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Abstract. The explicit investigation of anticipations in relation to
adaptive behavior is a recent approach. This chapter first provides psy-
chological background that motivates and inspires the study of antici-
pations in the adaptive behavior field. Next, a basic framework for the
study of anticipations in adaptive behavior is suggested. Different antic-
ipatory mechanisms are identified and characterized. First fundamental
distinctions are drawn between implicit anticipatory behavior, payoff an-
ticipatory behavior, sensory anticipatory behavior, and state anticipatory
behavior. A case study allows further insights into the drawn distinctions.
Many future research direction are suggested.

1 Introduction

The idea that anticipations influence and guide behavior has been increasingly
appreciated over the last decades. Anticipations appear to play a major role in
the coordination and realization of adaptive behavior. Various disciplines have
explicitly recognized anticipations. For example, philosophy has been addressing
our sense of reasoning, generalization, and association for a long time. More re-
cently, experimental psychology confirmed the existence of anticipatory behavior
processes in animals and humans over the last decades.

Although it might be true that over all constructible learning problems any
learning mechanism will perform as good, or as bad, as any other one [71], the
psychological findings suggest that in natural environments and natural problems
learning and acting in an anticipatory fashion increases the chance of survival.
Thus, in the quest of designing competent artificial animals, the so called animats
[69], the incorporation of anticipatory mechanisms seems mandatory.

This book addresses two important questions of anticipatory behavior. On the
one hand, we are interested in how anticipatory mechanisms can be incorporated
in animats, that is, which structures and processes are necessary for anticipatory
behavior. On the other hand, we are interested in when anticipatory mechanisms
are actually helpful in animats, that is, which environmental preconditions favor
anticipatory behavior.



To approach the how and when, it is necessary to distinguish first between
different anticipatory mechanisms. With respect to the how, the question is which
anticipatory mechanisms need which structure. With respect to the when, the
question is which anticipatory mechanisms cause which learning and behavioral
biases. In this chapter, we draw a first distinction between (1) implicit antici-
patory mechanisms in which no actual predictions are made but the behavioral
structure is constructed in an anticipatory fashion, (2) payoff anticipatory mech-
anisms in which the influence of future predictions on behavior is restricted to
payoff predictions, (3) sensory anticipatory mechanisms in which future predic-
tions influence sensory (pre-)processing, and (4) state anticipatory mechanisms
in which predictions about future states directly influence current behavioral de-
cision making. The distinctions are introduced and discussed within the general
framework of partially observable Markov decision processes (POMDPs) and a
general animat framework based on the POMDP structure.

The remainder of this chapter is structured as follows. First, psychology’s
knowledge about anticipations is sketched out. Next, we identify and classify
different anticipatory mechanisms in the field of adaptive behavior. A non-
exhaustive case study provides further insights into the different mechanisms
as well as gives useful background for possible extensions. The conclusions out-
line many diverse future research directions tied to the study of anticipatory
behavior in adaptive learning systems.

2 Background from Psychological Research

In order to motivate the usage of anticipations in adaptive behavior research,
this section provides background from cognitive psychology. Starting from the
behaviorist movement, we show how the notion of anticipation and its diverse
impact on behavior was recognized in psychology research. While behaviorism
gave rise to successful experimental psychology it somewhat ignored, and of-
ten even denied, anticipatory behavior influences. However, the experimental
approach itself eventually revealed inevitable anticipatory influences on behav-
ior. Recent neuron imaging techniques and single-cell recordings provide further
proof of anticipatory cognitive processes.

2.1 Behaviorist Approach

Early suggestions of anticipations in behavior date back to Herbart [21]. He
proposed that the “feeling” of a certain behavioral act actually triggers the
execution of this act once the outcome is desired later.

The early 20th century, though, was dominated by the behaviorist approach
that viewed behavior as basically stimulus-response driven. Two of the predom-
inant principles in the behaviorist world are classical conditioning and operant
conditioning.

Pavlov first introduced classical conditioning [39]. Classical conditioning
studies how animals learn associations between an unconditioned stimulus (US)



and a conditioned stimulus (CS). In the “Pavlovian dog”, for example, the uncon-
ditioned stimulus (meat powder) leads to salivation — an unconditioned reflex
(UR). After several experiments in which the sound of a bell (a neutral stimulus
NS) is closely followed by the presentation of the meat powder, the dog starts
salivating when it hears the sound of the bell independent of the meat powder.
Thus the bell becomes a conditioned stimulus (CS) triggering the response of
salivation.

While in classical conditioning the conditioned stimulus may be associated
with the unconditioned stimulus (US) or with the unconditioned reflex (UR),
operant conditioning investigates the direct association of behavior with favor-
able (or unfavorable) outcomes. Thorndike [60] monitored how hungry cats learn
to escape from a cage giving rise to his “law of effect”. That is, actions that lead
to desired effects will be, other things being equal, associated with the situation
of occurrence. The strength of the association depends on the degree of satis-
faction and/or discomfort. More elaborate experiments of operant conditioning
were later pursued in the well known “Skinner box” [46].

Thus, classical conditioning permits the creation of new CS on the basis of
US, and operant conditioning permits to chain successive behaviors conditioned
on different stimuli. Note that the learning processes take place backwards. To
learn a sequence of behaviors, it is necessary to first learn the contingencies at
the end of the sequence. In addition, the consequences are only learned because
they represent punishments or rewards. Nothing is learned in the absence of any
type of reward or punishment.

While behaviorism allowed cognitive psychology to make significant progress
due to its principled study of behavior phenomena, a persisting drawback of the
approach is the complete ignorance to, or denial of, any sort of mental state.
Skinner’s and others’ mistake was to disallow future predictions or expectations,
described as intentions, purposes, aims, or goals, to influence behavior.

No one is surprised to hear it said that a person carrying good news
walks more rapidly because he feels jubilant, or acts carelessly because of
his impetuosity, or holds stubbornly to a course of action through sheer
force of will. Careless references to purpose are still to be found in both
physics and biology, but good practice has no place for them; yet almost
everyone attributes human behavior to intentions, purposes, aims, and
goals. [47, p.6]

Although Skinner is correct that the unscientific reference to e.g. “purpose” might
result in the obstruction of scientific progress in psychology, we will show that
it is possible to formalize future representations and behavior dependent on
future representations. First, however, we present psychological investigations
that clearly show that representations of the future are influencing behavior.

2.2 Expectancy Model

First experimental evidence for anticipatory behavior mechanisms can be found
in Tolman’s work [61-63]. Tolman proposed that, additionally to conditioned



learning, latent learning takes place in animals. In latent learning experiments
animals show to have learned an environmental representation during an explo-
ration phase once a distinct reinforcer is introduced in the successive test phase
(e.g. [61,58]).

In typical latent learning experiments animals (usually rats) are allowed to
explore a particular environment (such as a maze) without the provision of par-
ticular reinforcement. After the provision of a distinctive reinforcer, the animals
show that they have learned an internal representation of the structure of the
environment (by e.g. running straight to the food position).

More technically, the rats must have learned some environmental map (i.e.,
a predictive model) during exploration. Next, a goal emerges, that is, a certain
state in the environment is desired. Finally, without any further active explo-
ration, the rats are able to exploit the learned model and consequently move
directly towards the desired state.

The observation of latent learning led Tolman to propose that animals form
expectancies,

[...] a condition in the organism which is equivalent to what in ordi-
nary parlance we call a ’belief’, a readiness or disposition, to the effect
that an instance of this sort of stimulus situation, if reacted to by an
instance of that sort of response, will lead to an instance of that sort of
further stimulus situation, or else, simply by itself be accompanied, or
followed, by an instance of that sort of stimulus situation.[64, p.113]

Essentially, expectancies are formed predicting action effects as well as stimu-
lus effects regardless of actual reinforcement. A whole set of such expectancies,
then, gives rise to a predictive environmental model which can be exploited for
anticipatory behavior.

2.3 More Recent Psychological Evidence

In cognitive psychology anticipations have been experimentally shown to influ-
ence behavior ranging from simple reaction time tasks to elaborate reasoning
tasks [29,48]. It becomes more and more obvious that anticipations influence ac-
tual behavior as well as memory mechanisms and attention [37]. Neuropsychol-
ogy gained further insights about the role of anticipatory properties of the brain
in attentional mechanisms and, conversely, highlighted the role of attentional
mechanisms in e.g. the anticipation of objects [43]. This section investigates two
key findings in psychology research to show the broad impact of anticipatory
behavior mechanisms.

Predictive capabilities come into play on different levels and to different ex-
tensions. The very recent discovery of mirror neurons in neuroscience provides
neurological evidence that at least “higher” animals, such as monkeys, form
representations of their conspecifics [41, 15]. The findings show that there are
neurons in monkeys that are active not only when performing a particular ac-
tion, such as grasping an object, but also when watching another monkey or



human performing the same action. This shows that predicting the action of
other people is realized by the re-use of neuronal pathways that represent one’s
own actions. For now, it is unclear how the other agent’s actions are linked to
ones own action representation. Gallese [14] suggests that the link may be con-
stituted by the embodiment of the intended goal, shared by the agent and the
observer. Gallese [14] also argues that only due to mirror neurons it may be
possible to become socially involved enabling understanding and prediction of
other people’s intentions by a shared manifold — the association of other peoples
actions and feelings with ones own actions and feelings via mirror neurons. Ar-
bib [1] proposed mirror neurons as a prerequisite for the evolution of language.
He suggests that it may only be possible to comprehend other people’s speech
acts by simulating and predicting these acts with neurons identical to ones own
speech acts.

In general, mirror neurons are strongly related to the simulation theory of
mind reading which postulates that in simulating other person’s minds ones own
resources are used. Simulation and prediction of other people’s mind states medi-
ated by mirror systems in the brain causes anticipatory behavior due to resulting
predispositions in the mind. Empathy, for example, can be seen as a special case
of anticipatory behavior in which motivational and emotional resources become
active due to predictions and simulation of other people’s minds by the means
of mirror systems [59].

Another clear benefit can be found in research on attention. Pashler [38]
gives a great overview over the latest research knowledge on attention in hu-
mans. LaBerge [31] distinguishes between selective and preparatory attention.
While he suggests that selective attention does not require any anticipatory
mechanisms, preparatory attention does. Preparatory attention predicts the oc-
currence of a visual perception (spatial or object-oriented) and consequently
biases the filtering mechanism. The prediction is done by the system’s model
of its environment and influences the state of the system by the means of the
decision maker’s actions that essentially manipulate attentional mechanisms in
this case. Preparatory attention enables faster goal-directed processing but may
also lead to inattentional blindness [34]. In inattentional blindness experiments
it is revealed that attention can be directed spatially, temporally, and/or object-
oriented. It is most strikingly shown in the famous “gorilla experiment” [44]. A
tradeoff arises between faster processing and focusing capabilities due to prepara-
tory, or anticipatory, attention and a possible loss of important information due
to inattention. When the capability of faster goal-directed processing outweighs
the possibility of blindness effects needs to be addressed in further detail.

The next section introduces a formal framework for the classification of an-
ticipatory mechanisms in animats and proposes first important distinctions.

3 Anticipation in Adaptive Behavior

Adaptive behavior is interested in how so called animats (artificial animals)
can intelligently interact and learn in an artificial environment [69]. Research



in artificial intelligence moved away from the traditional predicate logic and
planning approaches to intelligence without representation [7]. The main idea
is that intelligent behavior can arise without any high-level cognition. Smart
connections from sensors to actuators can cause diverse, seemingly intelligent,
behaviors. A big part of intelligence becomes embodied in the animat. It is only
useful in the environment the animat is situated in. Thus, a big part of intelligent
behavior of the animat arises from the direct interaction of agent architecture
and structure in the environment.

As suggested in the psychology literature outlined above, however, not all
intelligent behavior can be accounted for by such mechanisms. Thus, hybrid
behavioral architectures are necessary in which an embodied intelligent agent
may be endowed with higher “cognitive” mechanisms including developmental
mechanisms, learning, reasoning, or planning. The resulting animat does not
only act intelligently in an environment but it is also able to adapt to changes in
the environment, to handle unforeseen situations, or to become socially involved.
Essentially, the agent is able to learn and draw inferences by the means of internal
representations and mechanisms. Anticipatory mechanisms may be part of these
processes.

The cognitive mechanisms employed in animats are broad and difficult to
classify and compare. Some animats might apply direct reinforcement learning
mechanisms, adapting behavior based on past experiences but choosing actions
solely based on current sensory input. Others might be enhanced by making ac-
tual action decisions also dependent on past perceptions. Anticipatory behavior
research is interested in those animats that base their action decisions also on
future predictions. Behavior becomes anticipatory in that predictions and beliefs
about the future influence current behavior.

In the remainder of this section we develop a framework for animat research
allowing for a proper differentiation of various types of anticipatory behavioral
mechanisms. For this purpose, first the environment is defined as a partially ob-
servable Markov decision process (POMDP). Next, a general animat framework
is outlined that acts upon the POMDP. Finally, anticipatory mechanisms are
distinguished within the framework.

3.1 Framework of Environment

Before looking at the structure of animats, it is necessary to provide a general
definition of which environment the animat will face. States and possible sensa-
tions in states need to be defined, actions and resulting state transitions need
to be provided, and finally, the goal or task of the animat needs to be specified.
The POMDP framework provides a good means for a general definition of such
environments.

We define a POMDP by the < X,Y,U,T,0, R > tuple

— X, the state space of the environment;
— Y, the set of possible sensations in the environment;
— U, the set of possible actions in the environment;



— T :X xU — II(X) the state transition function, where IT(X) is the set of
all probability distributions over X;

— 0 : X — I(Y) the observation function, where IT(Y) is the set of all
probability distributions over Y;

— R: X xU x X — IR" the immediate payoff function, where r is the number
of criteria;

A Markov decision process (MDP) is given when the Markov property holds: the
effects of an action solely depend on current input. Thus, the POMDP defined
above reduces to an MDP if each possible sensation in the current state uniquely
identifies the current state. That is, each possible sensation in a state z (i.e., all
y € Y for which O(z) is greater than zero) is only possible in this state. If an
observation does not uniquely identify the current state but rather provides an
(implicit) probability distribution over possible states, the Markov property is
violated and the environment turns into a non-Markov problem. In this case,
optimal action choices do not necessarily depend only on current sensory input
anymore but usually depend also on the history of perceptions, actions, and
payoff.

3.2 Adaptive Agent Framework

Given the environmental properties, we sketch a general animat framework in
this section. We define an animat by a 5-tuple A =< S, A, M5, M¥,IT >. This
animat acts in the above defined POMDP environment.

At a certain time ¢, the animat perceives sensation y(t) € Y and reinforce-
ment P(t) € R. The probability of perceiving y(t) is determined by the proba-
bility vector O(z(t)) and similarly, the probability of z(¢) is determined by the
probability vector T'(z(t—1), u(t—1)) which depends on the previous environmen-
tal state and the executed action. The received reward depends on the executed
action as well as the previous and current state, P(t) = R(z(t—1),u(t—1), z(¢)).

Thus, in a behavioral act an animat A receives sensation y(¢) and reinforce-
ment P(t) and chooses to execute an action A. To be able to learn and reason
about the environment, A has internal states denoted by S that can represent
memory of previous interactions, current beliefs, motivations, intentions etc. Ac-
tions A C U denote the action possibilities of the animat. For our purposes
separated from the internal state, we define a state model M S and a predictive
model MP. The state model M¥ represents current environmental characteris-
tics the agent believes in — an implicit probability distribution over all possible
environmental states X. The predictive model M ¥ specifies how the state model
changes, possibly dependent on actions. Thus, it describes an implicit and par-
tially action-dependent probability distribution of future environmental states.
Finally, IT denotes the behavioral policy of the animat, that is, how the animat
decides on what to do, or which action to execute. The policy might depend on
current sensory input, on predictions generated by the predictive model, on the
state model, and on the internal state.

Learning can be incorporated in the animat by allowing the modification of
the components over time. The change of its internal state could, for example,



reflect the gathering of memory or the change of moods. The state model could be
modified by generalizing over, for example, equally relevant sensory input. The
predictive model could learn and adapt probabilities of possible state transitions
as well as generalize over effects and conditions.

This rather informal agent framework suffices for our purposes of distinguish-
ing between different classes of anticipatory behavior in animats.

3.3 Distinctions of Anticipatory Behavior

Within the animat framework above, we can infer that the predictive model
MP plays a major role in anticipatory animats. However, in the broader sense
of anticipatory behavior also animats without such a model might be termed
anticipatory in that their behavioral program is constructed in anticipation of
possible environmental challenges. We term this first class of anticipations im-
plicitly anticipatory. The other three classes utilize some kind of prediction to
influence behavior. We distinguish between payoff anticipations, sensory antic-
ipations, and state anticipations. All four types of anticipatory behavior are
discussed in further detail below.

Implicitly Anticipatory Animats The first animat-type is the one in which
no predictions whatsoever are made about the future that might influence the
animat’s behavioral decision making. Sensory input, possibly combined with
internal state information, is directly mapped onto an action decision. The pre-
dictive model of the animat M7* is empty or does not influence behavioral de-
cision making in any way. Moreover, there is no action comparison, estimation
of action-benefit, or any other type of prediction that might influence the be-
havioral decision. However, implicit anticipations are included in the behavioral
program of the animat. The basic structure of an implicit anticipatory mecha-
nism is shown in Figure 1.
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Fig. 1. Implicit anticipatory behavior does not rely on any explicit knowledge about
possible future states. The behavior is anticipatory in that the behavioral architecture
is predicted to be effective. For example, a genetic code is implicitly predicted (by
evolution) to result in successful survival and reproduction.



In nature, even if a life-form behaves purely reactively, it has still implicit
anticipatory information in its genetic code in that the behavioral programs in
the code are (implicitly) anticipated to work in the offspring. Evolution is the
implicit anticipatory learning mechanism that imprints implicit anticipations in
the genes. Similarly, well-designed implicitly anticipatory animats, albeit with-
out any prediction that might influence behavior, have implicit anticipatory in-
formation in the structure and interaction of algorithm, sensors, and actuators.
The designer has included implicit anticipations of environmental challenges and
behavioral consequences in the controller of the animat.

It is interesting to note that this rather broad understanding of the term “an-
ticipation” basically classifies any form of life in this world as either implicitly
anticipatory or more explicitly anticipatory. Moreover, any somewhat successful
animat program can be classified as implicitly anticipatory since its programmed
behavioral biases are successful in the addressed problems. Similarly, any mean-
ingful learning mechanism works because it supposes that future experience will
be somewhat similar to experience in the past and consequently biases its learn-
ing mechanisms on experience in the past. Thus, any meaningful learning and
behavior is implicitly anticipatory in that it anticipates that past knowledge and
experience will be useful in the future. It is necessary to understand the differ-
ence between such implicitly anticipatory animats and animats in which explicit
future representations influence behavior.

Payoff Anticipations If an animat considers predictions of the possible payoff
of different actions to decide on which action to execute, it may be termed payoff
anticipatory. In these animats, predictions estimate the benefit of each possible
action and bias action decision making accordingly. No state predictions influ-
ence action decision making. A payoff anticipatory mechanism is schematized in
Figure 2.
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Fig. 2. Sensory anticipatory behavior influences sensory processing due to sensory pre-
dictions, expectations, or goal-dependent relevance measures.

A particular example for payoff anticipations is direct (or model-free) rein-
forcement learning (RL). Hereby, payoff is estimated with respect to the current
behavioral strategy or in terms of possible actions. The evaluation of the es-



timate causes the alternation of behavior which again cause the alternation of
the payoff estimates. It can be distinguished between on-policy RL algorithms,
such as the SARSA algorithm [42,52], and off-policy RL algorithms, such as
Q-learning [65, 52] or recent learning classifier systems such as XCS [67].

Sensorial Anticipations While in payoff anticipations predictions are re-
stricted to payoff, in sensory anticipations predictions are unrestricted. How-
ever, sensory anticipations do not influence the behavior of an animat directly
but sensory processing is influenced. The prediction of future states and thus the
prediction of future stimuli influences stimulus processing. To be able to form
predictions, the animat must use a (not necessarily complete) predictive model
MP of its environment (see Section 3.2). Expected sensory input might be pro-
cessed faster than unexpected input or unexpected input with certain properties
(for example possible threat) might be reacted to faster. A sensory anticipatory
mechanism is sketched in Figure 3.
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Fig. 3. Sensory anticipatory behavior influences, or predisposes, sensory processing due
to future predictions, expectations, or intentions.

Sensory anticipations strongly relate to preparatory attention in psychology
[31,38] in which top-down processes such as task-related expectations influence
sensory processing. Behavior is not directly influenced but sensory (pre-)pro-
cessing is. In other words, sensory anticipatory behavior results in a predispo-
sition of processing sensory input. For example, the agent may become more
susceptible to specific sensory input and more ignorant to other sensory input.
The biased sensory processing might then (indirectly) influence actual behav-
ior. Also learning might be affected by such a bias as suggested in psychological
studies on learning [22, 48].

State Anticipations Maybe the most interesting group of anticipations is the
one in which animat behavior is influenced by explicit future state representa-
tions. As in sensory anticipations, a predictive model M T must be available to
the animat or it must be learned by the animat. In difference to sensory anticipa-
tions, however, state anticipations directly influence current behavioral decision
making. Explicit anticipatory behavior is schematized in figure 4. The essential



property is that prediction(s) about, or simply representations of, future state(s)
influence actual action decision.
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Fig. 4. Explicit anticipations influence actual action decision making due to future
predictions, expectations, or intentions.

The simplest kind of explicit anticipatory animat would be an animat which
is provided with an explicit predictive model of its environment. The model
could be used directly to pursue actual goals by the means of explicit planning
mechanisms such as diverse search methods or dynamic programming [5]. The
most extreme cases of such high-level planning approaches can be found in early
artificial intelligence work such as the general problem solver [36] or the STRIPS
language [13]. Nowadays, somewhat related approaches try to focus on local
mechanisms that extract only relevant environmental information.

In RL, for example, the dynamic programming idea was modified yielding
indirect (or model-based) RL animats. These animats learn an explicit predictive
model of the environment. Decisions are based on the predictions of all possible
behavioral consequences and essentially the utility of the predicted results. Thus,
explicit representations of future states determine behavior.

Further distinctions in state anticipatory animats are evident in the structure
and completeness of the model representation, the learning and generalization
mechanisms that may change the model over time, and the mechanisms that
exploit the predictive model knowledge to adapt behavior. The structure of the
predictive model can be represented by rules, by a probabilistic network, in the
form of hierarchies and so forth. The model representation can be based on
internal model states M°(t) or rather directly on current sensory input y(t).
State information in the sensory input can provide global state information or
rather local state information dependent on the animat’s current position in the
environment. Learning and generalization mechanisms give rise to further cru-
cial differences in the availability, the efficiency, and the utility of the predictive
model. Finally, the bias of the behavioral component results in different antici-
patory behavior mechanisms. For example, the number of steps that the animat
can look into the future is a crucial measure as proposed in [45]. Moreover,
anticipatory processes might only take place in the event of actual behavioral
execution or the processes may be involved in adapting behavior offline. Proper



distinctions between these different facets of state anticipatory behavior may be
developed in future research.

With a proper definition of animats and four fundamental classes of an-
ticipatory behavior in hand, we now provide a case study of typical existing
anticipatory animats.

4 Payoff Anticipatory Animats

This section introduces several common payoff anticipatory animats. As defined
above, these animats do not represent or learn a predictive model MF of their
environment but a knowledge base assigns values to actions based on which
action decisions are made.

4.1 Model-Free Reinforcement Learning

The reinforcement learning framework [27, 52] considers adaptive agents involved
in a sensory-motor loop acting upon a MDP as introduced above (extensions to
POMDPs can be found for example in [9]). The task of the agents is to learn
an optimal policy, i.e., how to act in every situation in order to maximize the
cumulative reward over the long run.

In model-free RL, or direct reinforcement learning, the animat learns a be-
havioral policy without learning an explicit predictive model. The most common
form of direct reinforcement learning is to learn utility values for all possible
state-action combinations in the MDP. The most common approach in this re-
spect is the Q-learning approach introduced in [65]. Q-learning has the additional
advantage that it is policy independent. That is, as long as the behavioral policy
assures that all possible state action transitions are visited infinitely often over
the long run, Q-learning is guaranteed to generate an optimal policy.

Model-free RL agents are clearly payoff anticipatory animats. There is no
explicit predictive model; however, the learned reinforcement values estimate
action-payoff. Thus, although the animat does not explicitly learn a representa-
tion with which it knows the actual sensory consequences of an action, it can
compare available action choices based on the payoff predictions and thus act
payoff anticipatory.

Model-free RL in its purest form usually stores all possible state-action com-
binations in tabular form. Also, states are usually characterized by unique iden-
tifiers rather than by sensory inputs that allow the identification of states. This
ungeneralized exhaustive state representation prevents RL to scale-up to larger
problems. Several approaches exist that try to overcome the curse of dimension-
ality by function approximation techniques (cf. [52]), hierarchical approaches (cf.
[54,4]), or online generalization mechanisms. Approaches that generalize online
over sensory inputs (for example in the form of a feature vector) are introduced
in the following.



4.2 Learning Classifier Systems

Learning Classifier Systems (LCSs) have often been overlooked in the research
area of RL due to the many interacting mechanisms in these systems. However, in
their purest form, LCSs can be characterized as RL systems that generalize online
over sensory input. This generalization mechanism leads to several additional
problems especially with respect to a proper propagation of RL values over the
whole state action space.

The first implementation of an LCS, called CS1, can be found in [25]. Hol-
land’s goal was to propose a model of a cognitive system that is able to learn
using both reinforcement learning processes and genetic algorithms [23,20]. The
first systems, however, were rather complicated and lacked efficiency.

Reinforcement values in LCSs are stored in a set (the population) of
condition-action rules (the classifiers). The conditions specify a subset of pos-
sible sensations in which the classifier is applicable thus giving rise to focusing
mechanisms and attentional mechanisms often over-looked in RL. The learning
mechanism of the population of classifiers and the classifier structure is usually
accomplished by the means of a genetic algorithm (GA). Lanzi provides an in-
sightful comparison between RL and learning classifier systems [33]. It appears
from this perspective that a LCS is a rule-based reinforcement learning system
endowed with the capability to generalize what it learns.

Thus, also LCSs can be classified as payoff-anticipatory animats. The gen-
eralization over the perceptions promises faster adaptation in dynamic environ-
ments. Moreover, the policy representation may be more compact especially in
environments in which a lot of sensations are available but only a subset of the
sensations is task relevant.

Recently, Wilson implemented several improvements in the LCS model. He
modified the traditional Bucket Brigade algorithm [26] to resemble the Q-
learning mechanism propagating Q-values over the population of classifiers [66,
67]. Moreover, Wilson drastically simplified the LCS model [66]. Then, he mod-
ified Holland’s original strength-based criterion for learning — the more a rule
receives reward (on average), the more fit it is [23,24,6] — by a new criterion
relying on the accuracy of the reward prediction of each rule [67]. This last
modification gave rise to the most commonly used LCS today, XCS.

5 Anticipations Based on Predictive Models

While the model-free reinforcement learning approach as well as LCSs do not
have or use a predictive model representation, the agent architectures in this
section all learn or have a predictive model M¥F and use this model to yield
anticipatory behavior. Due to the usage of an explicit predictive model of the
environment, all systems can be classified as either sensory anticipatory or state
anticipatory. Important differences of the systems are outlined below.



5.1 Model-based Reinforcement Learning

The dynamical architecture Dyna [53] learns a model of its environment in ad-
dition to reinforcement values (state values or Q-values). Several anticipatory
mechanisms can be applied such as biasing the decision maker toward the explo-
ration of unknown/unseen regions or applying internal reinforcement updates.
Dyna is one of the first state anticipatory animat implementations. It usually
forms an ungeneralized representation of its environment in tabular form but it
is not necessarily restricted to such a representation. Interesting enhancements
of Dyna have been undertaken optimizing the internal model-based RL process
[35,40] or adopting the mechanism to a tile coding approach [30]. The introduc-
tion of Dyna was kept very general so that many of the subsequent mechanisms
can be characterized as Dyna mechanisms as well. Differences can be found in
the learning mechanism of the predictive model, the sensory input provided, and
the behavioral policy learning.

5.2 Schema Mechanism

An architecture similar to the Dyna architecture was published in [11]. The
implemented schema mechanism is loosely based on Piaget’s proposed devel-
opmental stages. The model in the schema mechanism is represented by rules.
It is learned bottom-up by generating more specialized rules where necessary.
Although no generalization mechanism applies, the resulting predictive model is
somewhat more general than a tabular model. The decision maker is — among
other criteria — biased on the exploitation of the model to achieve desired items
in the environment. Similar to Dyna, the schema mechanism represents an ex-
plicit anticipatory agent. However, the decision maker, the model learner, and
the predictive model representation M T have a different structure.

5.3 Expectancy Model SRS/E

Witkowski [70] approaches the same problem from a cognitive perspective giving
rise to his ezpectancy model SRS/E. Similar to Dyna, the learned model is not
generalized but represented by a set of rules. Generalization mechanisms are sug-
gested but not tested. SRS/E includes an additional sign list that stores all states
encountered so far. In contrast to Dyna, reinforcement is not propagated online
but is only propagated once a desired state is generated by a behavioral mod-
ule. The propagation is accomplished using dynamic programming techniques
applied to the learned predictive model and the sign list.

5.4 Anticipatory Learning Classifier Systems

Similar to the schema mechanism and SRS/E, anticipatory learning classifier
systems (ALCSs) [50,8,19,17] contain an explicit prediction component. The
predictive model consists of a set of rules (classifiers) which are endowed with
a so called “effect” part. The effect part predicts the next situation the agent
will encounter if the action specified by the rules is executed. The second major
characteristic of ALCSs is that they generalize over sensory input.



ACS An anticipatory classifier system (ACS) was developed by Stolzmann [49,
50] and was later extended to its current state of the art, ACS2 [8]. ACS2 learns
a generalized model of its environment applying directed specialization as well
as genetic generalization mechanisms. It has been experimentally shown that
ACS2 reliably learns a complete, accurate, and compact predictive model of
several typical MDP environments. Reinforcement is propagated directly inside
the predictive model resulting in a possible model aliasing problem [8]. It was
shown that ACS2 mimics the psychological results of latent learning experiments
as well as outcome devaluation experiments mentioned above by implementing
additional anticipatory mechanisms into the decision maker [50, 51, 8].

YACS Yet Another Classifier System (YACS) is another anticipatory learn-
ing classifier system that forms a similar generalized model applying directed
specialization as well as generalization mechanisms [17,18]. Similar to SRS/E,
YACS keeps a list of all states encountered so far. Unlike SRS/E, reinforcement
updates in the state list are done while interacting with the environment mak-
ing use of the current predictive model. Thus, YACS is similar to SRS/E but it
evolves a more generalized predictive model and updates the state list online.

MACS A more recent approach by [16] learns a different rule-based represen-
tation in which rules are learned separately for the prediction of each sensory
attribute. Similar to YACS, MACS keeps a state list of all so far encountered
states and updates reinforcement learning in those states. The different model
representation is shown to allow further generalizations in maze problems.

5.5 Artificial Neural Network Models of Anticipation

Also Artificial Neural Networks (ANN) can be used to learn the controller of
an agent. In accordance with the POMDP framework, the controller is provided
with some inputs from the sensors of the agent and must send some outputs
to the actuators of the agent. Learning to control the agent consists in learning
to associate the good set of outputs to any set of inputs that the agent may
experience.

The most common way to perform such learning with an ANN consists in
using the back-propagation algorithm. This algorithm consists in computing for
each set of inputs the errors on the outputs of the controller. With respect to
the computed error, the weights of the connections in the network are modified
so that the error will be smaller the next time the same inputs are encountered.

The main drawback of this algorithm is that one must be able to decide for
any input what the correct output should be so as to compute an error. The
learning agent must be provided with a supervisor which tells at each time step
what the agent should have done. Back-propagation is a supervised learning
method. The problem with such a method is that in most control problems, the
correct behavior is not known in advance. As a consequence, it is difficult to
build a supervisor.



The solution to this problem consists in relying on anticipation [55, 57]. If the
role of an ANN is to predict what the next input will be rather than to provide
an output, then the error signal is available: it consists in the difference between
what the ANN predicted and what has actually happened. As a consequence,
learning to predict thanks to a back-propagation algorithm is straight-forward.

Baluja’s Attention Mechanism Baluja and Pomerleau provide an interesting
anticipatory implementation of visual attention in the form of a neural network
with one hidden layer [2,3]. The mechanism is based on the ideas of visual
attention modeling in [28]. The system is for example able to learn to follow a
line by the means of the network. Performance of the net is improved by adding
another output layer, connected to the hidden layer, which learns to predict
successive sensory input. Since this output layer is not used to update the weights
in the hidden layer, Baluja argues that consequently the predictive output layer
can only learn task-relevant predictions. The predictions of the output layer
are used to modify the successive input in that the strong differences between
prediction and real input are decreased assuming strong differences to be task
irrelevant noise. Baluja shows that the neural net is able to utilize this image
flattening to improve performance and essentially ignore spurious line markings
and other distracting noise. It is furthermore suggested that the architecture
could also be used to detect unexpected sensations faster possibly usable for
anomaly detection tasks.

Baluja’s system is a payoff anticipatory system. The system learns a pre-
dictive model which is based on pre-processed information in the hidden units.
The predictive model is action-independent. Sensory anticipations are realized in
that the sensory input is modified according to the difference between predicted
and actual input.

Tani’s Recurrent Neural Networks Tani published a recurrent neural net-
work (RNN) approach implementing model-based learning and planning in the
network [55]. The system learns a predictive model using the sensory informa-
tion of the next situation as the supervision. Context units are added that feed
back the values of the current hidden units to additional input units. This re-
currence allows a certain internal representation of time [12]. In order to use the
emerging predictive model successfully, it is necessary that the RNN becomes
situated in the environment — the RNN needs to identify its current situation
in the environment by adjusting its recurrent inputs. Once the model is learned,
a navigation phase is initiated in which the network is used to plan a path to a
provided goal.

The most appealing result of this work is that the RNN is actually imple-
mented in a real mobile robot. The implementation is shown to handle noisy, on-
line discretized environments. Anticipatory behavior is implemented by a looka-
head planning mechanism. The system is a state anticipatory system in which the
predictive model is represented in a RNN. In contrast to the approaches above,
the RNN also evolves an implicit state model M*° represented and updated by



the recurrent neural network inputs. This is the reason why the network has to
become situated before planning is applicable. Tani shows that predicting the
next inputs correctly helps stabilizing the behavior of its agents and, more gen-
erally, that using anticipations results in a bi-polarization of the behavior into
two extreme modes: a very stable mode when everything is predicted correctly,
and a chaotic mode when the predictions get wrong.

In a further publication [56], Tani uses a constructivist approach in which
several neural networks are combined. The approach implements an attentional
mechanism that switches between wall following and object recognition. Similar
to the winner-takes-all algorithm proposed in [28], Tani uses a winner-takes-all
algorithm to implement a visual attention mechanism. The algorithm combines
sensory information with model prediction, thus pre-processing sensory informa-
tion due to predictions. The resulting categorical output influences the decision
maker that controls robot movement. Thus, the constructed animat comprises
sensory anticipatory mechanisms that influence attentional mechanisms simi-
lar to Baluja’s visual attention mechanism but embedded in a bigger modular
structure.

In [57], a first approach of a hierarchical structured neural network suitable
as a predictive model is published. While the lower level in the hierarchy learns
the basic sensory-motor flow, the higher level learns to predict the switching of
the network in the lower level and thus a more higher level representation of
the encountered environment. Anticipatory behavior was not shown within the
system.

5.6 Anticipations in a Multi-Agent Problem

A first approach that combines low level reactive behavior with high-level de-
liberation can be found in [10]. The animats in this framework are endowed
with a predictive model that predicts behavior of the other, similar animats.
Although the system does not apply any learning methods, it is a first approach
of state anticipations in a multi-agent environment. It is shown that by antic-
ipating the behavior of the other agents, behavior can be optimized achieving
cooperative behavior. Davidsson’s agent is a simple anticipatory agent that uses
the (restricted) predictive model of other agents to modify the otherwise reactive
decision maker. Since the decision maker is influenced by the predictive model
the agents can be classified as non-learning state-anticipatory animats.

6 Discussion

As can be seen in the above study of anticipatory systems, a lot of research is
still needed to clearly understand the utility of anticipations. This section further
discusses different aspects in anticipatory approaches.



6.1 Anticipating With or Without a Model

One main advantage of model building animats with respect to model-free ones
is that their model endows them with a planning capability. Having an internal
predictive model which specifies which action leads from what state to what other
state permits the agent to plan its behavior “in its head”. But planning does not
necessarily mean that the agent actually searches in its model a complete path
from its current situation to its current goal. Indeed, that strategy suffers from
a combinatorial explosion problem. It may rather mean that the agent updates
the values of different state model states (z € M*) without having to actually
move in its environment. This is essentially done in dynamic programming [5]
and it is adapted to the RL framework in the Dyna architecture [53,52]. The
internal updates allow a faster convergence of the learning algorithms due to the
general acceleration of value updates.

These ideas have been re-used in most anticipatory rule-based learning sys-
tems described above. Applying the same idea in the context of ANN, with the
model being implemented in the weights of recurrent, connections in the network,
would consist in letting the weights of the recurrent connections evolve faster
than the sensory-motor dynamics of the network. To our knowledge, though,
this way to proceed has not been used in any anticipatory ANN animat, yet.

Pros and Cons of Anticipatory Learning Classifier Systems Having an
explicit predictive part in the rules of ALCSs permits a more directed use of
more information from the agent’s experience to improve the rules with respect
to classical LCSs. Supervised learning methods can be applied. Thus, there is
a tendency in ALCSs to use heuristic search methods rather than blind genetic
algorithms to improve the rules.

This use of heuristic search methods results then in a much faster convergence
of anticipatory systems on problems where classical LCSs are quite slow, but it
also results in more complicated systems, more difficult to program, and also in
less general systems.

For example, XCS-like systems can be applied both to single-step problems
such as Data Mining Problems [68] where the agent has to make only one decision
independent from its previous decisions and to multi-step problems where the
agent must run a sequence of actions to reach its goal [32]. In contrast, ALCSs are
explicitly devoted to multi-step problems, since there must be a “next” situation
after each action decision from the agent.

6.2 A Parallel Between Learning Thanks to Prediction in ANN and
in ALCS

The second matter of discussion emerging from this overview is the parallel that
can be made in the way ANN and rule-based systems combine predictions and
learning to build and generalize a model of the problem.

We have seen that in Tani’s system, the errors on predictions are back-
propagated through the RNN so as to update the weights of the connections.



This learning process results in an improved ability to predict, thus in a better
predictive model.

The learning algorithms in the presented ALCSs rely on the same idea. The
prediction errors are represented by the fact that the predictions of a classifier
are sometimes good and sometimes bad, in which case the classifier oscillates
(or is called not reliable). In this case, more specific classifiers are generated by
the particular specialization process. Thus, the oscillation of classifiers is at the
heart of the model improvement process.

Specializing a classifier when it oscillates is a way to use the error of the
prediction so as to improve the model, exactly as it is done in the context of
ANN.

This way of learning is justified by the fact that both systems include a ca-
pacity of generalization in their models. Otherwise, it would be simpler just to
include any new experience in the anticipatory model without having to encom-
pass a prediction and correction process. The point is that the prediction can be
general and the correction preserves this generality as much as it can. Interest-
ingly, however, generalization is not exactly of the same nature in ANN and in
ALCSs.

As a conclusion, both classes of systems exhibit a synergy between learning,
prediction, and generalization, learning being used to improve general predic-
tions, but also predictions being at the heart of learning general features of the
environment,.

6.3 Model Builders and non-Markov Problems

As explained in section 3.1, a non-Markov problem is a problem in which the
current sensations of the animat are not always sufficient to choose the best
action. In such problems, the animat must incorporate an internal state model
representation M* providing a further source of information for choosing the
best action. The information in question generally comes from the more or less
immediate past of the animat. An animat which does not incorporate such an
internal state model is said to be “reactive”. Reactive animats cannot behave
optimally in non-Markov problems.

In order to prevent misinterpretations, we must warn the reader about the
fact that an internal state model differs from an internal predictive model. In
fact, an internal predictive model alone does not enable the animat to behave
optimally in a non-Markov problem. Rather than information about the imme-
diate past of the animat, predictive models only provide information about the
“atemporal” structure of the problem (that is, information about the possible
future). In particular, if the animat has no means to disambiguate aliased per-
ceptions, it will build an aliased model. Thus an animat can be both reactive,
that is, unable to behave optimally in non-Markov environments, and explicitly
anticipatory, that is, able to build a predictive model of this environment and
bias its action decisions on future predictions, without solving the non-Markov
problem.



7 Conclusion

This overview of internal models and anticipatory behavior showed that a lot
of future research is needed to understand exactly when which anticipations
are useful or sometimes even mandatory in an environment to yield competent
adaptive behavior. Although psychological research proves that anticipatory be-
havior takes place in at least higher animals, a clear understanding of the how,
the when, and the which is not available. Thus, one essential direction of future
research is to identify environmental characteristics in which distinct anticipa-
tory mechanisms are helpful or necessary.

Several more concrete research directions can be suggested. (1) It seems
important to quantify when anticipatory behavior can be adapted faster than
stimulus-response behavior. For example, in a dynamic environment some pre-
dictive knowledge may be assumed to be stable so that behavior can be adapted
by the means of this knowledge. (2) It appears interesting to investigate how
to balance reactive and anticipatory mechanisms and how to allow a proper
interaction. A proper architecture of motivations and emotions might play an
important role in this respect. (3) Adaptive mechanisms that are initially antici-
patory and then become short circuited reactive demand further research effort.
For example, initial hard practice of playing an instrument becomes more and
more automatic and is eventually only guided by a correct feeling of its func-
tioning. Can we create a similar adaptive motor-control mechanism? (4) The
functioning of attentional processes influenced by sensory anticipations needs
to be investigated further. When are such attentional mechanisms beneficial,
when does the drawback due to inattentional blindness effects overshadow the
benefits? (5) The benefit of simulating intentions and behavior of other animats
requires further research effort. Which processes are necessary to create benefi-
cial social relationships? Which mechanisms can result in mutual benefit, which
mechanisms can cause unilateral benefit?

This small but broad list shows that future work in anticipatory learning
systems promises fruitful research projects and new exciting insights in the field
of adaptive behavior. We hope that our overview of current insights in anticipa-
tory mechanisms and the available systems provide a basis for future research
efforts. Moreover, we want to encourage the development of the distinctions be-
tween anticipatory behavior mechanisms. While implicit and payoff anticipatory
mechanisms appear to be rather clear cut, sensory and state anticipatory behav-
ior comprise many different forms and mechanisms. Future research will show
which characteristics should be used to distinguish the different mechanisms
further.
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