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t. The expli
it investigation of anti
ipations in relation toadaptive behavior is a re
ent approa
h. This 
hapter �rst provides psy-
hologi
al ba
kground that motivates and inspires the study of anti
i-pations in the adaptive behavior �eld. Next, a basi
 framework for thestudy of anti
ipations in adaptive behavior is suggested. Di�erent anti
-ipatory me
hanisms are identi�ed and 
hara
terized. First fundamentaldistin
tions are drawn between impli
it anti
ipatory behavior, payo� an-ti
ipatory behavior, sensory anti
ipatory behavior, and state anti
ipatorybehavior. A 
ase study allows further insights into the drawn distin
tions.Many future resear
h dire
tion are suggested.1 Introdu
tionThe idea that anti
ipations in
uen
e and guide behavior has been in
reasinglyappre
iated over the last de
ades. Anti
ipations appear to play a major role inthe 
oordination and realization of adaptive behavior. Various dis
iplines haveexpli
itly re
ognized anti
ipations. For example, philosophy has been addressingour sense of reasoning, generalization, and asso
iation for a long time. More re-
ently, experimental psy
hology 
on�rmed the existen
e of anti
ipatory behaviorpro
esses in animals and humans over the last de
ades.Although it might be true that over all 
onstru
tible learning problems anylearning me
hanism will perform as good, or as bad, as any other one [71℄, thepsy
hologi
al �ndings suggest that in natural environments and natural problemslearning and a
ting in an anti
ipatory fashion in
reases the 
han
e of survival.Thus, in the quest of designing 
ompetent arti�
ial animals, the so 
alled animats[69℄, the in
orporation of anti
ipatory me
hanisms seems mandatory.This book addresses two important questions of anti
ipatory behavior. On theone hand, we are interested in how anti
ipatory me
hanisms 
an be in
orporatedin animats, that is, whi
h stru
tures and pro
esses are ne
essary for anti
ipatorybehavior. On the other hand, we are interested in when anti
ipatory me
hanismsare a
tually helpful in animats, that is, whi
h environmental pre
onditions favoranti
ipatory behavior.



To approa
h the how and when, it is ne
essary to distinguish �rst betweendi�erent anti
ipatory me
hanisms. With respe
t to the how, the question is whi
hanti
ipatory me
hanisms need whi
h stru
ture. With respe
t to the when, thequestion is whi
h anti
ipatory me
hanisms 
ause whi
h learning and behavioralbiases. In this 
hapter, we draw a �rst distin
tion between (1) impli
it anti
i-patory me
hanisms in whi
h no a
tual predi
tions are made but the behavioralstru
ture is 
onstru
ted in an anti
ipatory fashion, (2) payo� anti
ipatory me
h-anisms in whi
h the in
uen
e of future predi
tions on behavior is restri
ted topayo� predi
tions, (3) sensory anti
ipatory me
hanisms in whi
h future predi
-tions in
uen
e sensory (pre-)pro
essing, and (4) state anti
ipatory me
hanismsin whi
h predi
tions about future states dire
tly in
uen
e 
urrent behavioral de-
ision making. The distin
tions are introdu
ed and dis
ussed within the generalframework of partially observable Markov de
ision pro
esses (POMDPs) and ageneral animat framework based on the POMDP stru
ture.The remainder of this 
hapter is stru
tured as follows. First, psy
hology'sknowledge about anti
ipations is sket
hed out. Next, we identify and 
lassifydi�erent anti
ipatory me
hanisms in the �eld of adaptive behavior. A non-exhaustive 
ase study provides further insights into the di�erent me
hanismsas well as gives useful ba
kground for possible extensions. The 
on
lusions out-line many diverse future resear
h dire
tions tied to the study of anti
ipatorybehavior in adaptive learning systems.2 Ba
kground from Psy
hologi
al Resear
hIn order to motivate the usage of anti
ipations in adaptive behavior resear
h,this se
tion provides ba
kground from 
ognitive psy
hology. Starting from thebehaviorist movement, we show how the notion of anti
ipation and its diverseimpa
t on behavior was re
ognized in psy
hology resear
h. While behaviorismgave rise to su

essful experimental psy
hology it somewhat ignored, and of-ten even denied, anti
ipatory behavior in
uen
es. However, the experimentalapproa
h itself eventually revealed inevitable anti
ipatory in
uen
es on behav-ior. Re
ent neuron imaging te
hniques and single-
ell re
ordings provide furtherproof of anti
ipatory 
ognitive pro
esses.2.1 Behaviorist Approa
hEarly suggestions of anti
ipations in behavior date ba
k to Herbart [21℄. Heproposed that the \feeling" of a 
ertain behavioral a
t a
tually triggers theexe
ution of this a
t on
e the out
ome is desired later.The early 20th 
entury, though, was dominated by the behaviorist approa
hthat viewed behavior as basi
ally stimulus-response driven. Two of the predom-inant prin
iples in the behaviorist world are 
lassi
al 
onditioning and operant
onditioning.Pavlov �rst introdu
ed 
lassi
al 
onditioning [39℄. Classi
al 
onditioningstudies how animals learn asso
iations between an un
onditioned stimulus (US)



and a 
onditioned stimulus (CS). In the \Pavlovian dog", for example, the un
on-ditioned stimulus (meat powder) leads to salivation | an un
onditioned re
ex(UR). After several experiments in whi
h the sound of a bell (a neutral stimulusNS) is 
losely followed by the presentation of the meat powder, the dog startssalivating when it hears the sound of the bell independent of the meat powder.Thus the bell be
omes a 
onditioned stimulus (CS) triggering the response ofsalivation.While in 
lassi
al 
onditioning the 
onditioned stimulus may be asso
iatedwith the un
onditioned stimulus (US) or with the un
onditioned re
ex (UR),operant 
onditioning investigates the dire
t asso
iation of behavior with favor-able (or unfavorable) out
omes. Thorndike [60℄ monitored how hungry 
ats learnto es
ape from a 
age giving rise to his \law of e�e
t". That is, a
tions that leadto desired e�e
ts will be, other things being equal, asso
iated with the situationof o

urren
e. The strength of the asso
iation depends on the degree of satis-fa
tion and/or dis
omfort. More elaborate experiments of operant 
onditioningwere later pursued in the well known \Skinner box" [46℄.Thus, 
lassi
al 
onditioning permits the 
reation of new CS on the basis ofUS, and operant 
onditioning permits to 
hain su

essive behaviors 
onditionedon di�erent stimuli. Note that the learning pro
esses take pla
e ba
kwards. Tolearn a sequen
e of behaviors, it is ne
essary to �rst learn the 
ontingen
ies atthe end of the sequen
e. In addition, the 
onsequen
es are only learned be
ausethey represent punishments or rewards. Nothing is learned in the absen
e of anytype of reward or punishment.While behaviorism allowed 
ognitive psy
hology to make signi�
ant progressdue to its prin
ipled study of behavior phenomena, a persisting drawba
k of theapproa
h is the 
omplete ignoran
e to, or denial of, any sort of mental state.Skinner's and others' mistake was to disallow future predi
tions or expe
tations,des
ribed as intentions, purposes, aims, or goals, to in
uen
e behavior.No one is surprised to hear it said that a person 
arrying good newswalks more rapidly be
ause he feels jubilant, or a
ts 
arelessly be
ause ofhis impetuosity, or holds stubbornly to a 
ourse of a
tion through sheerfor
e of will. Careless referen
es to purpose are still to be found in bothphysi
s and biology, but good pra
ti
e has no pla
e for them; yet almosteveryone attributes human behavior to intentions, purposes, aims, andgoals. [47, p.6℄Although Skinner is 
orre
t that the uns
ienti�
 referen
e to e.g.\purpose" mightresult in the obstru
tion of s
ienti�
 progress in psy
hology, we will show thatit is possible to formalize future representations and behavior dependent onfuture representations. First, however, we present psy
hologi
al investigationsthat 
learly show that representations of the future are in
uen
ing behavior.2.2 Expe
tan
y ModelFirst experimental eviden
e for anti
ipatory behavior me
hanisms 
an be foundin Tolman's work [61{63℄. Tolman proposed that, additionally to 
onditioned



learning, latent learning takes pla
e in animals. In latent learning experimentsanimals show to have learned an environmental representation during an explo-ration phase on
e a distin
t reinfor
er is introdu
ed in the su

essive test phase(e.g. [61, 58℄).In typi
al latent learning experiments animals (usually rats) are allowed toexplore a parti
ular environment (su
h as a maze) without the provision of par-ti
ular reinfor
ement. After the provision of a distin
tive reinfor
er, the animalsshow that they have learned an internal representation of the stru
ture of theenvironment (by e.g. running straight to the food position).More te
hni
ally, the rats must have learned some environmental map (i.e.,a predi
tive model) during exploration. Next, a goal emerges, that is, a 
ertainstate in the environment is desired. Finally, without any further a
tive explo-ration, the rats are able to exploit the learned model and 
onsequently movedire
tly towards the desired state.The observation of latent learning led Tolman to propose that animals formexpe
tan
ies,[...℄ a 
ondition in the organism whi
h is equivalent to what in ordi-nary parlan
e we 
all a 'belief', a readiness or disposition, to the e�e
tthat an instan
e of this sort of stimulus situation, if rea
ted to by aninstan
e of that sort of response, will lead to an instan
e of that sort offurther stimulus situation, or else, simply by itself be a

ompanied, orfollowed, by an instan
e of that sort of stimulus situation.[64, p.113℄Essentially, expe
tan
ies are formed predi
ting a
tion e�e
ts as well as stimu-lus e�e
ts regardless of a
tual reinfor
ement. A whole set of su
h expe
tan
ies,then, gives rise to a predi
tive environmental model whi
h 
an be exploited foranti
ipatory behavior.2.3 More Re
ent Psy
hologi
al Eviden
eIn 
ognitive psy
hology anti
ipations have been experimentally shown to in
u-en
e behavior ranging from simple rea
tion time tasks to elaborate reasoningtasks [29, 48℄. It be
omes more and more obvious that anti
ipations in
uen
e a
-tual behavior as well as memory me
hanisms and attention [37℄. Neuropsy
hol-ogy gained further insights about the role of anti
ipatory properties of the brainin attentional me
hanisms and, 
onversely, highlighted the role of attentionalme
hanisms in e.g. the anti
ipation of obje
ts [43℄. This se
tion investigates twokey �ndings in psy
hology resear
h to show the broad impa
t of anti
ipatorybehavior me
hanisms.Predi
tive 
apabilities 
ome into play on di�erent levels and to di�erent ex-tensions. The very re
ent dis
overy of mirror neurons in neuros
ien
e providesneurologi
al eviden
e that at least \higher" animals, su
h as monkeys, formrepresentations of their 
onspe
i�
s [41, 15℄. The �ndings show that there areneurons in monkeys that are a
tive not only when performing a parti
ular a
-tion, su
h as grasping an obje
t, but also when wat
hing another monkey or



human performing the same a
tion. This shows that predi
ting the a
tion ofother people is realized by the re-use of neuronal pathways that represent one'sown a
tions. For now, it is un
lear how the other agent's a
tions are linked toones own a
tion representation. Gallese [14℄ suggests that the link may be 
on-stituted by the embodiment of the intended goal, shared by the agent and theobserver. Gallese [14℄ also argues that only due to mirror neurons it may bepossible to be
ome so
ially involved enabling understanding and predi
tion ofother people's intentions by a shared manifold | the asso
iation of other peoplesa
tions and feelings with ones own a
tions and feelings via mirror neurons. Ar-bib [1℄ proposed mirror neurons as a prerequisite for the evolution of language.He suggests that it may only be possible to 
omprehend other people's spee
ha
ts by simulating and predi
ting these a
ts with neurons identi
al to ones ownspee
h a
ts.In general, mirror neurons are strongly related to the simulation theory ofmind reading whi
h postulates that in simulating other person's minds ones ownresour
es are used. Simulation and predi
tion of other people's mind states medi-ated by mirror systems in the brain 
auses anti
ipatory behavior due to resultingpredispositions in the mind. Empathy, for example, 
an be seen as a spe
ial 
aseof anti
ipatory behavior in whi
h motivational and emotional resour
es be
omea
tive due to predi
tions and simulation of other people's minds by the meansof mirror systems [59℄.Another 
lear bene�t 
an be found in resear
h on attention. Pashler [38℄gives a great overview over the latest resear
h knowledge on attention in hu-mans. LaBerge [31℄ distinguishes between sele
tive and preparatory attention.While he suggests that sele
tive attention does not require any anti
ipatoryme
hanisms, preparatory attention does. Preparatory attention predi
ts the o
-
urren
e of a visual per
eption (spatial or obje
t-oriented) and 
onsequentlybiases the �ltering me
hanism. The predi
tion is done by the system's modelof its environment and in
uen
es the state of the system by the means of thede
ision maker's a
tions that essentially manipulate attentional me
hanisms inthis 
ase. Preparatory attention enables faster goal-dire
ted pro
essing but mayalso lead to inattentional blindness [34℄. In inattentional blindness experimentsit is revealed that attention 
an be dire
ted spatially, temporally, and/or obje
t-oriented. It is most strikingly shown in the famous \gorilla experiment" [44℄. Atradeo� arises between faster pro
essing and fo
using 
apabilities due to prepara-tory, or anti
ipatory, attention and a possible loss of important information dueto inattention. When the 
apability of faster goal-dire
ted pro
essing outweighsthe possibility of blindness e�e
ts needs to be addressed in further detail.The next se
tion introdu
es a formal framework for the 
lassi�
ation of an-ti
ipatory me
hanisms in animats and proposes �rst important distin
tions.3 Anti
ipation in Adaptive BehaviorAdaptive behavior is interested in how so 
alled animats (arti�
ial animals)
an intelligently intera
t and learn in an arti�
ial environment [69℄. Resear
h



in arti�
ial intelligen
e moved away from the traditional predi
ate logi
 andplanning approa
hes to intelligen
e without representation [7℄. The main ideais that intelligent behavior 
an arise without any high-level 
ognition. Smart
onne
tions from sensors to a
tuators 
an 
ause diverse, seemingly intelligent,behaviors. A big part of intelligen
e be
omes embodied in the animat. It is onlyuseful in the environment the animat is situated in. Thus, a big part of intelligentbehavior of the animat arises from the dire
t intera
tion of agent ar
hite
tureand stru
ture in the environment.As suggested in the psy
hology literature outlined above, however, not allintelligent behavior 
an be a

ounted for by su
h me
hanisms. Thus, hybridbehavioral ar
hite
tures are ne
essary in whi
h an embodied intelligent agentmay be endowed with higher \
ognitive" me
hanisms in
luding developmentalme
hanisms, learning, reasoning, or planning. The resulting animat does notonly a
t intelligently in an environment but it is also able to adapt to 
hanges inthe environment, to handle unforeseen situations, or to be
ome so
ially involved.Essentially, the agent is able to learn and draw inferen
es by the means of internalrepresentations and me
hanisms. Anti
ipatory me
hanisms may be part of thesepro
esses.The 
ognitive me
hanisms employed in animats are broad and diÆ
ult to
lassify and 
ompare. Some animats might apply dire
t reinfor
ement learningme
hanisms, adapting behavior based on past experien
es but 
hoosing a
tionssolely based on 
urrent sensory input. Others might be enhan
ed by making a
-tual a
tion de
isions also dependent on past per
eptions. Anti
ipatory behaviorresear
h is interested in those animats that base their a
tion de
isions also onfuture predi
tions. Behavior be
omes anti
ipatory in that predi
tions and beliefsabout the future in
uen
e 
urrent behavior.In the remainder of this se
tion we develop a framework for animat resear
hallowing for a proper di�erentiation of various types of anti
ipatory behavioralme
hanisms. For this purpose, �rst the environment is de�ned as a partially ob-servable Markov de
ision pro
ess (POMDP). Next, a general animat frameworkis outlined that a
ts upon the POMDP. Finally, anti
ipatory me
hanisms aredistinguished within the framework.3.1 Framework of EnvironmentBefore looking at the stru
ture of animats, it is ne
essary to provide a generalde�nition of whi
h environment the animat will fa
e. States and possible sensa-tions in states need to be de�ned, a
tions and resulting state transitions needto be provided, and �nally, the goal or task of the animat needs to be spe
i�ed.The POMDP framework provides a good means for a general de�nition of su
henvironments.We de�ne a POMDP by the < X; Y; U; T;O;R > tuple{ X , the state spa
e of the environment;{ Y , the set of possible sensations in the environment;{ U , the set of possible a
tions in the environment;



{ T : X � U ! �(X) the state transition fun
tion, where �(X) is the set ofall probability distributions over X ;{ O : X ! �(Y ) the observation fun
tion, where �(Y ) is the set of allprobability distributions over Y ;{ R : X �U �X ! IRr the immediate payo� fun
tion, where r is the numberof 
riteria;A Markov de
ision pro
ess (MDP) is given when the Markov property holds: thee�e
ts of an a
tion solely depend on 
urrent input. Thus, the POMDP de�nedabove redu
es to an MDP if ea
h possible sensation in the 
urrent state uniquelyidenti�es the 
urrent state. That is, ea
h possible sensation in a state x (i.e., ally 2 Y for whi
h O(x) is greater than zero) is only possible in this state. If anobservation does not uniquely identify the 
urrent state but rather provides an(impli
it) probability distribution over possible states, the Markov property isviolated and the environment turns into a non-Markov problem. In this 
ase,optimal a
tion 
hoi
es do not ne
essarily depend only on 
urrent sensory inputanymore but usually depend also on the history of per
eptions, a
tions, andpayo�.3.2 Adaptive Agent FrameworkGiven the environmental properties, we sket
h a general animat framework inthis se
tion. We de�ne an animat by a 5-tuple A =< S;A;MS ;MP ; � >. Thisanimat a
ts in the above de�ned POMDP environment.At a 
ertain time t, the animat per
eives sensation y(t) 2 Y and reinfor
e-ment P (t) 2 IR. The probability of per
eiving y(t) is determined by the proba-bility ve
tor O(x(t)) and similarly, the probability of x(t) is determined by theprobability ve
tor T (x(t�1); u(t�1)) whi
h depends on the previous environmen-tal state and the exe
uted a
tion. The re
eived reward depends on the exe
uteda
tion as well as the previous and 
urrent state, P (t) = R(x(t�1); u(t�1); x(t)).Thus, in a behavioral a
t an animat A re
eives sensation y(t) and reinfor
e-ment P (t) and 
hooses to exe
ute an a
tion A. To be able to learn and reasonabout the environment, A has internal states denoted by S that 
an representmemory of previous intera
tions, 
urrent beliefs, motivations, intentions et
. A
-tions A � U denote the a
tion possibilities of the animat. For our purposesseparated from the internal state, we de�ne a state model MS and a predi
tivemodel MP . The state model MS represents 
urrent environmental 
hara
teris-ti
s the agent believes in | an impli
it probability distribution over all possibleenvironmental states X . The predi
tive modelMP spe
i�es how the state model
hanges, possibly dependent on a
tions. Thus, it des
ribes an impli
it and par-tially a
tion-dependent probability distribution of future environmental states.Finally, � denotes the behavioral poli
y of the animat, that is, how the animatde
ides on what to do, or whi
h a
tion to exe
ute. The poli
y might depend on
urrent sensory input, on predi
tions generated by the predi
tive model, on thestate model, and on the internal state.Learning 
an be in
orporated in the animat by allowing the modi�
ation ofthe 
omponents over time. The 
hange of its internal state 
ould, for example,



re
e
t the gathering of memory or the 
hange of moods. The state model 
ould bemodi�ed by generalizing over, for example, equally relevant sensory input. Thepredi
tive model 
ould learn and adapt probabilities of possible state transitionsas well as generalize over e�e
ts and 
onditions.This rather informal agent framework suÆ
es for our purposes of distinguish-ing between di�erent 
lasses of anti
ipatory behavior in animats.3.3 Distin
tions of Anti
ipatory BehaviorWithin the animat framework above, we 
an infer that the predi
tive modelMP plays a major role in anti
ipatory animats. However, in the broader senseof anti
ipatory behavior also animats without su
h a model might be termedanti
ipatory in that their behavioral program is 
onstru
ted in anti
ipation ofpossible environmental 
hallenges. We term this �rst 
lass of anti
ipations im-pli
itly anti
ipatory. The other three 
lasses utilize some kind of predi
tion toin
uen
e behavior. We distinguish between payo� anti
ipations, sensory anti
-ipations, and state anti
ipations. All four types of anti
ipatory behavior aredis
ussed in further detail below.Impli
itly Anti
ipatory Animats The �rst animat-type is the one in whi
hno predi
tions whatsoever are made about the future that might in
uen
e theanimat's behavioral de
ision making. Sensory input, possibly 
ombined withinternal state information, is dire
tly mapped onto an a
tion de
ision. The pre-di
tive model of the animat MP is empty or does not in
uen
e behavioral de-
ision making in any way. Moreover, there is no a
tion 
omparison, estimationof a
tion-bene�t, or any other type of predi
tion that might in
uen
e the be-havioral de
ision. However, impli
it anti
ipations are in
luded in the behavioralprogram of the animat. The basi
 stru
ture of an impli
it anti
ipatory me
ha-nism is shown in Figure 1.
Fig. 1. Impli
it anti
ipatory behavior does not rely on any expli
it knowledge aboutpossible future states. The behavior is anti
ipatory in that the behavioral ar
hite
tureis predi
ted to be e�e
tive. For example, a geneti
 
ode is impli
itly predi
ted (byevolution) to result in su

essful survival and reprodu
tion.



In nature, even if a life-form behaves purely rea
tively, it has still impli
itanti
ipatory information in its geneti
 
ode in that the behavioral programs inthe 
ode are (impli
itly) anti
ipated to work in the o�spring. Evolution is theimpli
it anti
ipatory learning me
hanism that imprints impli
it anti
ipations inthe genes. Similarly, well-designed impli
itly anti
ipatory animats, albeit with-out any predi
tion that might in
uen
e behavior, have impli
it anti
ipatory in-formation in the stru
ture and intera
tion of algorithm, sensors, and a
tuators.The designer has in
luded impli
it anti
ipations of environmental 
hallenges andbehavioral 
onsequen
es in the 
ontroller of the animat.It is interesting to note that this rather broad understanding of the term \an-ti
ipation" basi
ally 
lassi�es any form of life in this world as either impli
itlyanti
ipatory or more expli
itly anti
ipatory. Moreover, any somewhat su

essfulanimat program 
an be 
lassi�ed as impli
itly anti
ipatory sin
e its programmedbehavioral biases are su

essful in the addressed problems. Similarly, any mean-ingful learning me
hanism works be
ause it supposes that future experien
e willbe somewhat similar to experien
e in the past and 
onsequently biases its learn-ing me
hanisms on experien
e in the past. Thus, any meaningful learning andbehavior is impli
itly anti
ipatory in that it anti
ipates that past knowledge andexperien
e will be useful in the future. It is ne
essary to understand the di�er-en
e between su
h impli
itly anti
ipatory animats and animats in whi
h expli
itfuture representations in
uen
e behavior.Payo� Anti
ipations If an animat 
onsiders predi
tions of the possible payo�of di�erent a
tions to de
ide on whi
h a
tion to exe
ute, it may be termed payo�anti
ipatory. In these animats, predi
tions estimate the bene�t of ea
h possiblea
tion and bias a
tion de
ision making a

ordingly. No state predi
tions in
u-en
e a
tion de
ision making. A payo� anti
ipatory me
hanism is s
hematized inFigure 2.
Fig. 2. Sensory anti
ipatory behavior in
uen
es sensory pro
essing due to sensory pre-di
tions, expe
tations, or goal-dependent relevan
e measures.A parti
ular example for payo� anti
ipations is dire
t (or model-free) rein-for
ement learning (RL). Hereby, payo� is estimated with respe
t to the 
urrentbehavioral strategy or in terms of possible a
tions. The evaluation of the es-



timate 
auses the alternation of behavior whi
h again 
ause the alternation ofthe payo� estimates. It 
an be distinguished between on-poli
y RL algorithms,su
h as the SARSA algorithm [42, 52℄, and o�-poli
y RL algorithms, su
h asQ-learning [65, 52℄ or re
ent learning 
lassi�er systems su
h as XCS [67℄.Sensorial Anti
ipations While in payo� anti
ipations predi
tions are re-stri
ted to payo�, in sensory anti
ipations predi
tions are unrestri
ted. How-ever, sensory anti
ipations do not in
uen
e the behavior of an animat dire
tlybut sensory pro
essing is in
uen
ed. The predi
tion of future states and thus thepredi
tion of future stimuli in
uen
es stimulus pro
essing. To be able to formpredi
tions, the animat must use a (not ne
essarily 
omplete) predi
tive modelMP of its environment (see Se
tion 3.2). Expe
ted sensory input might be pro-
essed faster than unexpe
ted input or unexpe
ted input with 
ertain properties(for example possible threat) might be rea
ted to faster. A sensory anti
ipatoryme
hanism is sket
hed in Figure 3.
Fig. 3. Sensory anti
ipatory behavior in
uen
es, or predisposes, sensory pro
essing dueto future predi
tions, expe
tations, or intentions.Sensory anti
ipations strongly relate to preparatory attention in psy
hology[31, 38℄ in whi
h top-down pro
esses su
h as task-related expe
tations in
uen
esensory pro
essing. Behavior is not dire
tly in
uen
ed but sensory (pre-)pro-
essing is. In other words, sensory anti
ipatory behavior results in a predispo-sition of pro
essing sensory input. For example, the agent may be
ome moresus
eptible to spe
i�
 sensory input and more ignorant to other sensory input.The biased sensory pro
essing might then (indire
tly) in
uen
e a
tual behav-ior. Also learning might be a�e
ted by su
h a bias as suggested in psy
hologi
alstudies on learning [22, 48℄.State Anti
ipations Maybe the most interesting group of anti
ipations is theone in whi
h animat behavior is in
uen
ed by expli
it future state representa-tions. As in sensory anti
ipations, a predi
tive model MP must be available tothe animat or it must be learned by the animat. In di�eren
e to sensory anti
ipa-tions, however, state anti
ipations dire
tly in
uen
e 
urrent behavioral de
isionmaking. Expli
it anti
ipatory behavior is s
hematized in �gure 4. The essential



property is that predi
tion(s) about, or simply representations of, future state(s)in
uen
e a
tual a
tion de
ision.
Fig. 4. Expli
it anti
ipations in
uen
e a
tual a
tion de
ision making due to futurepredi
tions, expe
tations, or intentions.The simplest kind of expli
it anti
ipatory animat would be an animat whi
his provided with an expli
it predi
tive model of its environment. The model
ould be used dire
tly to pursue a
tual goals by the means of expli
it planningme
hanisms su
h as diverse sear
h methods or dynami
 programming [5℄. Themost extreme 
ases of su
h high-level planning approa
hes 
an be found in earlyarti�
ial intelligen
e work su
h as the general problem solver [36℄ or the STRIPSlanguage [13℄. Nowadays, somewhat related approa
hes try to fo
us on lo
alme
hanisms that extra
t only relevant environmental information.In RL, for example, the dynami
 programming idea was modi�ed yieldingindire
t (or model-based) RL animats. These animats learn an expli
it predi
tivemodel of the environment. De
isions are based on the predi
tions of all possiblebehavioral 
onsequen
es and essentially the utility of the predi
ted results. Thus,expli
it representations of future states determine behavior.Further distin
tions in state anti
ipatory animats are evident in the stru
tureand 
ompleteness of the model representation, the learning and generalizationme
hanisms that may 
hange the model over time, and the me
hanisms thatexploit the predi
tive model knowledge to adapt behavior. The stru
ture of thepredi
tive model 
an be represented by rules, by a probabilisti
 network, in theform of hierar
hies and so forth. The model representation 
an be based oninternal model states MS(t) or rather dire
tly on 
urrent sensory input y(t).State information in the sensory input 
an provide global state information orrather lo
al state information dependent on the animat's 
urrent position in theenvironment. Learning and generalization me
hanisms give rise to further 
ru-
ial di�eren
es in the availability, the eÆ
ien
y, and the utility of the predi
tivemodel. Finally, the bias of the behavioral 
omponent results in di�erent anti
i-patory behavior me
hanisms. For example, the number of steps that the animat
an look into the future is a 
ru
ial measure as proposed in [45℄. Moreover,anti
ipatory pro
esses might only take pla
e in the event of a
tual behavioralexe
ution or the pro
esses may be involved in adapting behavior o�ine. Proper



distin
tions between these di�erent fa
ets of state anti
ipatory behavior may bedeveloped in future resear
h.With a proper de�nition of animats and four fundamental 
lasses of an-ti
ipatory behavior in hand, we now provide a 
ase study of typi
al existinganti
ipatory animats.4 Payo� Anti
ipatory AnimatsThis se
tion introdu
es several 
ommon payo� anti
ipatory animats. As de�nedabove, these animats do not represent or learn a predi
tive model MP of theirenvironment but a knowledge base assigns values to a
tions based on whi
ha
tion de
isions are made.4.1 Model-Free Reinfor
ement LearningThe reinfor
ement learning framework [27, 52℄ 
onsiders adaptive agents involvedin a sensory-motor loop a
ting upon a MDP as introdu
ed above (extensions toPOMDPs 
an be found for example in [9℄). The task of the agents is to learnan optimal poli
y, i.e., how to a
t in every situation in order to maximize the
umulative reward over the long run.In model-free RL, or dire
t reinfor
ement learning, the animat learns a be-havioral poli
y without learning an expli
it predi
tive model. The most 
ommonform of dire
t reinfor
ement learning is to learn utility values for all possiblestate-a
tion 
ombinations in the MDP. The most 
ommon approa
h in this re-spe
t is the Q-learning approa
h introdu
ed in [65℄. Q-learning has the additionaladvantage that it is poli
y independent. That is, as long as the behavioral poli
yassures that all possible state a
tion transitions are visited in�nitely often overthe long run, Q-learning is guaranteed to generate an optimal poli
y.Model-free RL agents are 
learly payo� anti
ipatory animats. There is noexpli
it predi
tive model; however, the learned reinfor
ement values estimatea
tion-payo�. Thus, although the animat does not expli
itly learn a representa-tion with whi
h it knows the a
tual sensory 
onsequen
es of an a
tion, it 
an
ompare available a
tion 
hoi
es based on the payo� predi
tions and thus a
tpayo� anti
ipatory.Model-free RL in its purest form usually stores all possible state-a
tion 
om-binations in tabular form. Also, states are usually 
hara
terized by unique iden-ti�ers rather than by sensory inputs that allow the identi�
ation of states. Thisungeneralized exhaustive state representation prevents RL to s
ale-up to largerproblems. Several approa
hes exist that try to over
ome the 
urse of dimension-ality by fun
tion approximation te
hniques (
f. [52℄), hierar
hi
al approa
hes (
f.[54, 4℄), or online generalization me
hanisms. Approa
hes that generalize onlineover sensory inputs (for example in the form of a feature ve
tor) are introdu
edin the following.



4.2 Learning Classi�er SystemsLearning Classi�er Systems (LCSs) have often been overlooked in the resear
harea of RL due to the many intera
ting me
hanisms in these systems. However, intheir purest form, LCSs 
an be 
hara
terized as RL systems that generalize onlineover sensory input. This generalization me
hanism leads to several additionalproblems espe
ially with respe
t to a proper propagation of RL values over thewhole state a
tion spa
e.The �rst implementation of an LCS, 
alled CS1, 
an be found in [25℄. Hol-land's goal was to propose a model of a 
ognitive system that is able to learnusing both reinfor
ement learning pro
esses and geneti
 algorithms [23, 20℄. The�rst systems, however, were rather 
ompli
ated and la
ked eÆ
ien
y.Reinfor
ement values in LCSs are stored in a set (the population) of
ondition-a
tion rules (the 
lassi�ers). The 
onditions spe
ify a subset of pos-sible sensations in whi
h the 
lassi�er is appli
able thus giving rise to fo
usingme
hanisms and attentional me
hanisms often over-looked in RL. The learningme
hanism of the population of 
lassi�ers and the 
lassi�er stru
ture is usuallya

omplished by the means of a geneti
 algorithm (GA). Lanzi provides an in-sightful 
omparison between RL and learning 
lassi�er systems [33℄. It appearsfrom this perspe
tive that a LCS is a rule-based reinfor
ement learning systemendowed with the 
apability to generalize what it learns.Thus, also LCSs 
an be 
lassi�ed as payo�-anti
ipatory animats. The gen-eralization over the per
eptions promises faster adaptation in dynami
 environ-ments. Moreover, the poli
y representation may be more 
ompa
t espe
ially inenvironments in whi
h a lot of sensations are available but only a subset of thesensations is task relevant.Re
ently, Wilson implemented several improvements in the LCS model. Hemodi�ed the traditional Bu
ket Brigade algorithm [26℄ to resemble the Q-learning me
hanism propagating Q-values over the population of 
lassi�ers [66,67℄. Moreover, Wilson drasti
ally simpli�ed the LCS model [66℄. Then, he mod-i�ed Holland's original strength-based 
riterion for learning | the more a rulere
eives reward (on average), the more �t it is [23, 24, 6℄ | by a new 
riterionrelying on the a

ura
y of the reward predi
tion of ea
h rule [67℄. This lastmodi�
ation gave rise to the most 
ommonly used LCS today, XCS.5 Anti
ipations Based on Predi
tive ModelsWhile the model-free reinfor
ement learning approa
h as well as LCSs do nothave or use a predi
tive model representation, the agent ar
hite
tures in thisse
tion all learn or have a predi
tive model MP and use this model to yieldanti
ipatory behavior. Due to the usage of an expli
it predi
tive model of theenvironment, all systems 
an be 
lassi�ed as either sensory anti
ipatory or stateanti
ipatory. Important di�eren
es of the systems are outlined below.



5.1 Model-based Reinfor
ement LearningThe dynami
al ar
hite
ture Dyna [53℄ learns a model of its environment in ad-dition to reinfor
ement values (state values or Q-values). Several anti
ipatoryme
hanisms 
an be applied su
h as biasing the de
ision maker toward the explo-ration of unknown/unseen regions or applying internal reinfor
ement updates.Dyna is one of the �rst state anti
ipatory animat implementations. It usuallyforms an ungeneralized representation of its environment in tabular form but itis not ne
essarily restri
ted to su
h a representation. Interesting enhan
ementsof Dyna have been undertaken optimizing the internal model-based RL pro
ess[35, 40℄ or adopting the me
hanism to a tile 
oding approa
h [30℄. The introdu
-tion of Dyna was kept very general so that many of the subsequent me
hanisms
an be 
hara
terized as Dyna me
hanisms as well. Di�eren
es 
an be found inthe learning me
hanism of the predi
tive model, the sensory input provided, andthe behavioral poli
y learning.5.2 S
hema Me
hanismAn ar
hite
ture similar to the Dyna ar
hite
ture was published in [11℄. Theimplemented s
hema me
hanism is loosely based on Piaget's proposed devel-opmental stages. The model in the s
hema me
hanism is represented by rules.It is learned bottom-up by generating more spe
ialized rules where ne
essary.Although no generalization me
hanism applies, the resulting predi
tive model issomewhat more general than a tabular model. The de
ision maker is | amongother 
riteria | biased on the exploitation of the model to a
hieve desired itemsin the environment. Similar to Dyna, the s
hema me
hanism represents an ex-pli
it anti
ipatory agent. However, the de
ision maker, the model learner, andthe predi
tive model representation MP have a di�erent stru
ture.5.3 Expe
tan
y Model SRS/EWitkowski [70℄ approa
hes the same problem from a 
ognitive perspe
tive givingrise to his expe
tan
y model SRS/E. Similar to Dyna, the learned model is notgeneralized but represented by a set of rules. Generalization me
hanisms are sug-gested but not tested. SRS/E in
ludes an additional sign list that stores all statesen
ountered so far. In 
ontrast to Dyna, reinfor
ement is not propagated onlinebut is only propagated on
e a desired state is generated by a behavioral mod-ule. The propagation is a

omplished using dynami
 programming te
hniquesapplied to the learned predi
tive model and the sign list.5.4 Anti
ipatory Learning Classi�er SystemsSimilar to the s
hema me
hanism and SRS/E, anti
ipatory learning 
lassi�ersystems (ALCSs) [50, 8, 19, 17℄ 
ontain an expli
it predi
tion 
omponent. Thepredi
tive model 
onsists of a set of rules (
lassi�ers) whi
h are endowed witha so 
alled \e�e
t" part. The e�e
t part predi
ts the next situation the agentwill en
ounter if the a
tion spe
i�ed by the rules is exe
uted. The se
ond major
hara
teristi
 of ALCSs is that they generalize over sensory input.



ACS An anti
ipatory 
lassi�er system (ACS) was developed by Stolzmann [49,50℄ and was later extended to its 
urrent state of the art, ACS2 [8℄. ACS2 learnsa generalized model of its environment applying dire
ted spe
ialization as wellas geneti
 generalization me
hanisms. It has been experimentally shown thatACS2 reliably learns a 
omplete, a

urate, and 
ompa
t predi
tive model ofseveral typi
al MDP environments. Reinfor
ement is propagated dire
tly insidethe predi
tive model resulting in a possible model aliasing problem [8℄. It wasshown that ACS2 mimi
s the psy
hologi
al results of latent learning experimentsas well as out
ome devaluation experiments mentioned above by implementingadditional anti
ipatory me
hanisms into the de
ision maker [50, 51, 8℄.YACS Yet Another Classi�er System (YACS) is another anti
ipatory learn-ing 
lassi�er system that forms a similar generalized model applying dire
tedspe
ialization as well as generalization me
hanisms [17, 18℄. Similar to SRS/E,YACS keeps a list of all states en
ountered so far. Unlike SRS/E, reinfor
ementupdates in the state list are done while intera
ting with the environment mak-ing use of the 
urrent predi
tive model. Thus, YACS is similar to SRS/E but itevolves a more generalized predi
tive model and updates the state list online.MACS A more re
ent approa
h by [16℄ learns a di�erent rule-based represen-tation in whi
h rules are learned separately for the predi
tion of ea
h sensoryattribute. Similar to YACS, MACS keeps a state list of all so far en
ounteredstates and updates reinfor
ement learning in those states. The di�erent modelrepresentation is shown to allow further generalizations in maze problems.5.5 Arti�
ial Neural Network Models of Anti
ipationAlso Arti�
ial Neural Networks (ANN) 
an be used to learn the 
ontroller ofan agent. In a

ordan
e with the POMDP framework, the 
ontroller is providedwith some inputs from the sensors of the agent and must send some outputsto the a
tuators of the agent. Learning to 
ontrol the agent 
onsists in learningto asso
iate the good set of outputs to any set of inputs that the agent mayexperien
e.The most 
ommon way to perform su
h learning with an ANN 
onsists inusing the ba
k-propagation algorithm. This algorithm 
onsists in 
omputing forea
h set of inputs the errors on the outputs of the 
ontroller. With respe
t tothe 
omputed error, the weights of the 
onne
tions in the network are modi�edso that the error will be smaller the next time the same inputs are en
ountered.The main drawba
k of this algorithm is that one must be able to de
ide forany input what the 
orre
t output should be so as to 
ompute an error. Thelearning agent must be provided with a supervisor whi
h tells at ea
h time stepwhat the agent should have done. Ba
k-propagation is a supervised learningmethod. The problem with su
h a method is that in most 
ontrol problems, the
orre
t behavior is not known in advan
e. As a 
onsequen
e, it is diÆ
ult tobuild a supervisor.



The solution to this problem 
onsists in relying on anti
ipation [55, 57℄. If therole of an ANN is to predi
t what the next input will be rather than to providean output, then the error signal is available: it 
onsists in the di�eren
e betweenwhat the ANN predi
ted and what has a
tually happened. As a 
onsequen
e,learning to predi
t thanks to a ba
k-propagation algorithm is straight-forward.Baluja's Attention Me
hanism Baluja and Pomerleau provide an interestinganti
ipatory implementation of visual attention in the form of a neural networkwith one hidden layer [2, 3℄. The me
hanism is based on the ideas of visualattention modeling in [28℄. The system is for example able to learn to follow aline by the means of the network. Performan
e of the net is improved by addinganother output layer, 
onne
ted to the hidden layer, whi
h learns to predi
tsu

essive sensory input. Sin
e this output layer is not used to update the weightsin the hidden layer, Baluja argues that 
onsequently the predi
tive output layer
an only learn task-relevant predi
tions. The predi
tions of the output layerare used to modify the su

essive input in that the strong di�eren
es betweenpredi
tion and real input are de
reased assuming strong di�eren
es to be taskirrelevant noise. Baluja shows that the neural net is able to utilize this image
attening to improve performan
e and essentially ignore spurious line markingsand other distra
ting noise. It is furthermore suggested that the ar
hite
ture
ould also be used to dete
t unexpe
ted sensations faster possibly usable foranomaly dete
tion tasks.Baluja's system is a payo� anti
ipatory system. The system learns a pre-di
tive model whi
h is based on pre-pro
essed information in the hidden units.The predi
tive model is a
tion-independent. Sensory anti
ipations are realized inthat the sensory input is modi�ed a

ording to the di�eren
e between predi
tedand a
tual input.Tani's Re
urrent Neural Networks Tani published a re
urrent neural net-work (RNN) approa
h implementing model-based learning and planning in thenetwork [55℄. The system learns a predi
tive model using the sensory informa-tion of the next situation as the supervision. Context units are added that feedba
k the values of the 
urrent hidden units to additional input units. This re-
urren
e allows a 
ertain internal representation of time [12℄. In order to use theemerging predi
tive model su

essfully, it is ne
essary that the RNN be
omessituated in the environment | the RNN needs to identify its 
urrent situationin the environment by adjusting its re
urrent inputs. On
e the model is learned,a navigation phase is initiated in whi
h the network is used to plan a path to aprovided goal.The most appealing result of this work is that the RNN is a
tually imple-mented in a real mobile robot. The implementation is shown to handle noisy, on-line dis
retized environments. Anti
ipatory behavior is implemented by a looka-head planning me
hanism. The system is a state anti
ipatory system in whi
h thepredi
tive model is represented in a RNN. In 
ontrast to the approa
hes above,the RNN also evolves an impli
it state model MS represented and updated by



the re
urrent neural network inputs. This is the reason why the network has tobe
ome situated before planning is appli
able. Tani shows that predi
ting thenext inputs 
orre
tly helps stabilizing the behavior of its agents and, more gen-erally, that using anti
ipations results in a bi-polarization of the behavior intotwo extreme modes: a very stable mode when everything is predi
ted 
orre
tly,and a 
haoti
 mode when the predi
tions get wrong.In a further publi
ation [56℄, Tani uses a 
onstru
tivist approa
h in whi
hseveral neural networks are 
ombined. The approa
h implements an attentionalme
hanism that swit
hes between wall following and obje
t re
ognition. Similarto the winner-takes-all algorithm proposed in [28℄, Tani uses a winner-takes-allalgorithm to implement a visual attention me
hanism. The algorithm 
ombinessensory information with model predi
tion, thus pre-pro
essing sensory informa-tion due to predi
tions. The resulting 
ategori
al output in
uen
es the de
isionmaker that 
ontrols robot movement. Thus, the 
onstru
ted animat 
omprisessensory anti
ipatory me
hanisms that in
uen
e attentional me
hanisms simi-lar to Baluja's visual attention me
hanism but embedded in a bigger modularstru
ture.In [57℄, a �rst approa
h of a hierar
hi
al stru
tured neural network suitableas a predi
tive model is published. While the lower level in the hierar
hy learnsthe basi
 sensory-motor 
ow, the higher level learns to predi
t the swit
hing ofthe network in the lower level and thus a more higher level representation ofthe en
ountered environment. Anti
ipatory behavior was not shown within thesystem.5.6 Anti
ipations in a Multi-Agent ProblemA �rst approa
h that 
ombines low level rea
tive behavior with high-level de-liberation 
an be found in [10℄. The animats in this framework are endowedwith a predi
tive model that predi
ts behavior of the other, similar animats.Although the system does not apply any learning methods, it is a �rst approa
hof state anti
ipations in a multi-agent environment. It is shown that by anti
-ipating the behavior of the other agents, behavior 
an be optimized a
hieving
ooperative behavior. Davidsson's agent is a simple anti
ipatory agent that usesthe (restri
ted) predi
tive model of other agents to modify the otherwise rea
tivede
ision maker. Sin
e the de
ision maker is in
uen
ed by the predi
tive modelthe agents 
an be 
lassi�ed as non-learning state-anti
ipatory animats.6 Dis
ussionAs 
an be seen in the above study of anti
ipatory systems, a lot of resear
h isstill needed to 
learly understand the utility of anti
ipations. This se
tion furtherdis
usses di�erent aspe
ts in anti
ipatory approa
hes.



6.1 Anti
ipating With or Without a ModelOne main advantage of model building animats with respe
t to model-free onesis that their model endows them with a planning 
apability. Having an internalpredi
tive model whi
h spe
i�es whi
h a
tion leads from what state to what otherstate permits the agent to plan its behavior \in its head". But planning does notne
essarily mean that the agent a
tually sear
hes in its model a 
omplete pathfrom its 
urrent situation to its 
urrent goal. Indeed, that strategy su�ers froma 
ombinatorial explosion problem. It may rather mean that the agent updatesthe values of di�erent state model states (x 2 MS) without having to a
tuallymove in its environment. This is essentially done in dynami
 programming [5℄and it is adapted to the RL framework in the Dyna ar
hite
ture [53, 52℄. Theinternal updates allow a faster 
onvergen
e of the learning algorithms due to thegeneral a

eleration of value updates.These ideas have been re-used in most anti
ipatory rule-based learning sys-tems des
ribed above. Applying the same idea in the 
ontext of ANN, with themodel being implemented in the weights of re
urrent 
onne
tions in the network,would 
onsist in letting the weights of the re
urrent 
onne
tions evolve fasterthan the sensory-motor dynami
s of the network. To our knowledge, though,this way to pro
eed has not been used in any anti
ipatory ANN animat, yet.Pros and Cons of Anti
ipatory Learning Classi�er Systems Having anexpli
it predi
tive part in the rules of ALCSs permits a more dire
ted use ofmore information from the agent's experien
e to improve the rules with respe
tto 
lassi
al LCSs. Supervised learning methods 
an be applied. Thus, there isa tenden
y in ALCSs to use heuristi
 sear
h methods rather than blind geneti
algorithms to improve the rules.This use of heuristi
 sear
h methods results then in a mu
h faster 
onvergen
eof anti
ipatory systems on problems where 
lassi
al LCSs are quite slow, but italso results in more 
ompli
ated systems, more diÆ
ult to program, and also inless general systems.For example, XCS-like systems 
an be applied both to single-step problemssu
h as Data Mining Problems [68℄ where the agent has to make only one de
isionindependent from its previous de
isions and to multi-step problems where theagent must run a sequen
e of a
tions to rea
h its goal [32℄. In 
ontrast, ALCSs areexpli
itly devoted to multi-step problems, sin
e there must be a \next" situationafter ea
h a
tion de
ision from the agent.6.2 A Parallel Between Learning Thanks to Predi
tion in ANN andin ALCSThe se
ond matter of dis
ussion emerging from this overview is the parallel that
an be made in the way ANN and rule-based systems 
ombine predi
tions andlearning to build and generalize a model of the problem.We have seen that in Tani's system, the errors on predi
tions are ba
k-propagated through the RNN so as to update the weights of the 
onne
tions.



This learning pro
ess results in an improved ability to predi
t, thus in a betterpredi
tive model.The learning algorithms in the presented ALCSs rely on the same idea. Thepredi
tion errors are represented by the fa
t that the predi
tions of a 
lassi�erare sometimes good and sometimes bad, in whi
h 
ase the 
lassi�er os
illates(or is 
alled not reliable). In this 
ase, more spe
i�
 
lassi�ers are generated bythe parti
ular spe
ialization pro
ess. Thus, the os
illation of 
lassi�ers is at theheart of the model improvement pro
ess.Spe
ializing a 
lassi�er when it os
illates is a way to use the error of thepredi
tion so as to improve the model, exa
tly as it is done in the 
ontext ofANN.This way of learning is justi�ed by the fa
t that both systems in
lude a 
a-pa
ity of generalization in their models. Otherwise, it would be simpler just toin
lude any new experien
e in the anti
ipatory model without having to en
om-pass a predi
tion and 
orre
tion pro
ess. The point is that the predi
tion 
an begeneral and the 
orre
tion preserves this generality as mu
h as it 
an. Interest-ingly, however, generalization is not exa
tly of the same nature in ANN and inALCSs.As a 
on
lusion, both 
lasses of systems exhibit a synergy between learning,predi
tion, and generalization, learning being used to improve general predi
-tions, but also predi
tions being at the heart of learning general features of theenvironment.6.3 Model Builders and non-Markov ProblemsAs explained in se
tion 3.1, a non-Markov problem is a problem in whi
h the
urrent sensations of the animat are not always suÆ
ient to 
hoose the besta
tion. In su
h problems, the animat must in
orporate an internal state modelrepresentation MS providing a further sour
e of information for 
hoosing thebest a
tion. The information in question generally 
omes from the more or lessimmediate past of the animat. An animat whi
h does not in
orporate su
h aninternal state model is said to be \rea
tive". Rea
tive animats 
annot behaveoptimally in non-Markov problems.In order to prevent misinterpretations, we must warn the reader about thefa
t that an internal state model di�ers from an internal predi
tive model. Infa
t, an internal predi
tive model alone does not enable the animat to behaveoptimally in a non-Markov problem. Rather than information about the imme-diate past of the animat, predi
tive models only provide information about the\atemporal" stru
ture of the problem (that is, information about the possiblefuture). In parti
ular, if the animat has no means to disambiguate aliased per-
eptions, it will build an aliased model. Thus an animat 
an be both rea
tive,that is, unable to behave optimally in non-Markov environments, and expli
itlyanti
ipatory, that is, able to build a predi
tive model of this environment andbias its a
tion de
isions on future predi
tions, without solving the non-Markovproblem.



7 Con
lusionThis overview of internal models and anti
ipatory behavior showed that a lotof future resear
h is needed to understand exa
tly when whi
h anti
ipationsare useful or sometimes even mandatory in an environment to yield 
ompetentadaptive behavior. Although psy
hologi
al resear
h proves that anti
ipatory be-havior takes pla
e in at least higher animals, a 
lear understanding of the how,the when, and the whi
h is not available. Thus, one essential dire
tion of futureresear
h is to identify environmental 
hara
teristi
s in whi
h distin
t anti
ipa-tory me
hanisms are helpful or ne
essary.Several more 
on
rete resear
h dire
tions 
an be suggested. (1) It seemsimportant to quantify when anti
ipatory behavior 
an be adapted faster thanstimulus-response behavior. For example, in a dynami
 environment some pre-di
tive knowledge may be assumed to be stable so that behavior 
an be adaptedby the means of this knowledge. (2) It appears interesting to investigate howto balan
e rea
tive and anti
ipatory me
hanisms and how to allow a properintera
tion. A proper ar
hite
ture of motivations and emotions might play animportant role in this respe
t. (3) Adaptive me
hanisms that are initially anti
i-patory and then be
ome short 
ir
uited rea
tive demand further resear
h e�ort.For example, initial hard pra
ti
e of playing an instrument be
omes more andmore automati
 and is eventually only guided by a 
orre
t feeling of its fun
-tioning. Can we 
reate a similar adaptive motor-
ontrol me
hanism? (4) Thefun
tioning of attentional pro
esses in
uen
ed by sensory anti
ipations needsto be investigated further. When are su
h attentional me
hanisms bene�
ial,when does the drawba
k due to inattentional blindness e�e
ts overshadow thebene�ts? (5) The bene�t of simulating intentions and behavior of other animatsrequires further resear
h e�ort. Whi
h pro
esses are ne
essary to 
reate bene�-
ial so
ial relationships? Whi
h me
hanisms 
an result in mutual bene�t, whi
hme
hanisms 
an 
ause unilateral bene�t?This small but broad list shows that future work in anti
ipatory learningsystems promises fruitful resear
h proje
ts and new ex
iting insights in the �eldof adaptive behavior. We hope that our overview of 
urrent insights in anti
ipa-tory me
hanisms and the available systems provide a basis for future resear
he�orts. Moreover, we want to en
ourage the development of the distin
tions be-tween anti
ipatory behavior me
hanisms. While impli
it and payo� anti
ipatoryme
hanisms appear to be rather 
lear 
ut, sensory and state anti
ipatory behav-ior 
omprise many di�erent forms and me
hanisms. Future resear
h will showwhi
h 
hara
teristi
s should be used to distinguish the di�erent me
hanismsfurther.A
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