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Abstract

We introduce and compare two algorithms related to ego-motion, applicable to a robot using a
panoramic visual sensor in an unknown environment. The first method, computationally cheap,
extends a family of bio-inspired navigation systems by providing an orientation estimation that pre-
viously had to be obtained from external references. The second method solves the general structure-
from-motion problem and is here adapted to the panoramic sensor case. Both methods produce good
results in a test scene, though the calibrated method has a greater precision. A step-by-step compari-
son of the methods is included, with mobile robotics applications in mind.

1 Introduction

In Gourichon et al. (2002), a biomimetic homing
navigation method was applied to a robot, based on
the work of Cartwright and Collett (1983, 1987) on
searching behaviour in bees. Because this method
assumed that the orientations of two snapshots – i.e.,
two one-dimensional projections of thresholded lu-
minances on a circular retina respectively taken in a
given goal place and in any other place close to the
former – were known to the robot, only constrained
moves were allowed, committing the robot to always
face the same direction. To alleviate such constraint,
a visual compass has been designed, thus making it
possible to monitor the robot’s changes of direction
along any path, thanks to simple measures of paral-
lax and to simple extensions of Cartwright and Col-
lett’s logic of snapshot comparisons.

Turns out besides that monitoring a robot’s ori-
entation is part of the more general issue of es-
timating its ego-motion (Chang and Hebert, 2000;

Faugeras and Maybank, 1990; Tomasi and Kanade,
1992; Spetsakis and Aloimonos, 1990), and that so-
phisticated 3D-vision algorithms may be used to
monitor both the translations and rotations of the
robot. Incidentally, the same algorithms may also
serve for the 3D reconstructions of unknown en-
vironments (Ikeuchi et al., 2001; Narayanan and
Kanade, 1998; Faugeras et al., 1998).

To assess the respective merits of these two inde-
pendent lines of approach, an experiment has been
set up to demonstrate their effectiveness at deter-
mining the orientation of a robot equipped with a
catadioptric sensor. Two methods have been accord-
ingly implemented. The first one calls upon simple
bio-inspired parallax comparisons, while the second
is more mathematically inclined and extensively re-
lies on non Euclidian geometries and minimizations
techniques.

This paper describes the basic principles underly-
ing these methods, and the results that were obtained



in simple experimental conditions. The chances that
these methods will prove to be efficient in more chal-
lenging environments are also discussed, and indica-
tions for future improvements are provided.

2 A visual compass from a biologi-
cally inspired context

The first method in this comparison is a simple and
computationally cheap visual compass designed for
an animat able to perceive the azimuths of some
landmarks relative to its body. After an observa-
tion stage, done once and for all for a given location,
there is an exploitation stage when, from any loca-
tion in the vicinity, the visual compass can estimate
the absolute orientation of the animat’s body using
only perceived relative angle measurements.

Only azimuths are used, no elevation, which
makes sensor calibration unnecessary. A simple seg-
mentation algorithm and a matching procedure by
dynamic programming are used.

The essence of the algorithm is to take advantage
of the local linearity of the variation of any azimuth
with respect to the animat motion. This allows, at
the observation stage, to capture relevant informa-
tion without knowing the complete motion of the
animat. At the exploitation stage, this also allows
to very simply retrieve the animat’s orientation from
any later view taken in the vicinity of the observation
place.

2.1 Early image processing

It is necessary to extract azimuths from the sensor’s
image. The image processing used here is volun-
tarily simple. It starts from a color panoramic im-
age (see figure 7 right). The first step is to unroll
a ring portion of the color input image according to
rectangular-polar transformation to obtain a rectan-
gular colored strip indexed by azimuth. Then a sim-
ple segmentation procedure is used, that selects por-
tions of the panorama with highly saturated (color-
ful) pixels, and separates regions of nearly constant
hue at azimuths where the average hue variation is
beyond a threshold. The result is a set of regions
sorted by azimuths, with possible holes caused by
portions of the initial panorama without bright col-
ors. A real-world panorama typically results in less
than 100 regions. In this experiment, the regions cor-
respond to the colored cardboard.

The segmentation algorithm, though very rough,
is the same we already used successfully in real-
world robotic short range guidance experiments
in Gourichon et al. (2002).

2.2 Matching algorithm

The visual compass requires the ability to establish
correspondences between objects appearing in dif-
ferent views. Here we called upon a dynamic pro-
gramming algorithm that we already used for short
range guidance. It is explained in more details
in Gourichon et al. (2002). It globally maximizes
a matching score from a local score function that
takes color information (particularly hue) into ac-
count. This step remains reasonably cheap (O(n2)
with n < 100) because the segmentation algorithm
provided a small set of regions.

2.3 Using the parallax in two stages

As summarized above, the biologically-inspired vi-
sual compass operates in two stages: an observation
stage, and an exploitation stage.

2.3.1 Notations

Let us introduce the notations illustrated in figure 1.
Given a view taken at place X, we name θXa→b the
signed angle between the azimuth of feature a and
the azimuth of feature b, where a feature may be ei-
ther a landmark number such as i, or a reference di-
rection such as north or body.

We call parallax of a landmark during an animat’s
motion the variation of azimuth caused by this mo-
tion. Thus, for landmark i, for a motion from M to
N, the parallax isDM→N

i = µ(θNnorth→i−θMnorth→i)
where µ(x) is the number closest to zero in the set
(x modulo 2π).

2.3.2 Observation stage

During the observation stage the animat observes the
parallax caused by ego-motion. The animat has to
know its orientation during this stage, but the trans-
lation can be unknown. It takes three views (named
M ,N ,P ) that are not aligned and have in common at
least three landmarks (named a,b,c). The ideal sit-
uation is one distant landmarks and two close land-
marks, as we will illustrate later. The worst situation
is when the observation region and the three land-
marks lie on a circle.
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Figure 1: Illustration for notation θNa→b. Curved ar-
rows represent three landmarks a,b,c paired between
views M and N by the matching process.

From the parallax measured we will calculate
what we’ll call a “bearing”. It is a set of three real
numbers λa, λb, λc that are attached to the triplet and
will be used to estimate a direction.

For (i, j, k) ∈ {(a, b, c)(b, c, a)(c, a, b)}, let

λi = DM→N
j DM→P

k −DM→P
j DM→N

k

If the sum of the three λ’s is close to zero, the
triplet is unsuitable and simply ignored. The reason
for this formula and details are given in Gourichon
(2003). Usually, more than 3 landmarks are available
in a standard situation. Then, all suitable triplets are
enumerated and used to build corresponding bear-
ings.

2.3.3 Exploitation stage

Each time a new view X of unknown orientation is
taken, that has common landmarks with the views
used at the observation stage, an exploitation stage
can be conducted. It consists in estimating the an-
imat’s orientation, using a previously memorized
bearing.

If the orientation of the new view is completely
unknown, then it is first artificially rotated so that
the landmark that has the highest lambda in the bear-
ing appears to have the same azimuth as in view M.
This prevents angular wrapping artifacts of pseudo-
parallaxes in equation 1 below.

The denominator attached to the bearing is calcu-
lated:

d = λa + λb + λc

as well as a linear combination that depends on X
and that we call the invariant:

I(X) =
∑

i∈{a,b,c}
λi µ(θXbody→i − θMbody→i)︸ ︷︷ ︸

pseudo-parallax

(1)

Then the current orientation of the animat’s body
θXnorth→body, that can be estimated from this bearing
is simply:

θXnorth→body = θMnorth→body −
I(X)

d
(2)

Let us summarize how it works. The pseudo-
parallax is a real parallax if views M and X have
the same orientation reference, i.e. θXnorth→body =

θMnorth→body. The three λ’s are calculated so that the
linear combination of parallaxes is constant, in first
order approximation, in the vicinity of the observa-
tion places. As a consequence, if the view X is cor-
rectly oriented, I(X) ' 0. This is exact by construc-
tion, for X = M , X = N and X = P .

At the observation step the linear combination
I(X) involves pseudo-parallaxes, because it is cal-
culated as if the view X was correctly oriented,
while it is not necessarily the case. This generates
the same offset at the level of each parallax, which
contributes to the linear combination. Since the lin-
ear combination is chosen to yield a constant result
with real parallaxes, the difference between actual
and expected values is the error in orientation (the
only unknown value) multiplied by the sum of the
linear coefficients d (which is known). Hence equa-
tion 2.

To make things better, more that a single invari-
ant may be available, because more than one bear-
ing may have been recorded at the observation step,
from as many triplets of landmarks. To contribute
to the overall direction estimate, each bearing yields
a unit vector pointing to the estimated body direc-
tion. These unit vectors are summed up and their
resultant provides the aggregated direction estimate.
The length of the resultant vector is used as a self-
confidence estimator: it is maximal when all bear-
ings can be used and all indicate the same direction,
while it is reduced if the different estimated direc-
tions contradict each other. Additional details are
given in Gourichon (2003).

2.3.4 Example

For clarity of the example and figure, the equations
in this example are simplified and use absolute az-



imuths θ instead of parallaxes, and would not always
work properly as is because of angular wrapping ef-
fects.

Figure 2 shows an example animat motion and an
observed invariant. Since θnorth→i = θnorth→body +
θbody→i, this linear equation it is very easy to solve
for θnorth→body.

If the animat moves or rotates, or a combination
of both, and takes a new view X , θXnorth→body is as
simple to retrieve as:

−
43.25 · θXbody→a + 92 · θXbody→b + 55.25 · θXbody→c

43.25 + 92 + 55.25

It is interesting to notice that the λs are calculated
based on a particular motion, which is unknown at
any time. Only a constant orientation during this mo-
tion is assumed. In a sense, this method separates
orientation from motion, or compensates motion to
retrieve orientation.

One of the prerequisite for this method is that
this separation is possible. For any particular triplet,
there is a region where it is not true (figure 3).

North

M

θc

θb

θa

b

a

c

Figure 2: Example illustrating the principle of
the bio-inspired visual compass. Shaded circles
are landmarks. Moving along the three connected
open circles (right) the animat observes that 43.25 ·
θnorth→a + 92 · θnorth→b + 55.25 · θnorth→c is ap-
proximately constant. Since this is a linear equation
it is very easy to solve for θnorth→body . Actually,
this equation would suffer from angular wrapping ef-
fects, which is why parallax are used instead of az-
imuths, and the view is first pre-oriented in favor of
the most stable landmark (the one with the highest
lambda, see text). The vector field on the right shows
the estimated north direction at points of a grid.

Figure 3: Example illustrating a degenerate case and
a limitation of the bio-inspired method. The circle
traversing any three landmarks has the geometrical
property that the perceived relative angles are the
same from any position (represented here at two po-
sitions). From the animat’s point of view it means
that orientation (turning around itself) cannot be sep-
arated from motion (moving on the circle). As a re-
sult, if the observation region is too close to this cir-
cle, the corresponding triplet will produce unreliable
results. In this example the observed paramaters are
λa = −31, λb = 14, λc = 16 and d = −1. d
is much smaller than any lambda, which is a mea-
surable sign of a bad triplet in this region. In a real
situation, the compass would have ignored it in favor
of other triplets.

3 A camera calibration-based visual
compass

This method estimates both rotational and transla-
tional components of motion from two views only.
In a first stage, it calibrates the internal parameters
of the camera, thus making it possible to get ele-
vations from the camera image. In a second stage,
a matching procedure based on robust methods is
applied. It is rotation and scale invariant to cope
with the non linear resolution of the sensor. Finally
a structure-from-motion direct linear algorithm re-
trieves the motion parameters using a robust method,
prodiving complete ego-motion (i.e. translation and
rotation).



3.1 The necessity of calibration

The use of catadioptric sensors to retrieve the com-
plete motion between two frames implies necessar-
ily entails knowing the 3D orientation of the line
of sight associated with each image pixel. In other
words, the 3D direction in space which corresponds
to the direction in which it is observing the scene
must be known (J. Fabrizzio, 2002; Geyer and Dani-
ilidis, 2002, 2001). A catadioptric sensor being an
association of a camera and a mirror, it is possible to
elaborate a model that associates to each view point
(camera, mirror) a 3D coordinates system. It is then
important to retrieve the unknowns of the model,
which are the camera internal parameters, the dis-
tance between the camera and the mirror and the ori-
entation of the mirror. The mirror being generally
manufactured with a very high precision, its param-
eters are assumed to be known. Moreover, by con-
struction, most panoramic catadioptric sensors fulfill
what is called the single viewpoint constraint, which
means that all incident rays reflected by the mirror
and intersecting in the camera focal point also inter-
sect in a single point called the mirror viewpoint by
Baker and Nayar (1998). Retrieving the unknown
parameters makes it possible to check the validity
of the hypothesis of the single view point constraint,
and allows a better computation of the 3D vector of
sight associated with each pixel (see figure 4). This
is an advantage as the process of determining the mo-
tion from two consecutive images is very sensitive to
noise and can provide distorted results if the calibra-
tion does not provide accurate parameters (see next
section).

3.2 Matching catadioptric images

To be able to recognize common real-world features
appearing in two images, it is necessary to perform a
match.

Most of the existing matching methods rely on
the same principle. They first extract features from
two "rough" images, generally high curvature points.
Then, they select around each point a neighbor-
hood of points and compute a correlation between
all the neighborhoods. The best score implies the
best fit (Faugeras, 1993).
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Figure 4: The aim of the calibration if to find the
precise relationship between pixel coordinates in the
image and the 3D direction of the vector of sight.
This representation relies on the estimated model
provided by calibration.

3.2.1 Feature extraction

The feature extraction normally used is a corner ex-
traction, performed using a classical Harris detec-
tor (Harris and Stevens, 1988), directly applied to
images, i.e. without paying attention to their cata-
dioptric origin.

For this experiment, black spots were used instead
(see figure 7). The feature points were the center of
the spots.

3.2.2 Window definition

Matching interest points in stereoscopic views re-
quires a sharp neighborhood extraction. Classi-
cal approaches use predefined size patches, often
squares, centered on interest point. Unfortunately, in
the present case, similar approaches would not give
reliable results because the shape of the mirror does
not guarantee an homogeneous resolution (it is max-
imum at the center and decreases when getting near
the borders). This is why a dedicated procedure, de-
rived from Svoboda and Pajdla (2001),which takes
into account the spatial resolution variation by means
of dynamically resized patches is used instead.

The shape of the neighborhood windows are not
squares but diamonds defined by their vertices (see
figure 5). Thanks to calibration, there is a two-way
correspondence between each pixel in the image and
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Figure 5: Window definition. The diamond is
defined from the mirror surface, its vertices are
obtained by setting azimuth (θ) and elevation (φ)
ranges.

its projection on the mirror. Each feature point is
projected on the mirror. The quadrilateral patch def-
inition is an original method that defines the associ-
ated window on the mirror surface by fixing angular
ranges around the point’s azimuth θ and elevation φ
(see figure 5). Then, the vertices of the diamond are
projected again from the mirror to pixels in the im-
age plane. By setting the neighborhood window on
the mirror instead of the image, we are able to cope
with the spatial resolution requirement. Dimensions
of the window increase with the distance to the cen-
ter, under the assumption of fixed angular parame-
ters.

3.2.3 Matching and outliers removal

Optimal matching requires an appropriate sampling
of the extracted neighborhoods which may have dif-
ferent size. Each window is accordingly resized us-
ing a classical bilinear interpolation.
Since the windows are projected on the mirror at a
known azimuth, disparity angle for each couple of
points can easily be computed. Thus, patches are
correctly oriented before the matching process.

The correlation score computation should ensure
one, and only one, best match for each point; there-
fore we use a centered and normalized cross correla-
tion. Points are paired if they mutually give the best
similarity scores.
This is still not enough to get reliable points. In or-
der to remove outliers, a threshold extracted from

Figure 6: Motion estimation step. The sensor was
moved from referentialR1 to referentialR2 between
image 1 and image 2. If A1 and A2 are two correctly
matched points there is a relation between O1, O2,
P1, and P2. The coherence of this relation among
many points allows at the same time to estimate the
motion and reject mismatched points.

matched points is applied on the measured angular
disparity set. Pair of matched points are removed if
their relative angles are too far from the computed
average value (|θ − θ| > 2.5σ). Additional details
are given in Ieng et al. (2003).

3.3 Extrinsic parameters estimation

The next step is to actually find the motion between
our two matched images. This step is based on
previous work from Faugeras and Maybank (1990);
Chang and Hebert (2000) and Svoboda et al. (1998).

Let us consider a couple of matched points, A1 in
image 1 and another A2 in image 2. If all the previ-
ous steps worked correctly, the two matched points
correspond to the same location M in the surround-
ing scene (figure 6). If it is true, then O1, O2, P1,
and P2 lie on the same plane:

−−−→
O1P1|R1.(

−−−−→
O1O2|R1 ∧

−−−→
O2P2|R1) = 0 (3)

Changing the form of the equation as followed
leads to a well known property in stereovision, which
is interesting because P1 and P2 are actually known:

Pt
1.E.P2 = 0 assuming that





P1 =
−−−→
O1P1|R1

E =
−−−−→
O1O2|R1 ∧R1

2

P2 =
−−−→
O2P2|R2

The only unknown is E, the essential matrix de-
fined by Longuet-Higgins (1981). This matrix repre-



sents the coordinate transformation between referen-
tials R1 and R2, that is the translation and rotation
that was performed between the views we are work-
ing on, i.e. rotation R1

2 and translation T 1
2 compo-

nents.
Equation (3) is simplified to a more explicit form:

U.e = 0, where U = (p1xp2x, p1xp2y, p1xp2z,
p1yp2x, p1yp2y, p1yp2z, p1zp2x, p1zp2y, p1z, p2z)
and e is a column vector containing all components
of E.

This is a dot product with eight terms. In con-
crete terms, if all matching was perfect and measure-
ments without noise, seven of those equations would
be enough to know the motion. Thus, this method
needs at the bare minimum, 7 matched points in the
environment.

Actually, there are mismatched points and their
position is not exactly known. So the problem in
transformed into minimizing ‖U.e‖. As estimating
E means minimizing errors, we solved our optimiza-
tion problem by weighting contribution of each inter-
est point.

The reader can refer to the work of Zhang (1998)
for a complete review of the robust existing tech-
niques.

4 Experimental setup

In order to be able to compare both methods in the
real world, we used the same testbed. Although both
methods are meant to work on unprepared environ-
ment, we validated them here using a constrained,
prepared one. This makes it easier to cope with ex-
perimental problems and have reproducible results.

The experimental setup is shown in figure 7.
Around a flat and rectangular surface were displayed
several colored patterns. A series of 2D positions
forming a grid was determined. At each 2D position,
we grabbed an image, forming a database of several
view points. Each method was applied on the images
of the database, with the goal of determining the ori-
entation between selected frames.

5 Experimental results

5.1 Biologically-inspired method

After all the views have been acquired, three views
were selected in the center of the arena for the obser-
vation step, which built 120 bearings.

Panoramic sensor

Figure 7: Experimental setup. For the bio-inspired
visual compass, colored cardboard was attached
around a table to provide environmental features that
were easy to segment. For the calibrated method,
black spots were displayed to ensure that points were
available at different elevations.

Then, for each available view (including the ones
used for observation) we applied the bio-inspired
algorithm to estimate the orientation of the sensor
when the views were taken. Results are shown on
the left of figure 8. In this example, the mean er-
ror is 1.39 degrees and the standard deviation 3.54
degrees.

5.2 Sensor calibration-based method

After all the views have been acquired, one view was
selected as reference (shown in red in figure 8).

Then, for each availavle view we applied the cal-
ibrated method, estimating its orientation with re-
spect to the reference view.

In this example, the mean error is 0.155 degrees,
and standard deviation is 0.156 degrees.

6 Discussion

In this run, the results of the camera-calibrated ap-
proach are considerably more precise (standard devi-
ation 0,16 degrees versus 3.54) in this specific case.
Naturally, additional experiments would be neces-
sary to draw more generic conclusions. Furthermore,
none of the two methods was tested in the case of an
unprepared environment in which they are intended
to be used in the future.

A number of differences are summarized in ta-
ble 1.



Bio-inspired visual compass Calibrated method

translation not calculated here calculated
rotation one angle three angles

features located by azimuths azimuths and elevations
determination of interest points simple 1D segmentation center of displayed spots or cor-

ners
minimum features needed 3 regions (landmarks) 7 points
matching criterion color (mainly hue) 2D neighborhood
matching procedure 1D dynamic programming multi-resolution resampling and

correlation
aggregation simple vector sum sophisticated minimization tech-

niques

Table 1: Feature comparison between the two methods. Most differences illustrate the differences in the contexts
in which those methods were developed.

Figure 8: Experimental result. Left: biologically in-
spired method. The circles represent the three loca-
tions that were used for the observation stage. Each
black arrow shows the orientation computed at its
origin. The shaded arrows show the true reference
direction. Right: Sensor calibration-based method.
The error is too small to be noticed visually. Only
three rows of images were taken.

The simplification affordable by assuming planar
motion alone was experimented by Faugeras et al.
(1998) in the case of classical projective cameras.
In our case with a catadioptric sensor, further sim-
plification can be done because the axis of rotation
is the same as the camera-mirror axis direction. The
choice of the bio-inspired visual compass to use only
azimuths makes it independent of mirror shape and
camera parameters, which makes calibration unnec-
essary.

One might wonder why the original bio-inspired
ego-motion method focuses only on rotation. The
reason is that the biomimetic navigation models

needs correctly oriented snapshots (hence this work)
to produce a direction to go to reach the goal (where
the reference snapshot was taken). Franz et al.
(1998b) proved that the direction to go can be con-
sidered as an approximate ego-motion vector, which
error in direction is less than 90◦. This is of course
insufficient for many applications of ego-motion, but
actually sufficient for robot navigation.

The visual compass needs at the bare minimum 3
identifiable features, all visible from the 3 observa-
tion views. By contrast, the calibrated method needs
at the bare minimum 7 points from the reference
view. In both methods, the more visible features, the
better the precision of the estimation. This differ-
ence is directly related to the number of parameters
estimated.

The early image processing presented here for the
bio-inspired visual compass are a bit too simplistic,
particularly the segmentation algorithm which is too
dependent on colored objects. It proved sufficient for
real robot navigation, but according to recent exper-
iments it is the first thing that needs improvement to
do real robot orientation. The calibrated method nor-
mally uses more robust, though heavier, corner ex-
traction techniques (although black spots were used
for this experiment).

There is also room for improvement in the ag-
gregation step of the bio-inspired method. We will
test a modified aggregation algorithm, that weights
bearing contributions according to their denomina-
tor. The calibrated method uses robust minimization
algorithms which, again, are costly. An adaptation
of those iterative techniques to robotics would prob-
ably reduce its cost by spreading calculation in time:



making a quick rough estimate and using as an input
on next frame acquisition, which will at each new
frame refine the position found.

Despite all the contrast between techniques, in
complexity and computational cost, both methods
produce comparable results in this experiment. The
error of the calibrated method is one order of mag-
nitude smaller than the bio-inspired method, which
is an expected result, showing the benefit of the the
more costly methods. Not all robotics applications
need such a great precision, though.

Of course all methods fail when their prerequisites
are not satisfied. Since the bio-inspired method re-
lies on local linearity of the variation of azimuths
with respect to the animat motion, it fails when this
assumption becomes too approximative. This hap-
pens in particular if the animat approaches one of
the landmarks too closely: the associated azimuth
varies more than during the observation because of
shorter distance, causing I constancy to fail. In a real
robotic application, an enhanced aggregation tech-
nique would ignore the too close landmark because
it only results in outliers during the aggregation, but
this would succeed only if enough other bearings are
available. Another possibility, instead or in combi-
nation with the previous one, would be to call upon
the complementarity of the visual compass property
(observe once, use many times) with other source
of information, for example odometry (used locally
only to avoid drifts) to make other observations and
extend the range of the visual compass as much as
needed, including the information in a topological
map, like Franz et al. (1998a) did with a different
orientation strategy.

While we already used the same segmentation
technique in Gourichon et al. (2002), we noticed
that the bio-inspired visual compass is sensitive to
wrong segmentations and wrong matchings, while
the insect-inspired navigation strategies are usually
very robust and forgiving in this matter. We think
that there is an interesting parallel with the results
of Svoboda and Sturm (1996) showing that the noise
in the calibration parameters affects rotation estima-
tion more than translation estimation.

Due to its simplifying assumption of a sole rota-
tion around a vertical axis, the bio-inspired method
makes itself vulnerable to situations where the mo-
tion is not even. It will fail if a rotation around a dif-
ferent axis occurs, much the same way many naviga-
tion models fail when they wrongly assume that they

know their correct orientation, because the linear re-
lation that is called upon will be disrupted and irrele-
vant. By contrast, the calibrated method should ben-
efit from the more thorough work it does, by being
able to deal with any rotation. In both contexts, grav-
ity may help if properly used (inertial navigation sys-
tems and/or low-cost mechanical arrangement main-
taining the robot “head” upwards).

Synthetically, all this agrees with the common
wisdom that robotics can take advantage of compu-
tationally much lighter methods than the ones used
for 3D environment reconstruction. If an animat can
deduce with a very cheap method an approximate di-
rection to go, sufficient to reach the goal, there is no
need for a computationally expensive one. On the
contrary, the functional view, common in the 3D re-
construction paradigm, where pictures taken off-line
are then fed into a mathematical algorithm that pro-
duces a reconstruction, cannot afford approximative
results. There is room for hybrid methods, for ex-
ample where a machine aiming at a 3D reconstruc-
tion would decide to move in a certain direction to
overcome a perceptual ambiguity or refine a mea-
surement.

In future work, we will test the visual compass on
a real robot.

For the bio-inspired compass we will probably
need to improve either the segmentation algorithm,
the matching algorithm or add a method for select-
ing triplets that produce the most consistent results,
to cope with an environment less easy than the test
environment used here.

For the calibrated compass, it could be interesting
to mathematically express the assumption about ro-
tation that is done in the other method, and assess if
the resulting simplification allows a better precision
in difficult situations where too few points are avail-
able for example.

We are considering the use of the bio-inspired vi-
sual compass as an external direction estimator for
the biomimetic models of head-direction cells cur-
rently developed by Angelo Arleo at LPPA, Collège
de France.

After the visual compass is validated for itself in a
robotic context, it should be tested as a complement
to a navigation system that needs an orientation esti-
mation, for example the work of Filliat (2001).

We noticed that the bio-inspired visual compass
could be extended directly to also estimate a trans-
lation, at the cost of knowing the motion performed



during observation.

7 Conclusion

The issue of estimating the motion between two real-
world views is simultaneously interesting for 3D
world reconstruction as well as for robotics.

In this article, we presented and compared two
new methods that estimate the orientation of a
panoramic view with respect to a reference view in
an a priori unknown environment, one biologically
inspired in the continuation of the work on insect-
inspired robot navigation strategies, the other in the
continuation of research on 3D scene reconstruction.

Due to their different origins, the two methods dif-
fer in input used, results produced, complexity and
computational cost. The 3D computer vision ap-
proach makes an extensive use of sharp models of
sensors to retrieve a high precision. From a bio-
inspired perspective, the calibrated method needs
too much information and produces more results
and with greater precision than really needed for a
robotics application.

We think that there is room for inspiration from
each other field, that would either offer more robust-
ness where needed in the bio-inspired field, of more
flexibility in the classical field by taking advantage
of closer interaction with the real world.
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