Evolving Modular Neural Networks

to Solve Challenging Control Problems

Stephane Doncieux

Jean-Arcady Meyer

Animatlab - LIP6, France
http://animatlab.lip6.fr
{Stephane.Doncieux,Jean-Arcady.Meyer } Qlip6.fr

Abstract

This article describes ModNet, a framework de-
voted to the evolution of modular neural con-
trollers that affords possibilities of bootstrapping
the search for efficient solutions to challenging
problems. Initial knowledge may be provided
either as modules assigned to specific computa-
tions, or as an overall connectivity pattern de-
scribing how modules could be connected to each
other or to the controller’s inputs and outputs.
These possibilities are used to automatically de-
sign neural networks that control respectively
two complex dynamic systems: a cartpole and
a lenticular blimp.

Introduction

Using artificial evolution to automatically gen-
erate neural networks [Meyer, 1998] has proved
to be a promising approach to the control of
complex dynamic systems like finless rockets
[Gomez and Miikkulainen, 2003] or a variety of
rolling, walking, swimming and flying robots
[Meyer et al., 2002]. But this evolution of neu-
ral controllers is still confronted with difficulties,
especially when the corresponding networks must
include sub-structures dedicated to specific com-
putations or when they must be connected to
numerous inputs and outputs. In the former
case, when such a sub-structure is discovered by
chance, it may well soon get lost due to the nor-
mal action of genetic operators like mutations or
crossover. In the latter case, no interesting solu-
tion may ever be discovered because the explo-
ration space is simply too large. This article pro-
poses a solution to both these issues, through the
management of modules that implement useful
capacities - either because they have been specif-

ically designed by a human, or because they have
been discovered automatically by the evolution-
ary process itself. These modules are capable
both of being propagated through successive gen-
erations and of efficiently bootstrapping the ex-
ploratory algorithm. This is possible thanks to
the use of a dedicated framework, ModNet, which
will first be described in this paper and then put
to work in two non-trivial applications where neu-
ral networks are used to control respectively a
cart-pole and a blimp.

1 ModNet

ModNet is a framework that calls upon modu-
lar encoding, thus making it possible to gener-
ate neural networks that are collections of mod-
ules. In traditional approaches to the evolution
of neural networks, the elementary units that are
manipulated are either the neuron or the connec-
tion. Likewise, traditional approaches to mod-
ularity usually consist in evolving a single neu-
ral network that is replicated to produce symme-
tries [Kodjabachian and Meyer, 1998] or in let-
ting evolution decide how predesigned modules
may compete for the control of a given system
[Nolfi, 1997]. In ModNet, the units that are ma-
nipulated by evolution are modules that describe
sub-networks whose structures are globally sta-
ble throughout the course of evolution and that
serve as building blocks on which the evolution-
ary process may capitalize. These modules may
encapsulate some a priori knowledge about the
problem to be solved, or they may emerge from
the evolutionary process.

1.1 The chromosome

Every chromosome associated with ModNet is
made up of three components: a list of model-

modules, a list of modules and a list of links be-
tween modules (Figure 1).

The list of model-modules specifies which mod-
ules, among a list initially provided by the ex-
perimenter, may be included in a given chromo-
some to generate the network. Each such model-
module contains a full description of the sub-
network it represents, i.e., it describes its struc-
ture and specifies all the parameters necessary to
its functioning, like connection weights, slopes of
transfer functions, or time constants.

The list of modules specifies which modules,
among the list of model-modules, are ultimately
incorporated into the developed neural network.
Thus, a given module may appear several times
within the same controller. This feature of Mod-
Net makes it possible to significantly reduce the
amount of information necessary for the descrip-
tion of the final network. It also affords the pos-
sibility of simply coding symmetries because the
same input may be linked to different outputs
through identical modules, as shown below.

The list of links specifies how modules are in-
terconnected in a given network. A link between
modules does not correspond to a connection be-
tween neurons. Instead, it associates a network’s
input or a module’s output with an input of an-
other module or with an output of the network.
This association entails the fusion of both ele-
ments involved. For example, because a link asso-
ciates the output of module 1 to the input of mod-
ule 2, the output neuron of module 1 is merged
with the input neuron of module 2 in the network
of Figure 1.

1.2 Genetic operators

The mutation operator may change each compo-
nent of a chromosome. In particular, it may mod-
ify the parameters of a given module which, in
the applications described below, are connection
weights only. Each of these parameters is rep-
resented by a string of eight bits using a binary
encoding. It may be mutated with a 0.1 mutation
rate. Likewise, only traditional artificial neurons
with sigmoid transfer functions are used here.

Structural mutations may also randomly add
or delete elements in each of a chromosome’s lists.
Beside the insertion of new model-modules in the
model-module list, mutations may also insert or
suppress modules in the network by modifying
the other two lists.

Crossover operators are difficult to define and
manage with neural network encodings. They

are often not used at all, especially when di-
rect encodings are concerned [Pasemann, 1997,
Yao and Liu, 1997]. In ModNet, the crossover
operator exchanges model-modules between chro-
mosomes with a probability of 0.6. Thus, an ef-
ficient sub-structure can easily be propagated to
new individuals because it will be manipulated
as a non-breakable building block. Furthermore,
after a crossover, an individual may benefit from
efficient modules transmitted by each of its par-
ents.

1.3 ModNet’s bootstrapping

Each model-module that is included to the model-
module list, either at initialization or through mu-
tations over the course of evolution, is derived
from a pool of modules initially provided by the
experimenter. This set of initial modules may
be chosen randomly, or it may integrate some
knowledge - stemming from an a priori engineer’s
analysis or from results of previous experiments
- which is instantiated in module structures or
in parameter values. In particular, it is possible
to specify the structure of a module, i.e., which
neuron is connected with which other neuron, but
not the corresponding connection weights. Like-
wise, it is possible to specify these weights, or to
simply specify the sign of some specific connec-
tions within the structure. Be that as it may, any
such initial specification may be later overridden
by mutations over successive generations: its sole
purpose is to bootstrap the evolutionary process.

Additional bootstrapping knowledge may be
taken into account in ModNet through the use
of so-called "connectivity patterns". Indeed, it
is possible to specify a priori how some modules
could be connected to each other or to the net-
work’s inputs and outputs. Again, such initial
patterns may be exploited and propagated from
generation to generation or they may get lost.

2 Applications

To illustrate the properties of ModNet, we ap-
plied it to two different and challenging control
problems. The first concerns the cartpole, a clas-
sical benchmark in control [Wieland, 1991]. The
second one deals with a lenticular blimp equipped
with five sensors and seven motors.

Model-module list

1 2 3 4 5

Module list
m1| m2| m3| m4| m5| mé|m7
3l2l1l1lslal2

Link list

ml->m3 ml->m2
m2->00 m6->02
m3->01 m7->0l
il->m4 m4->m6
m4->m7 i0->ml

Figure 1: Left: An example of chromosome generated by ModNet. The chromosome is comprised of three
components: a list of model-modules, a list of modules and a list of links. Right: The corresponding
decoded neural network. Modules m3 and m4 are copies of the same model-module 1. Likewise, modules

m2 and m7 are copies of model-module 2.

2.1 The Cartpole

The cartpole consists of a pole mounted on a cart
in such a way that the pole can swing in a ver-
tical plane. To swing and to balance the pole,
the cart must be pushed back and forth on a rail.
Starting from an arbitrary initial position of both
the pole and the cart, the goal of the control is
to apply a sequence of forces of constrained mag-
nitude to the cart such that the system remains
as close as possible to the upright position and
to the centre of the rail. We provided the con-
trollers with the instantaneous deviations of the
pole’s angle and the cart’s position with respect
to their target values. Although the stabilization
of the cartpole requires the derivatives of these
values, we did not provide this information to the
network, which accordingly had to approximate
it in order to solve the problem.

We performed two series of experiments that
differed only in the initial pool of modules we
provided. In the first series, the initial pool con-
tained a single module with a single input and
output, and with a direct connection linking the
two. This constituted a control experiment, as
it closely ressembled a direct encoding approach.
In the second series of experiments we provided
a single module also with a single input and out-
put, but we did not specify its structure and let
the evolutionary process discover it.

The fitness function we used is the sum of two
terms:

_ Et(di(w,t)g))

The first term, p(x), measures the percentage of
the maximum evaluation time the cartpole spent
before going out of the limiting boundaries we
defined (£0.2 rad for the angle of the pole and
+2m for the position of the cart). The second
term measures the performance of the control, as
the average, on each of the degrees of freedom and
over the evaluation period, of the square distance
between the actual and the target positions (an-
gle=0 and position=0). This term has been nor-
malized, as to lie between 0 and 1. Thus, the total
fitness varied between 0 and 101. A value greater
than 100 means that the cartpole did not overstep
the imposed boundaries during the whole experi-
ment, and a value of 101 means that it stayed at
its equilibrium point throughout the entire eval-
uation.

The experiments that call upon a module with
an unspecified structure are much more success-
ful than the others: eight runs of the control ex-
periments failed to keep the cartpole inside the
desired boundaries during the whole evaluation,
whereas all 20 experiments of the second series
succeeded (Table 1). Furthermore, turns out
that, although the best networks generated dur-
ing control runs are able to maintain the cartpole
within the assigned boundaries, they do not suc-
ceed in bringing it back to the equilibrium point.
With such controllers, the cartpole keeps oscil-
lating with a constant amplitude, which implies
that the underlying neural networks do not com-
pute any derivative'. In the second series of ex-
periments, the generated controllers are able to

ISimilar results have been
[Pasemann, 1997].

reported in

Generation Control experiments Unspecified structure
min | median | max | converged min | median | max | converged
20 7,72 | 45,46 | 100,79 4 81,18 88,18 | 100,85 8
100 8,69 | 84,56 | 100,81 7 84,50 | 100,81 | 100,86 16
500 9,11 | 89,98 | 100,81 9 100,70 | 100,84 | 100,94 20
1000 9,11 | 100,64 | 100,81 12 100,70 | 100,84 | 100,94 20
2000 9,11 | 100,65 | 100,82 12 100,79 | 100,86 | 100,94 20

Table 1: Fitness values obtained in two series of experiments on the control of the cartpole. Twenty runs
were performed in each condition. “converged” represents the number of experiments for which the best

fitness exceeds 100.

drive the cartpole quickly back to its equilibrium
point (Figure 2) thus implying that the underly-
ing neural networks did succeed in computing a
derivative. The interesting point is that this func-
tionality is implemented within a single module
(Figure 3) and doesn’t result from the concate-
nation of several modules. As modules can be
exchanged between chromosomes, as soon as one
has been generated that computes a derivative, it
can quickly propagate to new individuals thanks
to the crossover operator. This wouldn’t be possi-
ble should the corresponding functionality be dis-
tributed among several modules.

Figure 2: Behavior of the cartpole controlled by
the network of Figure 3. The angle, in radians, is
represented on the left, and the position, in me-
ters, is represented on the right. To check the ro-
bustness of the controller, random disturbances of
the pole’s angle and the cart’s position are evenly
applied.

2.2 The lenticular blimp

The goal of this application is to keep a lenticular
blimp (Figure 4) above a given visual target, at a
given altitude and as horizontal as possible. This
work is part of a project that aims at controlling
a real platform, but the results presented here are
preliminary and only follow from simulation.

Inputs to the evolved controllers are the pitch?
and roll® angles, the altitude and the relative po-
sition of the target in the frame relative to the
blimp*. The outputs of the controllers are sent
to the blimp’s seven motors. Details about the
simulation model and results concerning the sep-
arate control of the pitch, roll and altitude are to
be found in [Doncieux and Meyer, 2003].

As in the case of the cartpole, we performed
several series of evolutionary runs that differed
in the initial pool of modules we provided (Fig-
ure 5). In the first two series, the initial pool
contained three modules of fixed structure, di-
rectly connecting one input to one or two out-
puts. Additional modules were provided to the
initial pools of other two series in order to afford
capacities for both derivative or integral compu-
tations. The design of the simplest derivative
module was inspired by the results of the cart-
pole, as it computed from an ongoing signal the
difference between two successive time steps. Two
other derivative modules were endowed with two
outputs (identical or opposite). As to integral
modules, they called upon an intermediate neu-
ron with a self-recurrent connection, a structure
that is capable of integrating a signal, provided
the corresponding connection weights are set ap-
propriately®. Like the others, these modules were
endowed with one or two outputs. Moreover, in
one of these two series, the signs of given con-
nections within some modules were initially set
to a priori rational values in order to narrow the
search space. For instance, recurrent connections
of integral modules were initially positive, while
two connections were initially positive and the

2rotation along the lateral axis of the blimp.

Srotation along the longitudinal axis of the blimp.

40n the real platform, this information is given by a
visual tracking system.

5This is true only in the linear domain of the transfer
function.

Figure 3: Left: best network generated after 2000 generations in a run of the second series (one module
of unspecified structure in the initial pool). Inputs are the position z of the cart and the angle 6 of the
pole. Light connections concern the network’s inputs and outputs, heavy connections are internal. Right:
modules included in that network. The right module approximates the derivative of its input signal as it
computes the difference between the current input and its value at the preceding time step.

third initially negative, within derivative modules
with three connections. Finally, unlike the cart-
pole experiment, an additional connectivity pat-
tern (Figure 6) was afforded to each of the four
series, except the first. This pattern reflected a
priori engineering knowledge about which sensor
should be connected to which motor, as well as re-
sults of careful analyses of some networks evolved
during preliminary runs not mentioned herein.

Motor 7

Motor 3

!

Motor 6

Figure 4: The lenticular blimp and its seven mo-
tors.

The fitness function was the same as that used
for the cartpole, except that it was averaged over
the five DOFs of the blimp. We defined bound-
aries of £0.7 rad for the pitch and the roll, +20
m for the horizontal position and 100 m for the
altitude.

Although the differences are not considerable
between the best fitness attained in each series
(Table 2), they correspond to notable differences
in behavior. None of the controllers generated in

P Module | Module D Module

/

¢

Figure 5: Proportional (P), Integrate (I) and
Derivate (D) module. To these modules with one
outputs, we have added modules with two out-
puts (identical or opposite).

the first series are able to control all the DOFs.
The best individuals efficiently keep the pitch, the
roll and the horizontal position, but none of them
are able to maintain the altitude as well.

In experiments exploiting an initial connectiv-
ity pattern, all the controllers generated were able
to control each of the DOFs. Moreover, providing
additional knowledge such as module structures
and connection signs helped still better solutions
to be reached. The behavior generated by the
best evolved network is shown in Figure 7.

6Individuals that efficiently kept the pitch, the roll and
the altitude, but not the position, were also obtained in
some runs.

Generation Data wo CP | wCP | w CP and PID | w CP and PID 2
20 Maximum | 100,775 | 100,815 100,741 100,745
Average 100,630 | 100,701 100,690 100,650
100 Maximum | 100,792 | 100,817 100,826 100,82
Average 100,663 | 100,764 100,73 100,693
500 Maximum | 100,802 | 100,820 100,858 100,873
Average 100,708 | 100,778 100,77 100,759

Table 2: Fitness values obtained in four series of experiments on the control of the blimp. Ten runs were
made for each condition. “wo CP”: runs without a connectivity pattern, “w CP”: runs with a connectivity
pattern, “PID”: runs with Derivative and Integral modules, “PID2”: runs with Derivative and Integral

modules and with some connection signs set initially.

; @ @ @ \‘(3)

Figure 6: Connectivity pattern used in the blimp
experiment. This pattern suggests how modules
could be connected with each other or with the
blimp’s inputs and outputs. Neuron 3, for in-
stance, might be linked to neurons 10 and 11
through a single module (module (3)) that has
one input and two outputs. This pattern was in-
ferred from a priori knowledge about the func-
tioning of the blimp and from the study of con-
trollers generated in preliminary experiments.

3 Conclusion

ModNet is a new framework devoted to the evo-
lutionary generation of neural controllers that
makes it possible to discover useful modules ca-
pable of being propagated from one generation
to another or reused from one experiment to an-
other. This framework also provides the pos-
sibility of bootstrapping the evolutionary pro-
cess by taking domain-knowledge into account
through the use of predefined modules or con-
nectivity patterns. However, it should be em-
phasized that, as a result of the "tinkering" of
evolution [Jacob, 1977], these initial modules and
patterns do not necessarily survive in the final
neural networks. This characteristic notably af-
fords the possibility of automatically generating

solutions that may turn out to be more effi-
cient that those conceived by a human. Illus-
trations of such possibilities may be found in
[Doncieux and Meyer, 2003, Doncieux, 2003], for
example.

The ModNet framework has been successfully
used here to tackle two challenging control prob-
lems involving an increasing number of DOFs:
the control of a cartpole and that of a lenticular
blimp. Results concerning the control of a heli-
copter are described elsewhere [Doncieux, 2003].
In experiments with a 2-DOFs system like the
cartpole, evolution discovered "derivative” mod-
ules and converged much faster when it could
adapt the structure of the modules to be in-
cluded in the corresponding controllers. In the
experiments with a 5-DOFs platform like the
blimp, evolution never converged to efficient con-
trollers without specifying a connectivity pattern
suggesting which kind of neuronal organization
should be tried first. Moreover, offering it the
possibility of capitalizing on modules dedicated
to useful computations like derivatives and inte-
grals still helped improve the convergence.

These results suggest two things. The first is
that, according to present technology and prac-
tice at least, it is highly unlikely that efficient
neural networks capable of controlling dynamic
systems with many more than 5 DOFs will be
discovered automatically by artificial evolution
left alone. The second is that this rather pes-
simistic conclusion should probably be tempered
provided means for helping the evolutionary pro-
cess are discovered and applied. This paper de-
scribes some bootstrapping procedures that seem
to be useful in this respect. ModNet affords other
capabilities that have yet to be implemented, no-
tably that of regrouping several modules, belong-
ing to an efficient controller at a given generation,

rrrrrrrrrrrrrr

a L L . . a0 L L
0 2000 4000 6000 8000 10000 0 2000 4000

. . a0 . L . I L L .
6000 8000 10000 60 50 0 30 20 EQ) o 10 20

Figure 7: Behavior of the blimp controlled by the best network generated in a "w CP PID2". During
the evaluation period (25 sec), the coordinates of the visual target as well as the target altitude are
changed respectively once and twice. Meanwhile, the wind direction is changed several times, hence the
observed oscillations around equilibrium values. Left: pitch and roll in radians (x axis in 25 ms time
steps). Middle: altitude in meters. Right: 2D plot of the corresponding trajectory.

into some supra-module that could be passed on
as such to the next generation.

References

[Doncieux and Meyer, 2003] S. Doncieux and J.-
A. Meyer. Evolving neural networks for the
control of a lenticular blimp. In G. R. Raidl
et al., editor, Applications of FEvolution-
ary Computing, EvoWorkshops2003: EvoBIO,
EvoCOP, FEvolASP, EvoMUSART, EvoROB,
EvoSTIM. Springer Verlag, 2003.

[Doncieux, 2003] S. Doncieux. Evolution de Con-
troleurs Neuronaux pour Animats Volants :
Méthodologie et Applications. PhD thesis, Uni-
versité Paris 6, 2003.

[Gomez and Miikkulainen, 2003] F. J. Gomez
and R. Miikkulainen. Active guidance for a
finless rocket using neuroevolution. In Erick
Cantu-Paz et al., editor, Proceedings of the
Genetic Evolutionary Conference (GECCO03).
Springer, 2003.

[Jacob, 1977] F. Jacob. Evolution and tinkering.
Science, 196(4295):1161-1166, 1977.

[Kodjabachian and Meyer, 1998] J. Kod-
jabachian and J.-A. Meyer. Evolution
and development of modular control architec-
tures for 1-d locomotion in six-legged animats.
Connection Science, 10:211-237, 1998.

[Meyer et al., 2002] J.-A. Meyer, S. Doncieux,
D. Filliat, and A. Guillot. Biologically In-
spired Robot Behavior Engineering, chapter
Evolutionary Approaches to Neural Control of

Rolling, Walking, Swimming and Flying Ani-
mats or Robots. Springer Verlag, 2002.

[Meyer, 1998] J.-A. Meyer. Evolutionary ap-
proaches to neural control in mobile robots. In
Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics, San
Diego, 1998.

[Nolfi, 1997] S. Nolfi. Using emergent modularity
to develop control systems for mobile robots.
Adaptive Behavior, 5(3/4):343-363, 1997.

[Pasemann, 1997] F. Pasemann. Pole-balancing
with different evolved neurocontrollers. In
ICANN’97 - International Conference on Ar-
tificial Neural Networks, 1997.

[Wieland, 1991] A. Wieland. Evolving neural
network controllers for unstable systems. In
International Joint Conference on Neural Net-
works, 1991.

[Yao and Liu, 1997] X. Yao and Y. Liu. A new
evolutionary system for evolving artificial neu-
ral networks. IEEE Transactions on Neural
Networks, 8(3):694-713, 1997.

