Evolution of neurocontrollers for complex systems: alternatives to

the incremental approach

Stephane Doncieux

Jean-Arcady Meyer

Animatlab - LIP6, France
http://animatlab.lip6.fr
{Stephane.Doncieux,Jean-Arcady.Meyer } Qlip6.fr

Abstract

Applications of neural networks to solve challenging
control problems still face important difficulties when
scalability issues are involved. Usually, such difficul-
ties are tackled according to an incremental approach
that consists in decomposing a given task into sim-
pler sub-tasks that may be separately solved. In this
article, we describe two alternatives to this approach
and demonstrate their efficiency on the control of a
simulated lenticular blimp, i.e., a complex dynamic
platform with five sensors and seven motors.

1 Introduction

Evolving neural networks is an approach that proved
to be efficient at controlling a variety of dynamic sys-
tems [7, 9, 4, 5]. Moreover, when a given system turns
out to be too complex for a controller to be directly
evolved, an incremental approach often leads to sat-
isfactory results. In this case, the overall task is de-
composed by a human designer into simpler ones for
which separate controllers are evolved and then re-
combined into a unique network. In particular, this
strategy worked on a Khepera robot [8] confronted
with a "survival" task decomposed into several sub-
tasks, like obstacle avoidance and battery recharge.
It also worked on a 6-legged animat [6] whose survival
depended upon its capacities to walk, to avoid obsta-
cles, and to follow an odour gradient. Nevertheless,
in many applications, there are no clues about how

to decompose the initial problem, or about how to re-
combine the partial solutions into a coherent whole.
As for the hopes that co-evolutionary approaches [3]
will help automating this process, they have yet to
materialize.

In this paper, we present two alternatives to this
incremental strategy, which also exploit available
knowledge, but avoid decomposing the initial prob-
lem. The first one consists in changing the building
blocks that evolution manipulates: instead of neurons
and connections, evolution deals with modules each
representing a given sub-network. The second one
consists in providing the evolutionary process with
clues about which connections are likely to be useful
in the final controller. In both cases, the knowledge
thus provided serves only to bootstrap evolution. The
corresponding information is only exploited to ori-
ent the search during the initial random generation.
Later on, it can be altered or forgotten under the
effects of genetic operators.

We implemented these tools in ModNet, a frame-
work dedicated to the evolution of neural networks
[1], and we used them to generate neural controllers
for a lenticular blimp, a complex dynamic platform
with five sensors and seven motors. Although this
research aims at controlling a real blimp, results pre-
sented in this paper are preliminary and call upon a
realistic simulation.

2 ModNet

In traditional approaches to the evolution of neural
networks, entities like neurons or connections are ma-
nipulated by the evolutionary algorithm in a way that
forbids passing to the next generation complex struc-
tures that were discovered and proved to be useful
in the current one. On the contrary, ModNet affords
this possibility to evolution because the units that are
manipulated are modules that describe sub-networks
whose structures are globally stable throughout the
course of evolution and that serve as building blocks
on which the evolutionary process may capitalize.
These modules may encapsulate some a priori knowl-
edge about the problem to be solved, or they may
emerge from the evolutionary process.

Every chromosome associated with ModNet is
made up of three components: a list of model-
modules, a list of modules and a list of links be-
tween modules (figure 1). The model-modules list
contains the description of each modules that can be
used in the final network. The list of modules makes
a connection between a module number and the cor-
responding model. This makes it possible to reuse a
single module structure in several different places in
the network. The last part of the chromosome is a
list of links that connect modules to each other or to
the network’s inputs and outputs.

Both mutation and crossover operators are used in
ModNet. Mutations may affect a model-module, by
changing its structure! or parameters?. Other muta-
tions may alter the structure of the network by ran-
domly changing either the list of modules or the list of
links. Crossovers exchange model-modules between
individuals.

Each model-module that is included in the model-
module list, either at initialization time or through
mutations during the course of evolution, is drawn
from a pool of modules that is initially provided by
the experimenter. This set of initial modules may be
chosen at random or it may integrate some knowl-
edge - stemming from an a priori engineer’s anal-

I This feature is not used in the results reported here.

2Every parameter characterizing the developed network -
like a connection weight or the slope of a transfer function - is
encoded in these model-modules.

ysis or from results of former experiments - which
is instantiated in module structures or in parame-
ter values. In particular, it is possible to specify
the structure of a module, i.e., which neuron is con-
nected with which neuron, but not the correspond-
ing connection weights. Likewise, it is possible to
specify these weights, or to simply specify the sign
of some specific connections within the structure. Be
that as it may, any such initial specification may be
later overcomed by mutations during successive gen-
erations: its sole purpose is to bootstrap the evolu-
tionary process.

Additional bootstrapping knowledge may be taken
into account in ModNet through the use of so-called
"connectivity patterns". Indeed, it is possible to a
priori specify how some modules could be connected
to each other or to the network’s inputs and out-
puts. Again, such initial patterns may be exploited
and propagated from generation to generation or they
may get lost.

3 Control of a lenticular blimp

The goal of this application is to keep a lenticular
blimp (figure 2) above a given visual target, at a given
altitude and as horizontal as possible.

Inputs to the evolved controllers are the pitch® and
roll* angles, the altitude and the relative position of
the target in the frame relative to the blimp®. The
outputs of the controllers are sent to the blimp’s seven
motors. Details about the simulation model and re-
sults concerning separate controls of the pitch, roll
and altitude are to be found in [2].

We performed three series of 30 evolutionary runs,
each involving a population of 100 individuals and
500 generations. These runs differed by the initial
pool of modules we provided (figure 3). The first
series of runs served as a control experiment: no con-
nectivity pattern was provided and the only module
included in the initial pool was made of a single in-
put, a single output and a direct connection linking

3rotation along the lateral axis of the blimp.

4rotation along the longitudinal axis of the blimp.

50n the real platform, this information is given by a visual
tracking system.

Model-module list

O

1 2 3 4 5

Module list
m1| m2| m3| m4| m5|m6|m7
sl 2l al1lsl4l2

Link list
ml->m3
m2->00
m3->0l
il->m4
m4->m7

ml->m2
m6—>02
m7->01
m4->m6
i0->m1

Figure 1: Left: An example of chromosome generated by ModNet. The chromosome is comprised of three
components: a list of model-modules, a list of modules and a list of links. Right: The corresponding decoded
neural network. Modules m3 and m4 are copies of the same model-module 1. Likewise, modules m2 and m7

are copies of model-module 2.

them. This module was called a P module, because
its output was proportional to its input, at least in
the linear domain of the transfer function. In the
second series, we included P modules - but with one
or two outputs - in the initial pool again, and we
provided a connectivity pattern to orient the search.
Such pattern reflected a priori engineering knowledge
about which sensor should be connected to which mo-
tor [1], as well as results of careful analyses of some
networks evolved during preliminary runs not men-
tioned herein. In the third series, the same connec-
tivity pattern was used again, but additional modules
with one or two outputs - respectively called D and
I modules -, which were designed to afford capacities
for both derivative and integral computations, were
added to the previous P modules in the initial pool.
The D modules could compute from an ongoing sig-
nal the difference between two successive time steps.
The I modules called upon an intermediate neuron
with a self-recurrent connection, a structure that is
capable of integrating a signal, provided the corre-
sponding connection weights are appropriately set.

The fitness function we used is the sum of two
terms:

Motor 7

Motor 3

Motor 1

Motor 6

Figure 2: The lenticular blimp and its seven motors.

>

nb
DOF ;cpor

Fx) = p(z) + (1 _ M)

The first term, p(x), measures the percentage of
the maximum evaluation time the blimp spent be-
fore overstepping the viability domain of the blimp
- which was set to +0.7 rad for pitch and roll val-
ues 8. The second term measures the performance of
the control as the average, on each degree of freedom

6The limits of the viability domain are defined by experts
and characterize values beyond which the blimp is considered
as no more controllable. No constraints were imposed to the
blimp’s altitude and position.

Generation Data wo CP | w CP | w CP and PID
20 Maximum | 100.775 | 100.815 100.745
Average 100.617 | 100.708 100.655
Minimum | 100.493 | 100.626 100.602
100 Maximum | 100.798 | 100.818 100.82
Average 100.674 | 100.757 100.693
Minimum | 100.529 | 100.645 100.608
500 Maximum | 100.809 | 100.824 100.873
Average 100.700 | 100.779 100.742
Minimum | 100.532 | 100.654 100.633

Table 1: Fitness values obtained in four series of experiments on the control of the blimp. Thirty runs were
made for each condition. “wo CP”: runs without a connectivity pattern, “w CP”: runs with a connectivity
pattern, “PID”: runs with Derivative and Integral modules.

3

Figure 3: Examples of P (top), I (middle) and D (bot-
tom) modules, with one or two outputs, that were
used to bootstrap the evolutionary runs.

and over the whole evaluation period, of the square
distance between actual and target positions. Target
values were set to 0 for the pitch and the roll, and
to a given value, likely to be changed over time, for

the altitude and the horizontal position. This term is
normalized in order to lie between 0 and 1 (we use a
constant of 20m to normalize the horizontal position
and a constant of 100m for the altitude). Thus, the
total fitness varies between 0 and 101. A value greater
than 100 means that the blimp did not overstep the
viability domain during the entire evaluation period,
and a value of 101 means that it always stayed at the
vertical of the target point meanwhile.

The results of the three series of runs are summa-
rized in Table 1) and exhibit statistically significant
(Kruskal-Wallis test, prob < 0.05) differences. Thus,
bootstrapping the evolutionary process with connec-
tivity patterns and dedicated modules seems to con-
stitute a valuable alternative to the incremental ap-
proach. Moreover, a closer look at the results reveals
important differences in the controlled behaviors ob-
tained in the three series. In particular, the best
controllers obtained with the control experiments (wo
CP) efficiently keep the pitch, the roll and the hori-
zontal position, but none of them is able to keep the
altitude as well. On the contrary, the best controllers
generated in the two other series of runs are able to
control all the DOFs together.

The most efficient controller obtained during these
experiments (figure 4) belongs to the third series (w
CP and PID) and generates the behavior reported on
figure 5. Interestingly, although I modules were pro-
vided in the initial pool, this controller doesn’t call

P module

— — — - Dmodule

S

\

1/‘ 031

Figure 4: Best neural network generated after 500 generations in a run of the third series (w CP and PID).
The functionalities of the corresponding modules are singularized and inner connection weights are given.

upon such modules and relies on P and D modules
only. This probably means that the functionalities
afforded by integral computations are somehow com-
pensated by the inner workings of the whole network,
or that such functionalities would be useful only for
bridging the gap between the fitness of this controller
and the maximum possible fitness.

Finally, the fact that the average fitness values
of the runs of the second series (w CP) is greater
than that of runs of the third series (w CP and PID)
suggests that bootstrapping the evolutionary process
with both connectivity patterns and dedicated mod-
ules may be advantageous - because better fitnesses
may occasionally be obtained - but at the risk of en-
larging too much the corresponding search space and
of slowing down evolution. In particular, if I mod-
ules are not mandatory, suppressing them from the
initial pool could help optimizing the experimental
setup. Additional and systematic experiments might

help clarify this point.

4 Conclusion

This article describes two alternatives to the incre-
mental approach to the neural control of complex dy-
namic systems. They both amount to bootstrap the
evolutionary process with some information about
the kind of neural network that seems appropriate
to solve the considered problem. Results that have
been obtained on a simulated lenticular blimp sug-
gest that these procedures may help automatically
designing controllers for systems with numerous sen-
sors and actuators. However additional experiments
are needed to better assess the generality of such con-
clusion.

20
8000 10000 12000 50 40 30

Figure 5: Behavior of the blimp controlled by the network of figure 4. Left: pitch and roll in radians (x axis
in 25 ms time steps). Middle: altitude in meters. Right: 2D plot of the horizontal trajectory. During the
evaluation period (25 sec), the coordinates of the visual target as well as the target altitude are changed in
respectively one (at the 5000th time step) and three occasions (at the 2500th, 5000th and 7500th time step).
Meanwhile, the wind direction is changed several times, hence the observed oscillations around equilibrium
values.

References

[1]

2]

3]

[4]

[5]

S. Doncieux. Evolution de Controleurs Neuronauz
pour Animats Volants : Méthodologie et Applica-
tions. PhD thesis, Université Paris 6, 2003.

S. Doncieux and J.-A. Meyer. Evolving neu-
ral networks for the control of a lenticular
blimp. In G. R. Raidl et al., editor, Appli-
cations of Evolutionary Computing, EvoWork-
shops2003: FEvoBIO, EvoCOP, FEvolASP, Evo-
MUSART, FvoROB, EvoSTIM. Springer Verlag,
2003.

D. Floreano, S. Nolfi, and F. Mondada. Com-
petitive co-evolutionary robotics: From theory to
practice. In R. Pfeifer, B. Blumberg, J.-A. Meyer,
and S. W. Wilson, editors, From Animals to Ani-
mats: Proceedings of the Fifth International Con-
ference on Simulation of Adaptive Behavior. MIT
Press, 1998.

F. Fogelman-Soulie and P. Gallinari, editors. In-
dustrial Applications of Neural Networks. World
Scientific Publishing Co, 1998.

Y. H. Kim and F. L. Lewis. High-Level Feedback
Control with Neural Networks. World Scientific,
1998.

(6]

7]

8]

[9]

J. Kodjabachian and J.-A. Meyer. Evolution
and development of neural networks control-
ling locomotion, gradient-following, and obstacle-
avoidance in artificial insects. IEEE Transactions
on Neural Networks, 9:796-812, 1997.

Sutton Miller and Werbos, editors. Neural Net-
works for Control. MIT Press, 1990.

J. Urzelai, D. Floreano, M. Dorigo, and
M. Colombetti. Incremental robot shaping. Con-
nection Science Journal, 10(384):341-360, 1998.

A. M. S. Zalzala. Neural Networks for Robotic
Control: Theory and Applications. Ellis Horwood,
1996.

