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Abstract 

This paper describes the current state of 
advancement of the Psikharpax project, which aims 
at producing an artificial rat equipped with control 
architectures and mechanisms that reproduce as 
nearly as possible those that have been widely 
studied in the natural rat.  
The article first describes the navigation system of 
Psikharpax, which is inspired from the anatomy 
and physiology of dedicated structures in the rat’s 
brain, like the hippocampus and the postsubiculum. 
Then, it defines the animat's action-selection 
system, which aims at replicating other structures, 
the basal ganglia. It also explains how navigation 
and action-selection capacities have been combined 
thanks to the interconnection of two different loops 
in the basal ganglia: a ventral loop that selects the 
direction of motion, and a dorsal loop that selects 
other behaviors, like feeding or drinking. Finally, 
preliminary results on the implementation of 
learning mechanisms in these structures are also 
presented.  

 
 

1. Introduction 

As everybody knows, Psikharpax was the King of the 
Rats -- i.e., an intelligent and adaptive character -- in the 
Batrachomyomachy, a parody of Iliad written in Greek 
verses and (falsely) attributed to Homer. The name 
means “crumb robber”. It has been given to a modern 
project that brings together several academic partners -- 

the Laboratoire de Physiologie de la Perception et de 
l'Action (LPPA), in Paris; the Laboratoire d'Informatique 
et de Microélectronique (LIRMM), in Montpellier; the 
Center for Neuromimetic Systems of the Swiss Federal 
Institute of Technology, in Lausanne; the Adaptive 
Behaviour Research Group, in Sheffield; and the 
AnimatLab, in Paris -- as well as two private companies 
-- BEV.S.A. and Wany.S.A. It aims at equipping an 
artificial rat with a bio-inspired behavioral control 
architecture that should hopefully afford it some of the 
capacities of autonomy and adaptation that characterize 
the natural rat. In particular, Psikharpax will be endowed 
with internal needs - such as hunger, rest, or curiosity - 
which it will try to satisfy in order to survive within the 
challenging environment of a laboratory populated with 
humans and, possibly, other robots. To this end, it will 
sense and act on its environment in pursuit of its own 
goals and in the service of its needs, without help or 
interpretation from outside the system.  

Both fundamental and applied objectives are targeted by 
the project. In the first place, in the perspective of 
assessing the coherency and completeness of current 
knowledge about the rat’s nervous system and about the 
mechanisms that contribute to its adaptive capacities, 
this project aims at integrating these mechanisms in a 
robot that may be confronted with the same situations as 
those a real rat may encounter in a laboratory or in 
nature. Secondly, this project should also help in 
assessing the operational value of these adaptive 
capacities in the situations where an artificial agent has 
to “survive” or fulfil its mission, without human 
assistance, and in a more or less unpredictable 
environment. 



This paper is centred on the AnimatLab’s contribution to 
this project and will describe the software developments 
that will contribute to endowing Psikharpax with 
integrated capacities for navigation, action selection and 
learning. It will capitalize on both simulations and 
robotic implementations. In the latter case, only 
commercial robots or simple home-made machines are 
concerned. However, the paper will end with a short 
presentation of parallel developments that will produce 
the final robotic platform on which the control software 
will ultimately be implemented. 

 

2. General situation of the project 

It is clear from recent reviews (Bar-Cohen and Breazeal, 
2003; Holland and McFarland, 2001; Webb and Consi, 
2001) that, although many research efforts have been 
devoted to the design of biomimetic sensors or effectors 
for robots, relatively little work has been done on control 
system architectures, and what has been done has 
focused primarily on invertebrate models. Only a few 
groups are currently building biomimetic robot control 
architectures modelled on mammalian nervous systems 
and, moreover, their efforts are often centred on isolated 
behaviors, like locomotion in cats (Patla et al., 1985) or 
feeding in mice (Guillot and Meyer, 1987), which are 
not dealt with in an integrated perspective.  

 
To the best of our knowledge, the scope of the 
Psikharpax project is unique. First, it draws inspiration 
from a vertebrate instead of an invertebrate. Second, it 
aims at designing both biomimetic sensors and control 
architectures. Third, because it capitalizes on a dedicated 
robotic platform, it will integrate a variety of sensors, 
actuators and control systems making it possible to 
assess its adaptive capacities in much more challenging 
circumstances than those that characterize seemingly 
comparable biomimetic robotic approaches (Capi et al., 
2002; Gaussier et al., 2000; Hafner et al., 2003; Montes-
Gonzalez, 2000; Touretzky and Saksida, 1997) – a point 
to which we will return at the end of this paper. 
 
 
3. Experimental results 
 
To demonstrate the range of adaptive behaviors that a 
rodent-like control architecture affords a robot, we want 
to endow our artificial rat with the following capacities: 

• to explore its environment and build a cognitive 
map of it; 

• to use this map to localize both itself and places 
where rewards and punishments have been 
experienced; 

• to learn which behaviors and objects in the 
environment generate which emotions and fulfil 
which motivations; 

• to use its motivational system to select a current 
goal, like finding something to eat when it is 
hungry, or finding something to drink when it is 
thirsty; 

• to switch to another behavior when specific 
emotions, like fear, are generated by specific 
events; 

• to adjust its energy balance, notably by 
initiating rest periods. 

 
Basically, this plan calls on two major control systems, 
respectively responsible for Psikharpax’s navigation and 
action selection capacities. It also presupposes that these 
systems be integrated with various motivations and  
emotions in a coherent whole, and that it also exhibit 
appropriate learning mechanisms. The following 
paragraphs describe significant steps already made in 
these directions. 
 
3.1. Navigation 
 
Numerous simulation models – see Trullier et al. (1997) 
for a review – call upon so-called place cells and head 
direction cells to implement navigation systems that are 
inspired from the anatomy and physiology of dedicated 
structures in the rat’s brain, like the hippocampus and 
the postsubiculum. The model currently used in 
Psikharpax’s developments implements a multiple-
hypothesis tracking navigation strategy, maintaining a 
set of hypotheses about the robot’s position that are all 
updated in parallel  (Filliat and Meyer, 2003; Meyer and 
Filliat, 2003). 
 
 

  
 
Figure 1. Schematics of allothetic data used for navigation. The 
broken line joins the points detected by the robot's sonar 
sensors in eight absolute directions. The rectangles arranged in 
a circle indicate the mean grey-level perceived in the 
corresponding direction by the camera. 
 



It serves to build a dense topological map (Filliat and 
Meyer, 2002), in which nodes store the allothetic data 
that the robot can perceive at the corresponding places in 
the environment. These data correspond to mean grey-
levels perceived by a directional camera in each of 36 
surrounding directions, and to sonar data providing 
distances to obstacles in eight directions (Figure 1).  
A link between two nodes memorizes how far and in 
which direction the corresponding places are positioned 
relatively to each other, as measured by the robot’s 
idiothetic sensors, i.e., by its odometry (Figure 2, left).  
 

  

Figure 2. Left: The topological map (bottom) created by the 
robot when it explores an unknown environment (top). Right: 
This map may be used by the robot to localize itself because 
the activity distribution of the nodes in the map changes as the 
robot moves through successive places a, b,…g in the 
environment (top). Thus, when the robot is at place d, a blob of 
activity in the map surrounds the node that corresponds to this 
place (bottom). The grey level of each small node in the map 
indicates its activity, ranging from 0 for white nodes to 1 for 
black nodes. Larger black dots indicate the nodes which were 
successfully recognized. 

 
The robot’s position is represented by an activity 
distribution over the nodes, the activity level of a given 
node representing the probability that the robot is 
currently located at the corresponding position (Figure 2, 
right). This navigation model has been implemented on 
a Pioneer 2 mobile robot and proved to be efficient at 
exploring an unknown laboratory (Figure 3). From 
scratch, the robot succeeds in exploring its environment 
and in localizing itself accurately within it. Moreover, 
the system makes it possible for an external user to 
designate a goal-place in the map, from which a 
spreading activation algorithm computes the shortest 
path joining the goal to the robot’s current position. 
When the robot follows this path, if it encounters an 
unexpected obstacle, the spreading activation algorithm 
may be triggered again to check if an alternative way to 
the goal exists. If so, the robot will follow the 
corresponding detour to fulfil its mission.  

 
 

A

B

C

The pioneer 2 mobile robot

 
 
Figure 3. An example of a map created while a Pioneer 2 robot 
explored an unknown laboratory. The map is superimposed on 
an architectural sketch of the environment. When the robot is 
located in place A, if it is manually moved to place B, it will 
temporarily hesitate between two possible positions, B and C, 
that look very similar. However, after a few moves beyond 
place B , it will correctly identify its position. 
 
 
3.2. Action selection  
 
To survive, a rat must be able to solve the so-called 
action selection problem – i.e., it must be able to decide 
at every moment what to do next in service of its needs.  
 
Some of the circuits that are involved in this task are 
known to be located in basal ganglia-thalamus-cortex 
loops and have inspired the GPR model (according to the 
authors Gurney, Prescott and Redgrave, 2001a & b) that 
is implemented in Psikharpax’s control architecture 
(Girard et al., 2002; Girard, 2003). Basically, this model 
(Figure 4) assumes that the numerous segregated 
channels observed in the basal ganglia each correspond 
to a discrete motor action (the granularity of which is 
still not deciphered) that is inhibited by default and thus 
prevented from being executed. Inputs to these channels 
are so-called salience, a  kind of common currencies for 
actions that take into account both internal and external 
perceptions to assess the relevance of each action with 
respect to the robot’s needs. A positive feedback loop 
involving the thalamus serves to introduce some 
persistence in such assessments. Two parallel selection 
and control circuits within the basal ganglia act to 
modulate interactions between channels. 
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Figure 4. A single channel within the basal ganglia: the GPR 
model. D1 and D2 are striatal neurons with different dopamine 
receptors. STN is sub-thalamic nucleus. EP/SNr designates 
both the entopeduncular nucleus and the substantia nigra 
reticulata. GP is the globus pallidus. Solid arrows represent 
excitatory connections, dotted arrows represent inhibitory 
connections. 

 
Finally, at the output of these circuits, the action that is 
less inhibited by others is selected and allowed to be 
executed by the motor system (Figure 5).  

Experimental results demonstrate the model’s ability to 
promote survival in the sense that it permanently keeps 
two essential variables (Ashby, 1952) above minimal 
levels: Potential Energy (obtained via “feeding”) and 
Energy (converted from Potential Energy via “resting”). 
Moreover, the model avoids dithering or interferences 
between actions - thanks to saliences’ discrepancies 
enhanced by the control circuit - and demonstrates some 
advantages with respect to a simpler version in which 
the selected action would be the one with the greatest 
salience - thanks to the conjugated action of the control 
circuit and  the thalamic loop.  

This model has been implemented in a Lego robot 
whose task was to efficiently select between four actions 
– wandering, avoiding obstacles, “feeding” and “resting” 
– in order to “survive” in an environment where it could 
find “food” and “rest” places (Girard et al., 2003) 
(Figure 6). 
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Figure 5. An illustration of the action selection circuit 
involving two possible actions: move-toward-A or move-
toward-B. Solid arrows represent excitatory connections, 
dotted arrows represent inhibitory connections. The saliences 
associated with the two corresponding actions and channels 
depend upon both external and internal perceptions. In this 
case, although A and B objects are both perfectly perceived, 
because the A-battery level is lower than that of the B-battery, 
the action move-toward-A gets less inhibited than the other, 
and the robot accordingly decides to move towards the A 
object. 

 

 

Figure 6. Left: The environment showing “food” (A) and 
“rest” (B) places. Right: A Lego robot equipped with light 
sensors (A) and bumpers (B).  

However, the robot’s survival depended on its chances 
of getting to the right place at the right moment, i.e., to a 
food place when its Potential Energy level was low, or 
to a rest place when it lacked Energy. Obviously, 
additional adaptive capacities would depend on the 
robot’s capacity to record the position of such places on 
its map and to use this map to reach such places when 
needed. This has been made possible thanks to a model 
combining navigation and action selection capacities. 



3.3. Combining navigation and action 
selection 

The connection of the previously-described navigation 
and action selection models and their implementation on 
a simulated robot were inspired by recent hypotheses 
concerning the role of dedicated structures within the 
basal ganglia – like the nucleus accumbens in particular 
– and the interplay of basal ganglia-thalamus-cortex 
loops in the rat’s brain (Girard, 2003; Girard et al., in 
press). The corresponding model (Figure 7) basically 
involves two such loops: a ventral loop that selects 
locomotor actions, like moving to the north or the east, 
and a dorsal loop that selects non-locomotor actions, 
like feeding or resting. Each of these loops has been 
modeled as a GPR system like the one previously 
described. The STN of the dorsal loop provides the 
interconnection between them because it sends 
excitatory projections to the output of the ventral loop. 
As a consequence, when the dorsal loop is active and 
triggers some non-locomotor action, the excitatory 
signal that is sent towards the ventral loop raises the 
inhibition level of every locomotor action and prevents it 
from being selected. Hence the robot cannot move and 
eat at the same time. 
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Figure 7. Interconnection of the ventral and dorsal loops in the 
basal ganglia. The ventral loop selects locomotor actions, the 
dorsal loop selects non locomotor actions. The latter subsumes 
the former. 

Saliences in the ventral loop depend upon direction 
profiles that are generated by two different navigation 
strategies, i.e., a simple guidance strategy and a more 
elaborate topological navigation strategy (Trullier et al., 
1997). This makes it possible for the robot to be 
attracted either by an object that it directly perceives or 
to move towards a region where such an object is located 
in its map. The latter possibility puts some constraints on 
action selection because the robot is committed to 
regularly returning to previously mapped areas in its 
environment in order to check the accuracy of the 
current map. This need is expressed by a Disorientation 

variable managed by the model, which increases when 
the robot enters unexplored areas, decreases when it 
returns to known areas, and affects the computation of 
saliences. Saliences in the dorsal loop depend upon both 
internal and external perceptions (Figure 8).  

This model has been implemented in a version that 
manages 36 locomotor actions – i.e., moving in each of 
the 36 possible directions – and two non-locomotor 
actions – i.e., reloading actions that change the robot’s 
Energy and Potential Energy levels.    
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Figure 8. The model integrating navigation and action selection 
calls upon two basal ganglia-thalamus-cortex loops. Each loop 
is managed by a GPR model, and the coordination between 
loops is provided by the subthalamic nucleus of the dorsal 
loop, which is connected to the ventral loop (connection not 
shown here). The dorsal loop selects one of the two possible 
reloading actions, the ventral loop selects one of the 36 
directions of movement (simplified here to four cardinal 
directions). Inhibitory connections are represented by dotted 
arrows, excitatory connections by solid arrows. In the current 
situation, only locomotor actions are selected because external 
perceptions are not strong enough to suppress the inhibition of 
reloading actions. When the robot gets close to the B object, 
this fact will be detected by its sensors, a reloading action will 
be triggered and an excitatory signal will be sent to the ventral 
loop in order to inhibit further locomotor actions. 

The robot simulated in the environment on the left of 
Figure 9 survives successfully because it uses its map to 
navigate between places E and Ep where it can reload its 



Energy and Potential Energy levels. Likewise, in the 
environment on the right of Figure 9, assuming that 
place Ep1 is the only one that the robot has previously 
encountered and recorded on its map, if it decides to 
move towards that place to reload its Potential Energy 
and if it detects on its way the close presence of another 
food place like Ep2, it will give up navigating towards 
Ep1 and will opportunistically divert to Ep2. Then, 
having consumed the corresponding “food”, it will 
record the position of Ep2 on its map. Thus, next time it 
needs to reload its Potential Energy, it will have the 
choice of navigating towards Ep1 or Ep2. 

 

Figure 9. Two environments used to test the connection of 
navigation and action selection models. E: “rest” place, Ep: 
“food” place. 

In the environment of Figure 10, the robot has the choice 
between two trajectories leading to a “food” place. The 
first one is shorter but entails passing through a 
“dangerous” place. The second one is longer, but safer. 
The robot is able to decide to navigate through the 
longer path when its Potential Energy level is not low 
enough to compromise its survival by a long journey, 
but it chooses the shorter path in the opposite case, at the 
risk of facing the potential danger recorded on its map. 

 

Figure 10. Two trajectories leading to “food” places (Ep).  One 
is shorter than the other but entails passing through a 
dangerous place (Danger). 

 

 In the complex and challenging environment of Figure 
11, the simulated robot autonomously survives, thanks to 
the numerous adaptive mechanisms and behaviors it has 
been endowed with (Girard, 2003).    

 

         

Figure 11. A complex environment with four “rest” places (E), 
four “food” places (Ep) and two dangerous places (ZD).  

 

3.4. Learning 

In an unknown environment, a rat is able to explore it 
and to incrementally build a map that describes the 
topology of this environment. Such associative learning, 
which combines both allothetic and idiothetic data, has 
been implemented in the navigation model described 
above. 

However, a rat is also able to improve its behavior over 
time through reinforcement learning, i.e., thanks to 
adaptive mechanisms that raise its chances of exhibiting 
behaviors leading to rewards and that lower those of 
behaviors leading to punishments. Concerning action 
selection, a recently debated hypothesis (Barto, 1995; 
Houk et al., 1995; Schultz et al., 1997) postulates that 
such mechanisms could be mediated by dopamine 
signals within so-called actor-critic architectures (Figure 
12). 

Within such architectures, an action-selection module 
plays the role of an actor, while a critic module calls 
upon both the episodic reinforcement signal rt 
occasionally generated by the robot’s actions and a 
dopamine signal that is assumed to evaluate the 
difference gPt-Pt-1 between currently expected and future 



rewards. This estimate is used in the actor module to 
adapt the way saliences are computed and used to select 
the most appropriate action, i.e., the action the most 
likely to maximize the reward that it will generate.  

 

 

Figure 12. The actor-critic model of reinforcement learning. 
The actor module is a GPR model that is segregated in 
different channels, with saliences as inputs and actions as 
outputs. The critic module (involving the nucleus accumbens 
core (Nacc core) and the substantia nigra compacta (SNc)) 
propagates towards the actor module an estimate re of the 
instantaneous reinforcement triggered by the selected action. 

 

This type of model has been implemented in a simulated 
robot that must learn in a plus-maze, and through 
successive trials, which movement to perform in order to 
get to the end of an arm where a door may provide 
access to a reward - i.e., some water to drink (Figure 13). 
This kind of learning corresponds to a simple Stimulus-
Response association. At every trial, one lamp out of 
four is lighted indicating the door behind which the 

reward is accessible. When the robot succeeds in getting 
such reward, the corresponding lamp is turned off and 
the robot must learn to return to the center of the maze, 
where the lighting of another lamp will designate 
another reward place. This setting reproduces an 
experiment on real rats (Albertin et al., 2000) and helps 
to interpret the corresponding results. 
 

        

Figure 13. Left: the robot in the plus maze environment. A 
lighted lamp indicates which door (in white) leads to reward. 
The other doors do not lead to reward and are shown in black. 
Upper right: the robot’s visual perceptions. Lower right: 
activation level of each channel in the actor module. 
 
 
Two different critic modules, respectively adapted from 
Houk, Adams and Barto (1995) and from Baldassare 
(2002), have been implemented and connected to the 
same actor module, i.e., the action selection model 
described in Section III.2 above (Khamassi et al., in 
press). The main difference between these modules is 
that the first module (Critic 1) calls upon only one unit 
to predict an instantaneous reward, while the second 
(Critic 2) calls upon two units, on the one hand, and 
takes into account the time course of the rewarding 
stimulus, on the other hand. 
 
 
 
The corresponding results were compared on the basis of 
two criteria: the zone in the environment where the robot 
has already learned something - i.e., where it is able to 
select the appropriate actions to get to the reward - and 
the way the prediction errors decrease at reward location 
along successive trials - information that is essential to 
propagate learning to other regions of the environment. 
It thus turns out that Critic 2 gives better results than 
Critic 1 (Figure 14) but that the corresponding module 
still has to be improved, for instance through the use of a 
greater number of prediction units, or the use of one 
controller per critic unit (Doya et al., 2000), to let 
learning extend to the whole experimental environment 
and to speed up the corresponding process. 
 



        

Figure 14. Reinforcement learning results obtained with an 
actor-critic architecture in which two different critic modules 
have been tested (left: Critic 1; right: Critic 2). Depending on 
which module is used, the correct actions to perform are 
learned in specific regions of the maze (a & c: white areas in 
the plus maze) and the improvement patterns of the prediction 
error at reward location over successive trials are different (b 
& d).   
 
Referring to the beginning of Section 3 above, it thus 
appears that almost all the capacities that we wanted to 
endow our artificial rat with have started to be 
implemented, even if this animat currently exhibits very 
few motivations and emotions. In 2004, these capacities 
will be integrated on a Pekee platform that will make a 
first assessment of the Psikharpax endeavour possible. 
 
 
4. The future robot 

A more advanced version of Psikharpax is under 
construction. The morphology and sensori-motor 
equipment of this 50cm-long robot will be as closely  
inspired from the real rat as possible (Figure 15).  

 

 

 

 

 

 

 

Figure 15. The overall design of the future Psikharpax.  

In particular, it will be endowed with three sets of 
allothetic sensors: a two-eyed visual system, an auditory 
system calling upon two electronic cochleas, and a 
haptic system made of 50 whiskers on each side of its 
head.  

Psikharpax will also be equipped with three sets of 
idiothetic sensors: a vestibular system reacting to linear 
and angular accelerations of its head, an odometry 
system monitoring the length of its displacements, and 
capacities to assess its current energy level. Sensor 
fusion will be accomplished through the use of GVPP, a 
biomimetic chip dedicated to low-level real-time signal 
processing that already serves robot vision (Gourichon et 
al., 2002).  

The robot's capacity to move and act in the environment 
will be afforded by several motors and actuators. In 
particular - despite the fact that such a device is not 
really biomimetic - two wheels will allow Psikharpax to 
move at a maximum speed of a few meters per second. 
Although it will usually lie flat on the ground, it will 
also have the possibility of setting upright, as well as of 
seizing objects with two forelegs. Likewise, its head will 
be able to rotate, and three pairs of motors will actuate 
each of its eyes (Figure 16).  

 

 

Figure 16. An eye equipped with a camera and a log-polar 
sensor, which is actuated by three motors. The whole device 
obeys the Listing's law (von Helmholtz, 1955). 

 

Finally, several low-level reflexes will connect 
Psikharpax’s sensors to its actuators, thus making it 
possible, for instance, to keep looking at an object even 
when its head is moving, and to avoid an obstacle 
detected by its whiskers or by its visual or auditory 
systems.  

 

 



5. Directions of future work 

Being able to integrate the past (through its recorded 
map), the present (through its sensors) and the future 
(through its planning capacities), Psikharpax is a nice 
example of a motivationally autonomous animat 
(McFarland and Bösser, 1993) whose survival may 
depend on a huge number of perceptions and actions that 
must be carefully integrated. Future work will be 
devoted to increasing this number as much as possible, 
in order to delineate the limits of the controllers 
described above, an attitude that is at the opposite of that 
of traditional robotics, when the chances of threatening 
the survival of a costly device are deliberately held as  
low as possible. Clearly, the control of such a complex 
sensori-motor system is a great challenge that goes 
beyond any other attempt at making an animat do 
something more than merely moving around. To 
successfully tackle this challenge will entail extending 
the capacities of the controllers described herein by 
letting them manage more perceptions -- notably a sense 
of smell -- more actions, more motivations and more 
emotions. It will also probably involve adding other 
biomimetic control structures, among which the 
cerebellum and the prefrontal cortex will probably prove 
to be of utmost importance, as well as other learning 
processes than the S-R one currently implemented, 
notably those that would afford capacities for goal-
directed behaviors and behavioral sequence chunking 
(Dayan, 2001; Graybiel, 1998). 

 

6. Conclusions 

Considerable research effort has been already devoted to 
the Psikharpax project and the corresponding results 
have been summarized in this paper.  In particular, 
several adaptive mechanisms have been designed that 
make navigation, action selection and learning possible.  
When a dedicated version of the Psikharpax platform 
becomes available, the adaptive mechanisms that have 
been studied so far will be implemented and integrated 
on it. This will probably generate new and interesting 
control challenges, from which useful contributions to 
biology, cognitive sciences and robotics are to be 
expected.  
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