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ient Exploration with MACS:Modules and Fun
tion ApproximationPierre Gérard and Olivier SigaudAnimatLab (LIP6)8, rue du Capitaine S
ott75015 PARISAbstra
t. MACS (Modular Anti
ipatory Classi�er System) is a new Anti
-ipatory Classi�er System. With respe
t to its prede
essors, ACS, ACS2 andYACS, the latent learning pro
ess in MACS is able to take advantage of newregularities. Instead of anti
ipating all attributes of the per
eived situationsin the same 
lassi�er, MACS only anti
ipates one attribute per 
lassi�er. Inthis paper we des
ribe how the model of the environment represented by the
lassi�ers 
an be used to perform a
tive exploration and how this explorationpoli
y is aggregated with the exploitation poli
y. The ar
hite
ture is validatedexperimentally. Then we draw more general prin
iples from the ar
hite
tural
hoi
es giving rise to MACS. We show that building a model of the environment
an be seen as a fun
tion approximation problem whi
h 
an be solved withAnti
ipatory Classi�er Systems su
h as MACS, but also with a

ura
y-basedsystems like XCS or XCSF, organized into a Dyna ar
hite
ture.1 Introdu
tionResear
h on Learning Classi�er Systems (LCSs) has re
eived in
reasing attentionover the last few years. This surge of interest has 
on
retized itself in two di�erentdire
tions.First, a trend 
alled �
lassi
al LCSs� hereafter 
omes from the simpli�
ation ofHolland's initial framework [Hol85℄ by Wilson. The design of ZCS [Wil94℄ and thenXCS [Wil95℄ resulted in a dramati
 in
rease of LCS performan
e and appli
ability.The latter system, using the a

ura
y of the reward predi
tion as a �tness measure,has proven its e�e
tiveness on di�erent 
lasses of problems su
h as adaptive behaviorlearning or data mining. XCS 
an be 
onsidered as the starting point of most newwork along this �rst line of resear
h.Se
ond, a new family of systems 
alled Anti
ipatory Learning Classi�er Systems(ALCSs) has emerged, showing the feasibility of using model-based Reinfor
ementLearning (RL) in the LCS framework. This se
ond line of resear
h is more in
lined touse heuristi
s rather than geneti
 algorithms (GAs) in order to deal with the improve-ment of 
lassi�ers. Several systems (e.g. ACS [Sto98,Sto00℄, ACS2 [But02a℄ and YACS[GSS02℄) have highlighted the interesting properties of this family of approa
hes.The way ALCSs a
hieve model-based RL 
onsists in a major shift in the 
lassi�ersrepresentation. Instead of [
ondition℄ [a
tion℄ 
lassi�ers, they use a [
ondition℄[a
tion℄ [effe
t℄ representation, where the [effe
t℄ part represent what wouldresult from taking the a
tion if the 
ondition is veri�ed. As a 
onsequen
e of thisrepresentational shift, the ALCS framework is somewhat distin
t from the 
lassi
alLCS one.



In this paper, we want to show that one 
an bene�t from the model-based proper-ties of ALCSs while keeping the 
lassi
al LCS framework as is, thanks to the design ofa general ar
hite
ture whose basi
 
omponents 
an be either ALCSs or 
lassi
al LCSslike XCS or XCSF [Wil01,Wil02℄, or even other kinds of fun
tion approximators.More pre
isely, after presenting ALCSs in se
tion 2, we will introdu
e in se
tion 3a new ALCS 
alled MACS, whose generalization properties are di�erent from those ofprevious ALCSs. Classi�ers in MACS are only intended to predi
t one attribute of thenext situation in the environment depending on a situation and an a
tion, whereas
lassi�ers in all previous systems try to predi
t the next situation as a whole. Wewill show that this new representation gives rise to more powerful generalization thanprevious ones, and 
an be realized with a modular approa
h. Then we will explain inse
tion 4 how su
h an e�
ient model-based learning pro
ess 
an be integrated intoa Dyna ar
hite
ture 
ombining exploration and exploitation 
riteria, giving empiri
alresults in se
tion 5.Then, in se
tion 6, we will generalize what we have learned from MACS in a widerperspe
tive. Predi
ting the value of one attribute of the environment 
an be seen asa fun
tion approximation problem, and any system able to approximate a fun
tion
an be used in the same ar
hite
ture. In parti
ular, sin
e XCS and XCSF are su
hsystems, we will 
on
lude in se
tion 7 that model-based reinfor
ement learning withgeneralization properties 
an be performed as well with XCS, XCSF or even otherkinds of systems, provided that an adequate ar
hite
ture is used.2 Anti
ipatory Learning Classi�er SystemsThe usual formal representation of RL problems is a Markov De
ision Pro
ess (MDP)whi
h is de�ned by:� a �nite state spa
e S;� a �nite set of a
tions A;� a transition fun
tion T : S ×A → Π(S) where Π(S) is a distribution of probabil-ities over the state spa
e S;� a reward fun
tion R : S × A × S → IR whi
h asso
iates an immediate reward toevery possible transition.One of the most popular RL algorithm based on this representation is Q-learning[Wat89℄. This algorithm dire
tly and in
rementally updates a Q-table representinga quality fun
tion q : S × A → IR, without using the transition and the immediatereward fun
tions. The quality q(s, a) represents the expe
ted payo� when the agentperforms the a
tion a in the state s, and follows the greedy poli
y thereafter. Then,the qualities aggregate the immediate and future expe
ted payo�s.The main advantage of Learning Classi�er Systems with respe
t to other RL te
h-niques like tabular Q-learning relies in their generalization 
apabilities. In problemssu
h that situations are 
omposed of several attributes, generalization makes it pos-sible to aggregate several situations within a 
ommon des
ription so that the modelof the quality fun
tion q be
omes smaller.In [Lan00℄, Lanzi shows how it is possible to shift from a tabular representationof a RL problem to a 
lassi�er-based representation. While tabular Q-learning 
on-siders triples (s, a, q) ∈ S ×A× IR, LCSs like XCS 
onsider C-A-p rules [
ondition℄[a
tion℄ payoff 
lassi�ers). During the learning pro
ess, the LCS learns appropri-ate general 
onditions and updates the payo� predi
tion.



Within the 
lassi
al LCS framework, the use of don't 
are symbols # in the C part ofthe 
lassi�ers permits generalization, sin
e don't 
are symbols make it possible to usea single des
ription to des
ribe several situations. Indeed, a don't 
are symbol mat
hesany parti
ular value of the 
onsidered attribute. Therefore, 
hanging an attribute intoa don't 
are symbol makes the 
orresponding 
ondition more general (it mat
hes moresituations). The main issue with generalization in 
lassi
al LCSs is to organize C andA parts so that the don't 
are symbols are well pla
ed.XCS o�ers a generalization 
apability but, as Q-learning, it 
an only update veryfew measures of 
lassi�er payo� predi
tion at ea
h time step, 
orresponding to theimmediate a
tual previous situation and a
tion st−1 and at−1. Indeed, the modelof the expe
ted payo� 
an only be updated when an a
tual transition o

urs. Sutton[Sut90℄ proposed the Dyna ar
hite
ture to endow the system with the ability to updatemany qualities at the same time, in order to signi�
antly improve the learning speedof the quality fun
tion. The Dyna ar
hite
ture illustrated in �gure 1 uses a modelof the environment to build hypotheti
al transitions independently from the 
urrentexperien
e. These simulated a
tions are used to update the model of the qualityfun
tion more than on
e per time step, with a value iteration algorithm inspiredfrom Dynami
 Programming. The model of the environment is learned latently � i.e.independently from the reward.
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Fig. 1. A Dyna ar
hite
ture to perform reinfor
ement learning. It 
ombines a model of thepayo� with a model of the environment. The model of the payo� may 
onsist in an approx-imation of the immediate reward fun
tion R : S × A → IR, and in an approximation of thequality fun
tion q : S ×A→ IR, whi
h produ
es a s
alar quality for ea
h (situation, action)pair. To learn the fun
tion q in
rementally, the system is given (st−1, at−1, st, rt) tuples. Themodel of the environment is an approximation of the transition fun
tion T : S×A→ S. Thetransition fun
tion and the immediate reward fun
tions provide hypotheti
al samples to thequality learning system, and subsequently speed up the reinfor
ement learning pro
ess.Instead of dire
tly learning a model of the quality fun
tion q as XCS does, ALCSssu
h as ACS [Sto98,BGS00℄, ACS2 [But02a℄ and YACS [GS01,GSS02℄ learn a modelof the transition fun
tion T . They take advantage of generalization 
apabilities tolearn a model of the transition fun
tion whi
h is more 
ompa
t than the exhaustivelist of all the (st, at, st+1) transitions. The transition fun
tion provides a model of thedynami
s of the intera
tions between the agent and its environment whi
h takes pla
ein a Dyna ar
hite
ture to speed up the plain reinfor
ement learning pro
ess.



In ALCSs, the 
lassi�ers are organized into [
ondition℄ [a
tion℄ [effe
t℄parts, noted C-A-E. In su
h 
lassi�ers, the E part represents the e�e
ts of a
tion Ain situations mat
hed by 
ondition C. It re
ords the per
eived 
hanges in the envi-ronment. In ACS, ACS2 and YACS, a C part is a situation whi
h may 
ontain don't
are symbols # or spe
i�
 values (like 0 or 1), as in XCS. An E part is also dividedinto several attributes and may 
ontain either spe
i�
 values or don't 
hange symbols=. Su
h a don't 
hange symbol means that the attribute of the per
eived situation itrefers to remains un
hanged when a
tion A is performed. A spe
i�
 value in the E partmeans that the value of the 
orresponding attribute 
hanges to the value spe
i�ed inthat E part.This formalism permits the representation of regularities in the intera
tions withthe environment, like for instan
e �In a grid world, when the agent per
eives a wallin front of itself, whatever the other features of the 
urrent 
ell are, trying to moveforward entails hitting the wall, and no 
hange will be per
eived in the 
ell's features�.The latent learning pro
ess is in 
harge of dis
overing C-A-E 
lassi�ers with generalC parts that a

urately model the dynami
s of the environment. ACS and YACSgeneralize a

ording to anti
ipated situations, and not a

ording to the payo�, as inXCS. As a result, it does not make sense to store information about the expe
tedpayo� in the 
lassi�ers. Therefore, the list of 
lassi�ers only models environmental
hanges. The information 
on
erning the payo�s must be stored separately.3 Improved Latent Learning with MACS3.1 Representing More Regularities with MACSGeneralization makes it possible to represent regularities in the intera
tions withthe environment. However, while ACS and YACS are able to dete
t if a parti
ularattribute is 
hanging or not, their formalism 
annot represent regularities a
ross dif-ferent attributes be
ause it 
onsiders ea
h situation as a whole. To make this point
lear, let us 
onsider an agent in a grid world su
h as those presented in �gures 3, 4and 5, where its per
eptions are de�ned as a ve
tor of boolean values depending onthe presen
e or absen
e of walls in the eight surrounding 
ells. Turning right resultsin a two-positions left shift of the attributes. For instan
e, the agent may experien
etransitions like [11001100℄ [y℄ [00110011℄.In su
h a 
ase, every attribute is 
hanging. Thus, the formalism of ACS and YACSis unable to represent this regularity. Nevertheless, the shift in the per
eived situationis a
tually a regularity of the dynami
s of the intera
tions: whatever the situation is,when the agent turns 
lo
kwise, the value of the 1st attribute 
omes to the last valueof the 3rd, the value of the 2nd be
omes the 4th et
.The parti
ularity of su
h a regularity is that the new value of an attribute de-pends on the previous value of another one. Expressing generalization with don't
hange symbols forbids the representation of su
h regularities. In the ACS/YACS for-malism, the new value of an attribute may only depend upon the previous value ofthe same attribute, a situation whi
h is seldom en
ountered in pra
ti
e. To over
omethis problem, it is ne
essary to de
orrelate the attributes in the E parts, whereas ACSand YACS 
lassi�ers anti
ipate all attributes at on
e.To this end, our new system, MACS, des
ribes the E parts with don't know sym-bols �?� rather than with don't 
hange symbols. This way, the a

urate 
lassi�er[####1###℄ [y℄ [??1?????℄ means that �just after turning right, the agent always



[11001100℄ ←Situation[1#######℄ [y℄ [??????1?℄[#1######℄ [y℄ [???????1℄[##0#####℄ [y℄ [0???????℄[###0####℄ [y℄ [?0??????℄[####1###℄ [y℄ [??1?????℄[#####1##℄ [y℄ [???1????℄[######0#℄ [y℄ [????0???℄[#######0℄ [y℄ [?????0??℄[#######0℄ [y℄ [?????1??℄Anti
ipations → [00110011℄or [00110111℄Table 1. During the integration pro
ess, the LCS proposed in se
tion 3 s
ans the E parts andsele
ts 
lassi�ers whose A parts mat
h the a
tion and whose C part mat
h the situation. Theintegration pro
ess builds all the possible anti
ipated situations with respe
t to the possiblevalues of every attribute. Here, the system anti
ipates that using [11001100℄ as a 
urrentsituation should lead either to [00110011℄ or to [00110111℄. In deterministi
 environments,if all the 
lassi�ers were a

urate, this pro
ess would generate only one possible anti
ipation.per
eives a wall at its left when it per
eived a wall behind itself, whatever the otherattributes were�. This 
lassi�er does not provide information about the new valuesof other attributes (as denoted by the ? symbol). Thus, the overall system gains theopportunity to dis
over regularities involving di�erent attributes in the [
ondition℄and the [effe
t℄ parts.Again, this proposal for a new formalism leads to a new 
on
eption of general-ization. As usual, a 
lassi�er is said to be maximally general if it 
ould not 
ontainany additional don't 
are symbol without be
oming ina

urate. But it is now saidto be a

urate if, in every situation mat
hed by its 
ondition, taking the proposeda
tion always sets the attributes to the values spe
i�ed in the e�e
t part, when su
hattributes are not don't know symbols.As a result, the anti
ipating unit is not the single 
lassi�er anymore but the wholeLCS. Given a situation and an a
tion, a single 
lassi�er is not able to predi
t thewhole next situation: it anti
ipates only one attribute. The system needs an additionalme
hanism whi
h integrates these partial anti
ipations and builds a whole anti
ipatedsituation, without any don't know symbol in its des
ription, as shown in Table 1.Experimental results presented in [GMS03℄ demonstrated that the new formal-ism used by MACS a
tually a�ords more powerful generalization 
apa
ities than theformalism of YACS, without any 
ost in terms of learning speed.The algorithms realizing the latent learning pro
ess in MACS will not be des
ribedin detail here, they are presented in [GMS03℄.3.2 Modular Model of the Environment with MACSIn the previous se
tion, we des
ribed how MACS represents its model of the dynami
sof the environment with anti
ipating 
lassi�ers.In all Dyna systems, this model 
onsists of an exhaustive list of (st−1, at−1, st)triples, ea
h spe
ifying a whole transition, i.e. the expe
ted value of a 
omplete set of



attributes. ACS and YACS both improve the model by adding generalization in thetriples, but ea
h 
lassi�er still spe
i�es 
omplete transitions. Conversely, in MACS,ea
h 
lassi�er only provides a predi
tion 
on
erning one attribute.
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Fig. 2. MACS ar
hite
ture. Ea
h module is a simple fun
tion approximator.Due to 
onditions, ea
h 
lassi�er of YACS (or (st−1, at−1, st) triple of DynaQ+) is asubfun
tion of the global transition fun
tion T : s1×...×sd×a1×...×ae → s1×...×sd
1.Conversely, in MACS, ea
h 
lassi�er is a subfun
tion of a partial transition fun
tion

Ti : s1 × ... × sd × a1 × ... × ae → si. Then, it is possible to 
onsider groups of
lassi�ers, ea
h group anti
ipating one parti
ular attribute. Ea
h of these groups thenmodels a partial transition fun
tion. The global transition fun
tion 
an be obtainedby integrating the partial fun
tions.The MACS ar
hite
ture illustrated in �gure 2 shows how the latent learning part ofMACS 
an be 
onsidered as a modular system, ea
h module anti
ipating one attribute.Ea
h of these modules provides an approximation of one partial transition fun
tion,ea
h predi
ting one single value. As we will dis
uss in se
tion 7, this ar
hite
turesuggests that one 
ould repla
e MACS modules by some other fun
tion approximationsystems like neural networks or 
lassi
al LCSs like XCS or XCSF.4 Combining A
tive Exploration and Exploitation4.1 Hierar
hi
al Aggregation of Di�erent CriteriaThe aim of a
tive exploration is to provide the agent with a poli
y that maximizesthe information provided by the sensori-motor loop. The agent sele
ts a
tions thathelp improving the model a

ording to this 
riterion.1 where e is the number of e�e
tors, and d is the number of per
eived attributes



As illustrated by �gure 2, in order to 
ombine a
tive exploration with exploita-tion, we designed an ar
hite
ture resulting from the hierar
hi
al 
ombination of threedynami
 programming modules, ea
h trying to maximize the reward from a di�erentsour
e. Indeed, we distinguish the internal reward, 
orresponding to a gain in infor-mation about the model of the environment, the rehearsal reward, 
orresponding toa measure of the time elapsed after the last visit of ea
h transition, and the externalreward, 
orresponding to a gain of food or whatever a
tual reward in the environmentof the agent.The pre
ise de�nition of these immediate rewards are the following� The general idea of de�ning an immediate information reward 
onsists in measur-ing whether the model of the transitions 
an be improved or not thanks to thea
tivation of a parti
ular a
tion.More pre
isely, we de�ne an estimator El(c) asso
iated with ea
h 
lassi�er c. El(c)measures the evaluation level of the 
lassi�er. Thus El(c) must be equal to 0 ifthe 
lassi�er has not been evaluated yet, and must be equal to 1 if the 
lassi�erhas been tested enough.Thus we de�ne El(c) = min((b + g)/θe, 1), where θe is the number of evalua-tions needed to 
lassify a 
lassi�er as a

urate, ina

urate or os
illating, and band g are respe
tively the number of anti
ipation mistakes and su

esses alreadyen
ountered by the 
lassi�er in previous evaluations.Ea
h estimator El(c) is bound to one 
lassi�er, not to one situation. In order to
ompute the information gain bound to one situation Ri(s0), the pro
ess is thefollowing.The 
lassi�ers that mat
h s0 are grouped by a
tion. For ea
h possible a
tion a,MACS 
omputes the set Ss0,a of the possible anti
ipated situations as des
ribed inse
tion 32. Ea
h triple (s0, a, s1), where s1 ∈ Ss0,a, is one of the possible transitionsthat would be experien
ed if a
tion a were performed in situation s0. We de�nethe evaluation level El(s0, a, s1) asso
iated with this transition as the produ
t ofthe evaluation levels El(c) of all the 
lassi�ers c involved in this anti
ipation:
El(s0, a, s1) =

∏

c≈(s0,a,s1)

El(c)The 
lassi�ers c mat
hing (s0, a, s1) are su
h that their C part mat
hes s0, their
A part mat
hes a, and their E part mat
hes s1. The less a transition has beenevaluated, the greater the immediate information gain. Thus, if the transitiono

urs, the asso
iated immediate information gain is:

Ri(s0, a, s1) = 1 − El(s0, a, s1)We de�ne the immediate information gain asso
iated with a situation and ana
tion as the maximum information gain over the possible asso
iated anti
ipations:
Ri(s0, a) = max

s1∈Ss0,a

Ri(s0, a, s1)If the model does not provide MACS with at least one anti
ipated situation s1,be
ause of in
ompleteness, then Ri(s0, a) is given the default value 1, whi
h is themaximum immediate information gain.2 There may be several possible anti
ipated situations in the 
ase where the 
lassi�ers arenot a

urate.



Finally,
Ri(s0) = max

a∈A
Ri(s0, a)� The external reward is the usual sour
e of reward found in any reinfor
ementlearning framework. We de�ne it as Re(s0) 
orresponding to the immediate rewardobtained for visiting the situation s0.� The immediate rehearsal reward leads to a poli
y whi
h is similar to the explo-ration poli
y des
ribed in [Sut91℄ or [But02b℄3. Then it grows until the situationis visited again and then drops to 0.In order to update Rr(s0), we use the 
lassi
al Widrow-Ho� equation:

Rr(s0) = (1 − βr)Rr(s0) + βrThen, from ea
h immediate reward, whether internal, rehearsal or external, a longterm expe
ted payo� is 
omputed separately thanks to the Value Iteration algorithm(see [SB98℄ for a presentation). The latent learning pro
ess provides the system withthe model of the transitions whi
h is ne
essary for an o�ine 
omputing of the qualitiesasso
iated to ea
h a
tion, given a situation. By doing so, the values are updatedindependently from the a
tual experien
e of the agent, and many updates 
an be
omputed at ea
h time step, as usual in a Dyna ar
hite
ture.The last 
omponent of the ar
hite
ture 
onsists of a hierar
hi
al 
ombination ofthese three 
riteria. Sin
e an ina

urate model may result in an ina

urate estimationof the expe
ted external payo�, maximizing the information gain is given the priorityagainst the external payo� maximization. Thus, if there is a better a
tion with respe
tto the information gain 
riterion, this a
tion is 
hosen. Else, if at least two a
tionsprovide the maximal expe
ted information gain, then the one whi
h maximizes theexternal payo� is 
hosen. In parti
ular, if the information about the problem is per-fe
t, whi
h means that no a
tion provide any gain in information anymore, then thepoli
y will be 
ompletely driven by the external payo� and will 
onverge to optimalexploitation. The last 
riterion, rehearsal reward, is the least often used. It is only 
ho-sen if at least two a
tions are equally likely to be �red with respe
t to both previous
riteria.5 Experimental Results: Moving Sour
es of RewardIn order to illustrate the gain resulting from latent learning in reinfor
ement learningproblems, we present in this paper new experiments where we tried to test MACS onproblems where the sour
es of reward are moved after the agent su

eeds in rea
hingthem.This problem gives the opportunity to highlight two key properties of MACS. First,the ne
essity to have an internal model and to be able to perform Value Iteration onthat model as an o�ine mental rehearsal arises when the agent dis
overs that thesour
e of reward has moved: it must forget all the payo� estimates 
orresponding toits previous model, and this forgetting pro
ess would be very slow without su
h amodel. Se
ond, the ne
essity of a
tive exploration arises on
e the model is forgotten:the agent must re-explore the whole environment to �nd the new lo
ation of the sour
eof reward. This sear
h is mu
h more e�
ient thanks to a
tive exploration.3 The latter also uses a sort of "internal reward" biasing a
tion sele
tion a

ording to thea

ura
y or "quality" of the predi
ted e�e
ts.



FFFig. 3. Maze216C F

F

Fig. 4. Maze228C
FF

Fig. 5. Maze312CAs a ben
hmark problem, we tested MACS on three di�erent environments, namelyMaze216C, Maze228C and Maze312C, respe
tively shown on �gure 3, 4 and 5. These�maze-like� or �woods� problems are standard ben
hmarks in LCS resear
h, they 
ouldbe repla
ed by any �nite state automaton but they provide a more intuitive view.At the beginning of the experiments, the food is in the 
ell marked with a 
ir
ledF. On
e the agent has rea
hed it twenty times, the food is moved to the 
ell markedwith a plain F. This is done repeatedly, the food being moved again ea
h time theagent has found it twenty times.Figure 6 illustrates the number of time steps MACS needs to solve Maze216C,Maze228C and Maze312C during 250 su

essive trials. The results are averaged over100 experiments. The learning rates are set to 0.1 and the memory size and numberof evaluations ne
essary to take a spe
ialization/generalization de
ision are all set to
5. The dis
ount fa
tor γ is set to 0.9.The results show that, though it only performs one Value Iteration step per timestep, MACS is able to re-adapt the poli
y to the new sour
e lo
ation very fast. Ea
htwenty trials, the longer trial 
orresponds to the 
ase where the agent must �nd thenew lo
ation of the sour
e of reward. It is found fast thanks to a
tive exploration and,as soon as it is found, the time ne
essary to rea
h it again 
onverges during the nexttrial. The slight variations are due to the fa
t that the agent always starts from arandom 
ell and the results are averaged over 100 trials only.Note that MACS is tested here in a deterministi
 environment and would notperform as e�
iently in a probabilisti
 environment, but the lessons that we willdraw in the following dis
ussion and 
on
lusion still apply in the probabilisti
 
ase.6 Dis
ussionIn this paper, we have shown how a latent learning pro
ess 
ould be 
ombined withseveral dynami
al programming pro
esses into a Dyna-like ar
hite
ture. As in Dynaar
hite
tures, one module learns a model of the environment and the other modulesare in 
harge of maximizing the payo� expe
tation thanks to o�ine Dynami
 Pro-gramming te
hniques. By using several immediate rewards, we have shown how threedi�erent poli
ies 
ould be obtained and how a hierar
hi
al 
ombination of these poli-
ies resulted in improved performan
e in 
lassi
al problems 
onsidered di�
ult in thereinfor
ement learning framework.A �ner de
omposition into modules 
an be obtained if one 
onsiders that the latentlearning pro
ess in MACS 
an itself be split into one module per anti
ipated attribute.The global ar
hite
ture of our system is shown in �gure 2.
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Fig. 6. MACS 
ombining exploration and exploitation: number of time steps to rea
h thesour
e of reward in su

essive trials in Maze216C, Maze228C and Maze312C.
As in DynaQ+, one poli
y relies on the external reward and a se
ond one on thetime elapsed after the last visit of ea
h transition. But the third poli
y in MACS, re-lying on the information whi
h 
an be gained by �ring ea
h 
lassi�er, is more original.It provides the agent with a systemati
 exploration 
apability whi
h allows it to gaina perfe
t knowledge of its environment mu
h faster than with a random exploration,as shown in [GMS03℄.The hierar
hi
al 
ombination of these poli
ies is also a distin
tive feature of MACSwith respe
t to DynaQ+. In DynaQ+, a weighted sum of the di�erent 
riteria resultsin a 
ompromise between the di�erent poli
ies. First, designing a weighted sum ofdi�erent 
riteria while the magnitude of these 
riteria is not known in advan
e (itdepends on the amount of external reward, whi
h may vary from an environmentto another) is very di�
ult. Thus it is likely that the weights have to be tuned forea
h experiment. In MACS, on the 
ontrary, no weight parameter has to be tuned inorder to deal with di�erent levels of reward, sin
e su
h weights do not exist in thehierar
hi
al agregation.Furthermore, sin
e the 
riterion 
orresponding to the tenden
y to explore is neverequal to zero, the overall behavior is always under-optimal with respe
t to payo�.In MACS, by 
ontrast, giving the priority to building a 
orre
t model permits the
onstru
tion of a 
omplete model, and then the payo� maximization pro
ess naturallytakes the 
ontrol of the agent and gives rise to an optimal behavior.



7 Future Work and Con
lusionIn the MACS ar
hite
ture for latent learning presented on �gure 2, the fun
tional roleof ea
h module is to guess the value of one attribute at the next time step given thevalue of several attributes (
onditions and a
tions) at the 
urrent time step. That is,ea
h module tries to approximate a many-to-one fun
tion, whereas 
lassi�ers in ACSand YACS were trying to approximate a many-to-many mapping.The e�e
tiveness of this approximation results from the fa
t that all 
lassi�ersre
eive at the next time step the a
tual situation or attribute that they should haveanti
ipated. I.e., though there is no supervisor, the learning pro
ess 
an bene�t frominformations on its errors as if it were supervised.Therefore, any system relying on the same property 
an be used to approximatefun
tions with the same e�e
tiveness. In parti
ular, XCS is su
h a system, sin
e thepredi
tion of the a

ura
y of ea
h eligible 
lassi�er 
an be 
orre
ted after ea
h timestep.Thus, rather than using a spe
ialized ALCS su
h as MACS to solve reinfor
ementlearning problems with a model-based approa
h, it is possible to use a more generalsystem like XCS as a building blo
k to implement the basi
 modules in the ar
hite
turepresented in �gure 2.Using XCS in su
h an ar
hite
ture would let the system solve dis
rete state andtime problems verifying the Markov property as MACS does. Another possibilitywould be to use XCSF [Wil01,Wil02℄, an XCS extension devoted to the pie
ewise linearapproximation of 
ontinuous fun
tions, so as to address 
ontinuous state problems.Our future work will 
onsist in the investigation of that line of resear
h : usingXCSF modules to learn both a poli
y and a model of the environment. It must bementioned that, where XCSF uses the Widrow-Ho� delta rule so as to linearly ap-proximate a fun
tion, we envision to rather use a more powerful and e�
ient method
oming from the �eld of in
remental statisti
al estimations.As a 
on
lusion, we des
ribed in this paper several LCSs, 
asting a new light onthe 
on
ept of generalization in the LCS framework. We presented MACS, a new LCSusing a di�erent formalism able to use additional regularities in its latent learning pro-
ess. MACS formalism for latent learning does not 
onsider situations as an unse
ablewhole, but de
orrelates the attributes, making it possible to represent regularitiesa
ross attributes. We have illustrated the e�e
tiveness of our approa
h with MACS inthe 
ontext of an a
tive exploration problem, using a hierar
hi
al aggregation 
riterionin order to ta
kle the exploration/exploitation tradeo�.Beyond the presentation of MACS, we hope to have 
onvin
ed the reader thatsolving reinfor
ement learning problems with a model-based approa
h 
an be seenas a 
onjun
tion of several fun
tion approximation problems, and that solving theseproblems 
an be a
hieved e�
iently with di�erent systems as a building blo
k, giventhat they rely on a predi
tion pro
ess.Referen
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