
Internal Models and Antiipations in AdaptiveLearning SystemsMartin V. Butz2;3, Olivier Sigaud1, and Pierre G�erard11 AnimatLab-LIP6, 8, rue du apitaine Sott, 75015 Paris Franefolivier.sigaud,pierre.gerardg�lip6.fr2 Department of Cognitive Psyhology, University of W�urzburg, Germanybutz�psyhologie.uni-wuerzburg.de3 Illinois Geneti Algorithms Laboratory (IlliGAL),University of Illinois at Urbana-Champaign, IL, USAAbstrat. The expliit investigation of antiipations in relation toadaptive behavior is a reent approah. This hapter �rst provides psy-hologial bakground that motivates and inspires the study of antii-pations in the adaptive behavior �eld. Next, a basi framework for thestudy of antiipations in adaptive behavior is suggested. Di�erent anti-ipatory mehanisms are identi�ed and haraterized. First fundamentaldistintions are drawn between impliit antiipatory behavior, payo� an-tiipatory behavior, sensory antiipatory behavior, and state antiipatorybehavior. A ase study allows further insights into the drawn distintions.Many future researh diretion are suggested.1 IntrodutionThe idea that antiipations inuene and guide behavior has been inreasinglyappreiated over the last deades. Antiipations appear to play a major role inthe oordination and realization of adaptive behavior. Various disiplines haveexpliitly reognized antiipations. For example, philosophy has been addressingour sense of reasoning, generalization, and assoiation for a long time. More re-ently, experimental psyhology on�rmed the existene of antiipatory behaviorproesses in animals and humans over the last deades.Although it might be true that over all onstrutible learning problems anylearning mehanism will perform as good, or as bad, as any other one [71℄, thepsyhologial �ndings suggest that in natural environments and natural problemslearning and ating in an antiipatory fashion inreases the hane of survival.Thus, in the quest of designing ompetent arti�ial animals, the so alled animats[69℄, the inorporation of antiipatory mehanisms seems mandatory.This book addresses two important questions of antiipatory behavior. On theone hand, we are interested in how antiipatory mehanisms an be inorporatedin animats, that is, whih strutures and proesses are neessary for antiipatorybehavior. On the other hand, we are interested in when antiipatory mehanismsare atually helpful in animats, that is, whih environmental preonditions favorantiipatory behavior.



To approah the how and when, it is neessary to distinguish �rst betweendi�erent antiipatory mehanisms. With respet to the how, the question is whihantiipatory mehanisms need whih struture. With respet to the when, thequestion is whih antiipatory mehanisms ause whih learning and behavioralbiases. In this hapter, we draw a �rst distintion between (1) impliit antii-patory mehanisms in whih no atual preditions are made but the behavioralstruture is onstruted in an antiipatory fashion, (2) payo� antiipatory meh-anisms in whih the inuene of future preditions on behavior is restrited topayo� preditions, (3) sensory antiipatory mehanisms in whih future predi-tions inuene sensory (pre-)proessing, and (4) state antiipatory mehanismsin whih preditions about future states diretly inuene urrent behavioral de-ision making. The distintions are introdued and disussed within the generalframework of partially observable Markov deision proesses (POMDPs) and ageneral animat framework based on the POMDP struture.The remainder of this hapter is strutured as follows. First, psyhology'sknowledge about antiipations is skethed out. Next, we identify and lassifydi�erent antiipatory mehanisms in the �eld of adaptive behavior. A non-exhaustive ase study provides further insights into the di�erent mehanismsas well as gives useful bakground for possible extensions. The onlusions out-line many diverse future researh diretions tied to the study of antiipatorybehavior in adaptive learning systems.2 Bakground from Psyhologial ResearhIn order to motivate the usage of antiipations in adaptive behavior researh,this setion provides bakground from ognitive psyhology. Starting from thebehaviorist movement, we show how the notion of antiipation and its diverseimpat on behavior was reognized in psyhology researh. While behaviorismgave rise to suessful experimental psyhology it somewhat ignored, and of-ten even denied, antiipatory behavior inuenes. However, the experimentalapproah itself eventually revealed inevitable antiipatory inuenes on behav-ior. Reent neuron imaging tehniques and single-ell reordings provide furtherproof of antiipatory ognitive proesses.2.1 Behaviorist ApproahEarly suggestions of antiipations in behavior date bak to Herbart [21℄. Heproposed that the \feeling" of a ertain behavioral at atually triggers theexeution of this at one the outome is desired later.The early 20th entury, though, was dominated by the behaviorist approahthat viewed behavior as basially stimulus-response driven. Two of the predom-inant priniples in the behaviorist world are lassial onditioning and operantonditioning.Pavlov �rst introdued lassial onditioning [39℄. Classial onditioningstudies how animals learn assoiations between an unonditioned stimulus (US)



and a onditioned stimulus (CS). In the \Pavlovian dog", for example, the unon-ditioned stimulus (meat powder) leads to salivation | an unonditioned reex(UR). After several experiments in whih the sound of a bell (a neutral stimulusNS) is losely followed by the presentation of the meat powder, the dog startssalivating when it hears the sound of the bell independent of the meat powder.Thus the bell beomes a onditioned stimulus (CS) triggering the response ofsalivation.While in lassial onditioning the onditioned stimulus may be assoiatedwith the unonditioned stimulus (US) or with the unonditioned reex (UR),operant onditioning investigates the diret assoiation of behavior with favor-able (or unfavorable) outomes. Thorndike [60℄ monitored how hungry ats learnto esape from a age giving rise to his \law of e�et". That is, ations that leadto desired e�ets will be, other things being equal, assoiated with the situationof ourrene. The strength of the assoiation depends on the degree of satis-fation and/or disomfort. More elaborate experiments of operant onditioningwere later pursued in the well known \Skinner box" [46℄.Thus, lassial onditioning permits the reation of new CS on the basis ofUS, and operant onditioning permits to hain suessive behaviors onditionedon di�erent stimuli. Note that the learning proesses take plae bakwards. Tolearn a sequene of behaviors, it is neessary to �rst learn the ontingenies atthe end of the sequene. In addition, the onsequenes are only learned beausethey represent punishments or rewards. Nothing is learned in the absene of anytype of reward or punishment.While behaviorism allowed ognitive psyhology to make signi�ant progressdue to its prinipled study of behavior phenomena, a persisting drawbak of theapproah is the omplete ignorane to, or denial of, any sort of mental state.Skinner's and others' mistake was to disallow future preditions or expetations,desribed as intentions, purposes, aims, or goals, to inuene behavior.No one is surprised to hear it said that a person arrying good newswalks more rapidly beause he feels jubilant, or ats arelessly beause ofhis impetuosity, or holds stubbornly to a ourse of ation through sheerfore of will. Careless referenes to purpose are still to be found in bothphysis and biology, but good pratie has no plae for them; yet almosteveryone attributes human behavior to intentions, purposes, aims, andgoals. [47, p.6℄Although Skinner is orret that the unsienti� referene to e.g.\purpose" mightresult in the obstrution of sienti� progress in psyhology, we will show thatit is possible to formalize future representations and behavior dependent onfuture representations. First, however, we present psyhologial investigationsthat learly show that representations of the future are inuening behavior.2.2 Expetany ModelFirst experimental evidene for antiipatory behavior mehanisms an be foundin Tolman's work [61{63℄. Tolman proposed that, additionally to onditioned



learning, latent learning takes plae in animals. In latent learning experimentsanimals show to have learned an environmental representation during an explo-ration phase one a distint reinforer is introdued in the suessive test phase(e.g. [61, 58℄).In typial latent learning experiments animals (usually rats) are allowed toexplore a partiular environment (suh as a maze) without the provision of par-tiular reinforement. After the provision of a distintive reinforer, the animalsshow that they have learned an internal representation of the struture of theenvironment (by e.g. running straight to the food position).More tehnially, the rats must have learned some environmental map (i.e.,a preditive model) during exploration. Next, a goal emerges, that is, a ertainstate in the environment is desired. Finally, without any further ative explo-ration, the rats are able to exploit the learned model and onsequently movediretly towards the desired state.The observation of latent learning led Tolman to propose that animals formexpetanies,[...℄ a ondition in the organism whih is equivalent to what in ordi-nary parlane we all a 'belief', a readiness or disposition, to the e�etthat an instane of this sort of stimulus situation, if reated to by aninstane of that sort of response, will lead to an instane of that sort offurther stimulus situation, or else, simply by itself be aompanied, orfollowed, by an instane of that sort of stimulus situation.[64, p.113℄Essentially, expetanies are formed prediting ation e�ets as well as stimu-lus e�ets regardless of atual reinforement. A whole set of suh expetanies,then, gives rise to a preditive environmental model whih an be exploited forantiipatory behavior.2.3 More Reent Psyhologial EvideneIn ognitive psyhology antiipations have been experimentally shown to inu-ene behavior ranging from simple reation time tasks to elaborate reasoningtasks [29, 48℄. It beomes more and more obvious that antiipations inuene a-tual behavior as well as memory mehanisms and attention [37℄. Neuropsyhol-ogy gained further insights about the role of antiipatory properties of the brainin attentional mehanisms and, onversely, highlighted the role of attentionalmehanisms in e.g. the antiipation of objets [43℄. This setion investigates twokey �ndings in psyhology researh to show the broad impat of antiipatorybehavior mehanisms.Preditive apabilities ome into play on di�erent levels and to di�erent ex-tensions. The very reent disovery of mirror neurons in neurosiene providesneurologial evidene that at least \higher" animals, suh as monkeys, formrepresentations of their onspei�s [41, 15℄. The �ndings show that there areneurons in monkeys that are ative not only when performing a partiular a-tion, suh as grasping an objet, but also when wathing another monkey or



human performing the same ation. This shows that prediting the ation ofother people is realized by the re-use of neuronal pathways that represent one'sown ations. For now, it is unlear how the other agent's ations are linked toones own ation representation. Gallese [14℄ suggests that the link may be on-stituted by the embodiment of the intended goal, shared by the agent and theobserver. Gallese [14℄ also argues that only due to mirror neurons it may bepossible to beome soially involved enabling understanding and predition ofother people's intentions by a shared manifold | the assoiation of other peoplesations and feelings with ones own ations and feelings via mirror neurons. Ar-bib [1℄ proposed mirror neurons as a prerequisite for the evolution of language.He suggests that it may only be possible to omprehend other people's speehats by simulating and prediting these ats with neurons idential to ones ownspeeh ats.In general, mirror neurons are strongly related to the simulation theory ofmind reading whih postulates that in simulating other person's minds ones ownresoures are used. Simulation and predition of other people's mind states medi-ated by mirror systems in the brain auses antiipatory behavior due to resultingpredispositions in the mind. Empathy, for example, an be seen as a speial aseof antiipatory behavior in whih motivational and emotional resoures beomeative due to preditions and simulation of other people's minds by the meansof mirror systems [59℄.Another lear bene�t an be found in researh on attention. Pashler [38℄gives a great overview over the latest researh knowledge on attention in hu-mans. LaBerge [31℄ distinguishes between seletive and preparatory attention.While he suggests that seletive attention does not require any antiipatorymehanisms, preparatory attention does. Preparatory attention predits the o-urrene of a visual pereption (spatial or objet-oriented) and onsequentlybiases the �ltering mehanism. The predition is done by the system's modelof its environment and inuenes the state of the system by the means of thedeision maker's ations that essentially manipulate attentional mehanisms inthis ase. Preparatory attention enables faster goal-direted proessing but mayalso lead to inattentional blindness [34℄. In inattentional blindness experimentsit is revealed that attention an be direted spatially, temporally, and/or objet-oriented. It is most strikingly shown in the famous \gorilla experiment" [44℄. Atradeo� arises between faster proessing and fousing apabilities due to prepara-tory, or antiipatory, attention and a possible loss of important information dueto inattention. When the apability of faster goal-direted proessing outweighsthe possibility of blindness e�ets needs to be addressed in further detail.The next setion introdues a formal framework for the lassi�ation of an-tiipatory mehanisms in animats and proposes �rst important distintions.3 Antiipation in Adaptive BehaviorAdaptive behavior is interested in how so alled animats (arti�ial animals)an intelligently interat and learn in an arti�ial environment [69℄. Researh



in arti�ial intelligene moved away from the traditional prediate logi andplanning approahes to intelligene without representation [7℄. The main ideais that intelligent behavior an arise without any high-level ognition. Smartonnetions from sensors to atuators an ause diverse, seemingly intelligent,behaviors. A big part of intelligene beomes embodied in the animat. It is onlyuseful in the environment the animat is situated in. Thus, a big part of intelligentbehavior of the animat arises from the diret interation of agent arhitetureand struture in the environment.As suggested in the psyhology literature outlined above, however, not allintelligent behavior an be aounted for by suh mehanisms. Thus, hybridbehavioral arhitetures are neessary in whih an embodied intelligent agentmay be endowed with higher \ognitive" mehanisms inluding developmentalmehanisms, learning, reasoning, or planning. The resulting animat does notonly at intelligently in an environment but it is also able to adapt to hanges inthe environment, to handle unforeseen situations, or to beome soially involved.Essentially, the agent is able to learn and draw inferenes by the means of internalrepresentations and mehanisms. Antiipatory mehanisms may be part of theseproesses.The ognitive mehanisms employed in animats are broad and diÆult tolassify and ompare. Some animats might apply diret reinforement learningmehanisms, adapting behavior based on past experienes but hoosing ationssolely based on urrent sensory input. Others might be enhaned by making a-tual ation deisions also dependent on past pereptions. Antiipatory behaviorresearh is interested in those animats that base their ation deisions also onfuture preditions. Behavior beomes antiipatory in that preditions and beliefsabout the future inuene urrent behavior.In the remainder of this setion we develop a framework for animat researhallowing for a proper di�erentiation of various types of antiipatory behavioralmehanisms. For this purpose, �rst the environment is de�ned as a partially ob-servable Markov deision proess (POMDP). Next, a general animat frameworkis outlined that ats upon the POMDP. Finally, antiipatory mehanisms aredistinguished within the framework.3.1 Framework of EnvironmentBefore looking at the struture of animats, it is neessary to provide a generalde�nition of whih environment the animat will fae. States and possible sensa-tions in states need to be de�ned, ations and resulting state transitions needto be provided, and �nally, the goal or task of the animat needs to be spei�ed.The POMDP framework provides a good means for a general de�nition of suhenvironments.We de�ne a POMDP by the < X; Y; U; T;O;R > tuple{ X , the state spae of the environment;{ Y , the set of possible sensations in the environment;{ U , the set of possible ations in the environment;



{ T : X � U ! �(X) the state transition funtion, where �(X) is the set ofall probability distributions over X ;{ O : X ! �(Y ) the observation funtion, where �(Y ) is the set of allprobability distributions over Y ;{ R : X �U �X ! IRr the immediate payo� funtion, where r is the numberof riteria;A Markov deision proess (MDP) is given when the Markov property holds: thee�ets of an ation solely depend on urrent input. Thus, the POMDP de�nedabove redues to an MDP if eah possible sensation in the urrent state uniquelyidenti�es the urrent state. That is, eah possible sensation in a state x (i.e., ally 2 Y for whih O(x) is greater than zero) is only possible in this state. If anobservation does not uniquely identify the urrent state but rather provides an(impliit) probability distribution over possible states, the Markov property isviolated and the environment turns into a non-Markov problem. In this ase,optimal ation hoies do not neessarily depend only on urrent sensory inputanymore but usually depend also on the history of pereptions, ations, andpayo�.3.2 Adaptive Agent FrameworkGiven the environmental properties, we sketh a general animat framework inthis setion. We de�ne an animat by a 5-tuple A =< S;A;MS ;MP ; � >. Thisanimat ats in the above de�ned POMDP environment.At a ertain time t, the animat pereives sensation y(t) 2 Y and reinfore-ment P (t) 2 IR. The probability of pereiving y(t) is determined by the proba-bility vetor O(x(t)) and similarly, the probability of x(t) is determined by theprobability vetor T (x(t�1); u(t�1)) whih depends on the previous environmen-tal state and the exeuted ation. The reeived reward depends on the exeutedation as well as the previous and urrent state, P (t) = R(x(t�1); u(t�1); x(t)).Thus, in a behavioral at an animat A reeives sensation y(t) and reinfore-ment P (t) and hooses to exeute an ation A. To be able to learn and reasonabout the environment, A has internal states denoted by S that an representmemory of previous interations, urrent beliefs, motivations, intentions et. A-tions A � U denote the ation possibilities of the animat. For our purposesseparated from the internal state, we de�ne a state model MS and a preditivemodel MP . The state model MS represents urrent environmental harateris-tis the agent believes in | an impliit probability distribution over all possibleenvironmental states X . The preditive modelMP spei�es how the state modelhanges, possibly dependent on ations. Thus, it desribes an impliit and par-tially ation-dependent probability distribution of future environmental states.Finally, � denotes the behavioral poliy of the animat, that is, how the animatdeides on what to do, or whih ation to exeute. The poliy might depend onurrent sensory input, on preditions generated by the preditive model, on thestate model, and on the internal state.Learning an be inorporated in the animat by allowing the modi�ation ofthe omponents over time. The hange of its internal state ould, for example,



reet the gathering of memory or the hange of moods. The state model ould bemodi�ed by generalizing over, for example, equally relevant sensory input. Thepreditive model ould learn and adapt probabilities of possible state transitionsas well as generalize over e�ets and onditions.This rather informal agent framework suÆes for our purposes of distinguish-ing between di�erent lasses of antiipatory behavior in animats.3.3 Distintions of Antiipatory BehaviorWithin the animat framework above, we an infer that the preditive modelMP plays a major role in antiipatory animats. However, in the broader senseof antiipatory behavior also animats without suh a model might be termedantiipatory in that their behavioral program is onstruted in antiipation ofpossible environmental hallenges. We term this �rst lass of antiipations im-pliitly antiipatory. The other three lasses utilize some kind of predition toinuene behavior. We distinguish between payo� antiipations, sensory anti-ipations, and state antiipations. All four types of antiipatory behavior aredisussed in further detail below.Impliitly Antiipatory Animats The �rst animat-type is the one in whihno preditions whatsoever are made about the future that might inuene theanimat's behavioral deision making. Sensory input, possibly ombined withinternal state information, is diretly mapped onto an ation deision. The pre-ditive model of the animat MP is empty or does not inuene behavioral de-ision making in any way. Moreover, there is no ation omparison, estimationof ation-bene�t, or any other type of predition that might inuene the be-havioral deision. However, impliit antiipations are inluded in the behavioralprogram of the animat. The basi struture of an impliit antiipatory meha-nism is shown in Figure 1.
Fig. 1. Impliit antiipatory behavior does not rely on any expliit knowledge aboutpossible future states. The behavior is antiipatory in that the behavioral arhitetureis predited to be e�etive. For example, a geneti ode is impliitly predited (byevolution) to result in suessful survival and reprodution.



In nature, even if a life-form behaves purely reatively, it has still impliitantiipatory information in its geneti ode in that the behavioral programs inthe ode are (impliitly) antiipated to work in the o�spring. Evolution is theimpliit antiipatory learning mehanism that imprints impliit antiipations inthe genes. Similarly, well-designed impliitly antiipatory animats, albeit with-out any predition that might inuene behavior, have impliit antiipatory in-formation in the struture and interation of algorithm, sensors, and atuators.The designer has inluded impliit antiipations of environmental hallenges andbehavioral onsequenes in the ontroller of the animat.It is interesting to note that this rather broad understanding of the term \an-tiipation" basially lassi�es any form of life in this world as either impliitlyantiipatory or more expliitly antiipatory. Moreover, any somewhat suessfulanimat program an be lassi�ed as impliitly antiipatory sine its programmedbehavioral biases are suessful in the addressed problems. Similarly, any mean-ingful learning mehanism works beause it supposes that future experiene willbe somewhat similar to experiene in the past and onsequently biases its learn-ing mehanisms on experiene in the past. Thus, any meaningful learning andbehavior is impliitly antiipatory in that it antiipates that past knowledge andexperiene will be useful in the future. It is neessary to understand the di�er-ene between suh impliitly antiipatory animats and animats in whih expliitfuture representations inuene behavior.Payo� Antiipations If an animat onsiders preditions of the possible payo�of di�erent ations to deide on whih ation to exeute, it may be termed payo�antiipatory. In these animats, preditions estimate the bene�t of eah possibleation and bias ation deision making aordingly. No state preditions inu-ene ation deision making. A payo� antiipatory mehanism is shematized inFigure 2.
Fig. 2. Sensory antiipatory behavior inuenes sensory proessing due to sensory pre-ditions, expetations, or goal-dependent relevane measures.A partiular example for payo� antiipations is diret (or model-free) rein-forement learning (RL). Hereby, payo� is estimated with respet to the urrentbehavioral strategy or in terms of possible ations. The evaluation of the es-



timate auses the alternation of behavior whih again ause the alternation ofthe payo� estimates. It an be distinguished between on-poliy RL algorithms,suh as the SARSA algorithm [42, 52℄, and o�-poliy RL algorithms, suh asQ-learning [65, 52℄ or reent learning lassi�er systems suh as XCS [67℄.Sensorial Antiipations While in payo� antiipations preditions are re-strited to payo�, in sensory antiipations preditions are unrestrited. How-ever, sensory antiipations do not inuene the behavior of an animat diretlybut sensory proessing is inuened. The predition of future states and thus thepredition of future stimuli inuenes stimulus proessing. To be able to formpreditions, the animat must use a (not neessarily omplete) preditive modelMP of its environment (see Setion 3.2). Expeted sensory input might be pro-essed faster than unexpeted input or unexpeted input with ertain properties(for example possible threat) might be reated to faster. A sensory antiipatorymehanism is skethed in Figure 3.
Fig. 3. Sensory antiipatory behavior inuenes, or predisposes, sensory proessing dueto future preditions, expetations, or intentions.Sensory antiipations strongly relate to preparatory attention in psyhology[31, 38℄ in whih top-down proesses suh as task-related expetations inuenesensory proessing. Behavior is not diretly inuened but sensory (pre-)pro-essing is. In other words, sensory antiipatory behavior results in a predispo-sition of proessing sensory input. For example, the agent may beome moresuseptible to spei� sensory input and more ignorant to other sensory input.The biased sensory proessing might then (indiretly) inuene atual behav-ior. Also learning might be a�eted by suh a bias as suggested in psyhologialstudies on learning [22, 48℄.State Antiipations Maybe the most interesting group of antiipations is theone in whih animat behavior is inuened by expliit future state representa-tions. As in sensory antiipations, a preditive model MP must be available tothe animat or it must be learned by the animat. In di�erene to sensory antiipa-tions, however, state antiipations diretly inuene urrent behavioral deisionmaking. Expliit antiipatory behavior is shematized in �gure 4. The essential



property is that predition(s) about, or simply representations of, future state(s)inuene atual ation deision.
Fig. 4. Expliit antiipations inuene atual ation deision making due to futurepreditions, expetations, or intentions.The simplest kind of expliit antiipatory animat would be an animat whihis provided with an expliit preditive model of its environment. The modelould be used diretly to pursue atual goals by the means of expliit planningmehanisms suh as diverse searh methods or dynami programming [5℄. Themost extreme ases of suh high-level planning approahes an be found in earlyarti�ial intelligene work suh as the general problem solver [36℄ or the STRIPSlanguage [13℄. Nowadays, somewhat related approahes try to fous on loalmehanisms that extrat only relevant environmental information.In RL, for example, the dynami programming idea was modi�ed yieldingindiret (or model-based) RL animats. These animats learn an expliit preditivemodel of the environment. Deisions are based on the preditions of all possiblebehavioral onsequenes and essentially the utility of the predited results. Thus,expliit representations of future states determine behavior.Further distintions in state antiipatory animats are evident in the strutureand ompleteness of the model representation, the learning and generalizationmehanisms that may hange the model over time, and the mehanisms thatexploit the preditive model knowledge to adapt behavior. The struture of thepreditive model an be represented by rules, by a probabilisti network, in theform of hierarhies and so forth. The model representation an be based oninternal model states MS(t) or rather diretly on urrent sensory input y(t).State information in the sensory input an provide global state information orrather loal state information dependent on the animat's urrent position in theenvironment. Learning and generalization mehanisms give rise to further ru-ial di�erenes in the availability, the eÆieny, and the utility of the preditivemodel. Finally, the bias of the behavioral omponent results in di�erent antii-patory behavior mehanisms. For example, the number of steps that the animatan look into the future is a ruial measure as proposed in [45℄. Moreover,antiipatory proesses might only take plae in the event of atual behavioralexeution or the proesses may be involved in adapting behavior o�ine. Proper



distintions between these di�erent faets of state antiipatory behavior may bedeveloped in future researh.With a proper de�nition of animats and four fundamental lasses of an-tiipatory behavior in hand, we now provide a ase study of typial existingantiipatory animats.4 Payo� Antiipatory AnimatsThis setion introdues several ommon payo� antiipatory animats. As de�nedabove, these animats do not represent or learn a preditive model MP of theirenvironment but a knowledge base assigns values to ations based on whihation deisions are made.4.1 Model-Free Reinforement LearningThe reinforement learning framework [27, 52℄ onsiders adaptive agents involvedin a sensory-motor loop ating upon a MDP as introdued above (extensions toPOMDPs an be found for example in [9℄). The task of the agents is to learnan optimal poliy, i.e., how to at in every situation in order to maximize theumulative reward over the long run.In model-free RL, or diret reinforement learning, the animat learns a be-havioral poliy without learning an expliit preditive model. The most ommonform of diret reinforement learning is to learn utility values for all possiblestate-ation ombinations in the MDP. The most ommon approah in this re-spet is the Q-learning approah introdued in [65℄. Q-learning has the additionaladvantage that it is poliy independent. That is, as long as the behavioral poliyassures that all possible state ation transitions are visited in�nitely often overthe long run, Q-learning is guaranteed to generate an optimal poliy.Model-free RL agents are learly payo� antiipatory animats. There is noexpliit preditive model; however, the learned reinforement values estimateation-payo�. Thus, although the animat does not expliitly learn a representa-tion with whih it knows the atual sensory onsequenes of an ation, it anompare available ation hoies based on the payo� preditions and thus atpayo� antiipatory.Model-free RL in its purest form usually stores all possible state-ation om-binations in tabular form. Also, states are usually haraterized by unique iden-ti�ers rather than by sensory inputs that allow the identi�ation of states. Thisungeneralized exhaustive state representation prevents RL to sale-up to largerproblems. Several approahes exist that try to overome the urse of dimension-ality by funtion approximation tehniques (f. [52℄), hierarhial approahes (f.[54, 4℄), or online generalization mehanisms. Approahes that generalize onlineover sensory inputs (for example in the form of a feature vetor) are introduedin the following.



4.2 Learning Classi�er SystemsLearning Classi�er Systems (LCSs) have often been overlooked in the researharea of RL due to the many interating mehanisms in these systems. However, intheir purest form, LCSs an be haraterized as RL systems that generalize onlineover sensory input. This generalization mehanism leads to several additionalproblems espeially with respet to a proper propagation of RL values over thewhole state ation spae.The �rst implementation of an LCS, alled CS1, an be found in [25℄. Hol-land's goal was to propose a model of a ognitive system that is able to learnusing both reinforement learning proesses and geneti algorithms [23, 20℄. The�rst systems, however, were rather ompliated and laked eÆieny.Reinforement values in LCSs are stored in a set (the population) ofondition-ation rules (the lassi�ers). The onditions speify a subset of pos-sible sensations in whih the lassi�er is appliable thus giving rise to fousingmehanisms and attentional mehanisms often over-looked in RL. The learningmehanism of the population of lassi�ers and the lassi�er struture is usuallyaomplished by the means of a geneti algorithm (GA). Lanzi provides an in-sightful omparison between RL and learning lassi�er systems [33℄. It appearsfrom this perspetive that a LCS is a rule-based reinforement learning systemendowed with the apability to generalize what it learns.Thus, also LCSs an be lassi�ed as payo�-antiipatory animats. The gen-eralization over the pereptions promises faster adaptation in dynami environ-ments. Moreover, the poliy representation may be more ompat espeially inenvironments in whih a lot of sensations are available but only a subset of thesensations is task relevant.Reently, Wilson implemented several improvements in the LCS model. Hemodi�ed the traditional Buket Brigade algorithm [26℄ to resemble the Q-learning mehanism propagating Q-values over the population of lassi�ers [66,67℄. Moreover, Wilson drastially simpli�ed the LCS model [66℄. Then, he mod-i�ed Holland's original strength-based riterion for learning | the more a rulereeives reward (on average), the more �t it is [23, 24, 6℄ | by a new riterionrelying on the auray of the reward predition of eah rule [67℄. This lastmodi�ation gave rise to the most ommonly used LCS today, XCS.5 Antiipations Based on Preditive ModelsWhile the model-free reinforement learning approah as well as LCSs do nothave or use a preditive model representation, the agent arhitetures in thissetion all learn or have a preditive model MP and use this model to yieldantiipatory behavior. Due to the usage of an expliit preditive model of theenvironment, all systems an be lassi�ed as either sensory antiipatory or stateantiipatory. Important di�erenes of the systems are outlined below.



5.1 Model-based Reinforement LearningThe dynamial arhiteture Dyna [53℄ learns a model of its environment in ad-dition to reinforement values (state values or Q-values). Several antiipatorymehanisms an be applied suh as biasing the deision maker toward the explo-ration of unknown/unseen regions or applying internal reinforement updates.Dyna is one of the �rst state antiipatory animat implementations. It usuallyforms an ungeneralized representation of its environment in tabular form but itis not neessarily restrited to suh a representation. Interesting enhanementsof Dyna have been undertaken optimizing the internal model-based RL proess[35, 40℄ or adopting the mehanism to a tile oding approah [30℄. The introdu-tion of Dyna was kept very general so that many of the subsequent mehanismsan be haraterized as Dyna mehanisms as well. Di�erenes an be found inthe learning mehanism of the preditive model, the sensory input provided, andthe behavioral poliy learning.5.2 Shema MehanismAn arhiteture similar to the Dyna arhiteture was published in [11℄. Theimplemented shema mehanism is loosely based on Piaget's proposed devel-opmental stages. The model in the shema mehanism is represented by rules.It is learned bottom-up by generating more speialized rules where neessary.Although no generalization mehanism applies, the resulting preditive model issomewhat more general than a tabular model. The deision maker is | amongother riteria | biased on the exploitation of the model to ahieve desired itemsin the environment. Similar to Dyna, the shema mehanism represents an ex-pliit antiipatory agent. However, the deision maker, the model learner, andthe preditive model representation MP have a di�erent struture.5.3 Expetany Model SRS/EWitkowski [70℄ approahes the same problem from a ognitive perspetive givingrise to his expetany model SRS/E. Similar to Dyna, the learned model is notgeneralized but represented by a set of rules. Generalization mehanisms are sug-gested but not tested. SRS/E inludes an additional sign list that stores all statesenountered so far. In ontrast to Dyna, reinforement is not propagated onlinebut is only propagated one a desired state is generated by a behavioral mod-ule. The propagation is aomplished using dynami programming tehniquesapplied to the learned preditive model and the sign list.5.4 Antiipatory Learning Classi�er SystemsSimilar to the shema mehanism and SRS/E, antiipatory learning lassi�ersystems (ALCSs) [50, 8, 19, 17℄ ontain an expliit predition omponent. Thepreditive model onsists of a set of rules (lassi�ers) whih are endowed witha so alled \e�et" part. The e�et part predits the next situation the agentwill enounter if the ation spei�ed by the rules is exeuted. The seond majorharateristi of ALCSs is that they generalize over sensory input.



ACS An antiipatory lassi�er system (ACS) was developed by Stolzmann [49,50℄ and was later extended to its urrent state of the art, ACS2 [8℄. ACS2 learnsa generalized model of its environment applying direted speialization as wellas geneti generalization mehanisms. It has been experimentally shown thatACS2 reliably learns a omplete, aurate, and ompat preditive model ofseveral typial MDP environments. Reinforement is propagated diretly insidethe preditive model resulting in a possible model aliasing problem [8℄. It wasshown that ACS2 mimis the psyhologial results of latent learning experimentsas well as outome devaluation experiments mentioned above by implementingadditional antiipatory mehanisms into the deision maker [50, 51, 8℄.YACS Yet Another Classi�er System (YACS) is another antiipatory learn-ing lassi�er system that forms a similar generalized model applying diretedspeialization as well as generalization mehanisms [17, 18℄. Similar to SRS/E,YACS keeps a list of all states enountered so far. Unlike SRS/E, reinforementupdates in the state list are done while interating with the environment mak-ing use of the urrent preditive model. Thus, YACS is similar to SRS/E but itevolves a more generalized preditive model and updates the state list online.MACS A more reent approah by [16℄ learns a di�erent rule-based represen-tation in whih rules are learned separately for the predition of eah sensoryattribute. Similar to YACS, MACS keeps a state list of all so far enounteredstates and updates reinforement learning in those states. The di�erent modelrepresentation is shown to allow further generalizations in maze problems.5.5 Arti�ial Neural Network Models of AntiipationAlso Arti�ial Neural Networks (ANN) an be used to learn the ontroller ofan agent. In aordane with the POMDP framework, the ontroller is providedwith some inputs from the sensors of the agent and must send some outputsto the atuators of the agent. Learning to ontrol the agent onsists in learningto assoiate the good set of outputs to any set of inputs that the agent mayexperiene.The most ommon way to perform suh learning with an ANN onsists inusing the bak-propagation algorithm. This algorithm onsists in omputing foreah set of inputs the errors on the outputs of the ontroller. With respet tothe omputed error, the weights of the onnetions in the network are modi�edso that the error will be smaller the next time the same inputs are enountered.The main drawbak of this algorithm is that one must be able to deide forany input what the orret output should be so as to ompute an error. Thelearning agent must be provided with a supervisor whih tells at eah time stepwhat the agent should have done. Bak-propagation is a supervised learningmethod. The problem with suh a method is that in most ontrol problems, theorret behavior is not known in advane. As a onsequene, it is diÆult tobuild a supervisor.



The solution to this problem onsists in relying on antiipation [55, 57℄. If therole of an ANN is to predit what the next input will be rather than to providean output, then the error signal is available: it onsists in the di�erene betweenwhat the ANN predited and what has atually happened. As a onsequene,learning to predit thanks to a bak-propagation algorithm is straight-forward.Baluja's Attention Mehanism Baluja and Pomerleau provide an interestingantiipatory implementation of visual attention in the form of a neural networkwith one hidden layer [2, 3℄. The mehanism is based on the ideas of visualattention modeling in [28℄. The system is for example able to learn to follow aline by the means of the network. Performane of the net is improved by addinganother output layer, onneted to the hidden layer, whih learns to preditsuessive sensory input. Sine this output layer is not used to update the weightsin the hidden layer, Baluja argues that onsequently the preditive output layeran only learn task-relevant preditions. The preditions of the output layerare used to modify the suessive input in that the strong di�erenes betweenpredition and real input are dereased assuming strong di�erenes to be taskirrelevant noise. Baluja shows that the neural net is able to utilize this imageattening to improve performane and essentially ignore spurious line markingsand other distrating noise. It is furthermore suggested that the arhitetureould also be used to detet unexpeted sensations faster possibly usable foranomaly detetion tasks.Baluja's system is a payo� antiipatory system. The system learns a pre-ditive model whih is based on pre-proessed information in the hidden units.The preditive model is ation-independent. Sensory antiipations are realized inthat the sensory input is modi�ed aording to the di�erene between preditedand atual input.Tani's Reurrent Neural Networks Tani published a reurrent neural net-work (RNN) approah implementing model-based learning and planning in thenetwork [55℄. The system learns a preditive model using the sensory informa-tion of the next situation as the supervision. Context units are added that feedbak the values of the urrent hidden units to additional input units. This re-urrene allows a ertain internal representation of time [12℄. In order to use theemerging preditive model suessfully, it is neessary that the RNN beomessituated in the environment | the RNN needs to identify its urrent situationin the environment by adjusting its reurrent inputs. One the model is learned,a navigation phase is initiated in whih the network is used to plan a path to aprovided goal.The most appealing result of this work is that the RNN is atually imple-mented in a real mobile robot. The implementation is shown to handle noisy, on-line disretized environments. Antiipatory behavior is implemented by a looka-head planning mehanism. The system is a state antiipatory system in whih thepreditive model is represented in a RNN. In ontrast to the approahes above,the RNN also evolves an impliit state model MS represented and updated by



the reurrent neural network inputs. This is the reason why the network has tobeome situated before planning is appliable. Tani shows that prediting thenext inputs orretly helps stabilizing the behavior of its agents and, more gen-erally, that using antiipations results in a bi-polarization of the behavior intotwo extreme modes: a very stable mode when everything is predited orretly,and a haoti mode when the preditions get wrong.In a further publiation [56℄, Tani uses a onstrutivist approah in whihseveral neural networks are ombined. The approah implements an attentionalmehanism that swithes between wall following and objet reognition. Similarto the winner-takes-all algorithm proposed in [28℄, Tani uses a winner-takes-allalgorithm to implement a visual attention mehanism. The algorithm ombinessensory information with model predition, thus pre-proessing sensory informa-tion due to preditions. The resulting ategorial output inuenes the deisionmaker that ontrols robot movement. Thus, the onstruted animat omprisessensory antiipatory mehanisms that inuene attentional mehanisms simi-lar to Baluja's visual attention mehanism but embedded in a bigger modularstruture.In [57℄, a �rst approah of a hierarhial strutured neural network suitableas a preditive model is published. While the lower level in the hierarhy learnsthe basi sensory-motor ow, the higher level learns to predit the swithing ofthe network in the lower level and thus a more higher level representation ofthe enountered environment. Antiipatory behavior was not shown within thesystem.5.6 Antiipations in a Multi-Agent ProblemA �rst approah that ombines low level reative behavior with high-level de-liberation an be found in [10℄. The animats in this framework are endowedwith a preditive model that predits behavior of the other, similar animats.Although the system does not apply any learning methods, it is a �rst approahof state antiipations in a multi-agent environment. It is shown that by anti-ipating the behavior of the other agents, behavior an be optimized ahievingooperative behavior. Davidsson's agent is a simple antiipatory agent that usesthe (restrited) preditive model of other agents to modify the otherwise reativedeision maker. Sine the deision maker is inuened by the preditive modelthe agents an be lassi�ed as non-learning state-antiipatory animats.6 DisussionAs an be seen in the above study of antiipatory systems, a lot of researh isstill needed to learly understand the utility of antiipations. This setion furtherdisusses di�erent aspets in antiipatory approahes.



6.1 Antiipating With or Without a ModelOne main advantage of model building animats with respet to model-free onesis that their model endows them with a planning apability. Having an internalpreditive model whih spei�es whih ation leads from what state to what otherstate permits the agent to plan its behavior \in its head". But planning does notneessarily mean that the agent atually searhes in its model a omplete pathfrom its urrent situation to its urrent goal. Indeed, that strategy su�ers froma ombinatorial explosion problem. It may rather mean that the agent updatesthe values of di�erent state model states (x 2 MS) without having to atuallymove in its environment. This is essentially done in dynami programming [5℄and it is adapted to the RL framework in the Dyna arhiteture [53, 52℄. Theinternal updates allow a faster onvergene of the learning algorithms due to thegeneral aeleration of value updates.These ideas have been re-used in most antiipatory rule-based learning sys-tems desribed above. Applying the same idea in the ontext of ANN, with themodel being implemented in the weights of reurrent onnetions in the network,would onsist in letting the weights of the reurrent onnetions evolve fasterthan the sensory-motor dynamis of the network. To our knowledge, though,this way to proeed has not been used in any antiipatory ANN animat, yet.Pros and Cons of Antiipatory Learning Classi�er Systems Having anexpliit preditive part in the rules of ALCSs permits a more direted use ofmore information from the agent's experiene to improve the rules with respetto lassial LCSs. Supervised learning methods an be applied. Thus, there isa tendeny in ALCSs to use heuristi searh methods rather than blind genetialgorithms to improve the rules.This use of heuristi searh methods results then in a muh faster onvergeneof antiipatory systems on problems where lassial LCSs are quite slow, but italso results in more ompliated systems, more diÆult to program, and also inless general systems.For example, XCS-like systems an be applied both to single-step problemssuh as Data Mining Problems [68℄ where the agent has to make only one deisionindependent from its previous deisions and to multi-step problems where theagent must run a sequene of ations to reah its goal [32℄. In ontrast, ALCSs areexpliitly devoted to multi-step problems, sine there must be a \next" situationafter eah ation deision from the agent.6.2 A Parallel Between Learning Thanks to Predition in ANN andin ALCSThe seond matter of disussion emerging from this overview is the parallel thatan be made in the way ANN and rule-based systems ombine preditions andlearning to build and generalize a model of the problem.We have seen that in Tani's system, the errors on preditions are bak-propagated through the RNN so as to update the weights of the onnetions.



This learning proess results in an improved ability to predit, thus in a betterpreditive model.The learning algorithms in the presented ALCSs rely on the same idea. Thepredition errors are represented by the fat that the preditions of a lassi�erare sometimes good and sometimes bad, in whih ase the lassi�er osillates(or is alled not reliable). In this ase, more spei� lassi�ers are generated bythe partiular speialization proess. Thus, the osillation of lassi�ers is at theheart of the model improvement proess.Speializing a lassi�er when it osillates is a way to use the error of thepredition so as to improve the model, exatly as it is done in the ontext ofANN.This way of learning is justi�ed by the fat that both systems inlude a a-paity of generalization in their models. Otherwise, it would be simpler just toinlude any new experiene in the antiipatory model without having to enom-pass a predition and orretion proess. The point is that the predition an begeneral and the orretion preserves this generality as muh as it an. Interest-ingly, however, generalization is not exatly of the same nature in ANN and inALCSs.As a onlusion, both lasses of systems exhibit a synergy between learning,predition, and generalization, learning being used to improve general predi-tions, but also preditions being at the heart of learning general features of theenvironment.6.3 Model Builders and non-Markov ProblemsAs explained in setion 3.1, a non-Markov problem is a problem in whih theurrent sensations of the animat are not always suÆient to hoose the bestation. In suh problems, the animat must inorporate an internal state modelrepresentation MS providing a further soure of information for hoosing thebest ation. The information in question generally omes from the more or lessimmediate past of the animat. An animat whih does not inorporate suh aninternal state model is said to be \reative". Reative animats annot behaveoptimally in non-Markov problems.In order to prevent misinterpretations, we must warn the reader about thefat that an internal state model di�ers from an internal preditive model. Infat, an internal preditive model alone does not enable the animat to behaveoptimally in a non-Markov problem. Rather than information about the imme-diate past of the animat, preditive models only provide information about the\atemporal" struture of the problem (that is, information about the possiblefuture). In partiular, if the animat has no means to disambiguate aliased per-eptions, it will build an aliased model. Thus an animat an be both reative,that is, unable to behave optimally in non-Markov environments, and expliitlyantiipatory, that is, able to build a preditive model of this environment andbias its ation deisions on future preditions, without solving the non-Markovproblem.



7 ConlusionThis overview of internal models and antiipatory behavior showed that a lotof future researh is needed to understand exatly when whih antiipationsare useful or sometimes even mandatory in an environment to yield ompetentadaptive behavior. Although psyhologial researh proves that antiipatory be-havior takes plae in at least higher animals, a lear understanding of the how,the when, and the whih is not available. Thus, one essential diretion of futureresearh is to identify environmental harateristis in whih distint antiipa-tory mehanisms are helpful or neessary.Several more onrete researh diretions an be suggested. (1) It seemsimportant to quantify when antiipatory behavior an be adapted faster thanstimulus-response behavior. For example, in a dynami environment some pre-ditive knowledge may be assumed to be stable so that behavior an be adaptedby the means of this knowledge. (2) It appears interesting to investigate howto balane reative and antiipatory mehanisms and how to allow a properinteration. A proper arhiteture of motivations and emotions might play animportant role in this respet. (3) Adaptive mehanisms that are initially antii-patory and then beome short iruited reative demand further researh e�ort.For example, initial hard pratie of playing an instrument beomes more andmore automati and is eventually only guided by a orret feeling of its fun-tioning. Can we reate a similar adaptive motor-ontrol mehanism? (4) Thefuntioning of attentional proesses inuened by sensory antiipations needsto be investigated further. When are suh attentional mehanisms bene�ial,when does the drawbak due to inattentional blindness e�ets overshadow thebene�ts? (5) The bene�t of simulating intentions and behavior of other animatsrequires further researh e�ort. Whih proesses are neessary to reate bene�-ial soial relationships? Whih mehanisms an result in mutual bene�t, whihmehanisms an ause unilateral bene�t?This small but broad list shows that future work in antiipatory learningsystems promises fruitful researh projets and new exiting insights in the �eldof adaptive behavior. We hope that our overview of urrent insights in antiipa-tory mehanisms and the available systems provide a basis for future researhe�orts. Moreover, we want to enourage the development of the distintions be-tween antiipatory behavior mehanisms. While impliit and payo� antiipatorymehanisms appear to be rather lear ut, sensory and state antiipatory behav-ior omprise many di�erent forms and mehanisms. Future researh will showwhih harateristis should be used to distinguish the di�erent mehanismsfurther.AknowledgmentsThe authors would like to thank Stewart Wilson, Joanna Bryson, and MarkWitkowski for useful omments on an earlier draft of this introdution.This work was funded by the German Researh Foundation (DFG) undergrant HO1301/4-3.
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