conference on Simulation of Adaptative Behavior, pages 288-296, Cam-
bridge, MA, 1991. MIT Press.

C. J. Watkins. Learning with delayed rewards. PhD thesis, Psychology Department,
University of Cambridge, England, 1989.

S. W. Wilson. ZCS, a zeroth level Classifier System. Fvolutionary Computation,
2(1):1-18, 1994.

S. W. Wilson. Classifier fitness based on accuracy. FEwolutionary Computation,
3(2):149-175, 1995.

S. W. Wilson. Function approximation with a classifier system. In L. Spector,
Goodman E. D.;, A. Wu, W. B. Langdon, H. M. Voigt, and M. Gen, editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO01),
pages 974-981. Morgan Kaufmann, 2001.

S. W. Wilson. Classifiers that approximate functions. Natural Computing, 1(2-
3):211-234, 2002.

