Using XCS to Build Adaptive Agents

Zahia Guessoum*?
*OASIS

Laboratoire d’Informatique de Paris 6 (LIP6)

Zahia.Guessoum@lip6.fr

Lilia Rejeb’
fLERI
Université de Reims
rejebe@poleia.lip6.fr

Olivier Sigaud*

10ASIS

Laboratoire d’Informatique de Paris 6 (LIP6
Olivier.Sigaudelipé6.fr

Abstract

To deal with dynamic changes of their environment, agents need an adaptive mechanism. This paper proposes
an integration of classifier-based framework (named XCS) and an agent-based framework (named DIMA). The
result of this integration is an adaptive- agent framework. It has been applied to simulate economic models.

1 Introduction

Dynamic and complex systems, such as economic mar-
kets, are characterized by a large number of agents and a
dynamic environment. To deal with the dynamic and un-
expected variations of their environment, adaptive agents
are very useful. Several learning-based multi-agent sys-
tems have therefore been realized (see Kazakov et al.
(2001), Kudenko and Kazakov (2002) and Kazakov et al.
(2003). The proposed solutions can be classified in two
categories:

e Single agent learning: Agents can learn indepen-
dently of other agents. Every agent is thus a sim-
ple learning algorithm and its environment is often
static.

e Multi-agent learning: Each agent is endowed with a
learning algorithm to build a model of its environ-
ment. The latter includes other agents.

Most realized works in multi-agent learning deal with
real-life applications. The proposed solutions are thus of-
ten ad hoc, they cannot be easily reused to build other
real-life applications. So, we still need works on generic
adaptive agent models. The purpose of this project is
to propose a generic adaptive agent framework (named
XCS-Agent). This framework is the result of the integra-
tion of an agent-based framework (named DIMA (Gues-
soum and Briot (1999))) and a Learning Classifier System
(LCS) (named XCS (Wilson (1995))). The application of
XCS-Agent to simulate economic models has allowed to
highlight the advantages of the proposed framework and
to underline the open problems (coding complex environ-
ments, exploration/exploitation, ...).

This paper is organized as follows: Section 1 presents
the example, Section 2 describes the framework XCS-
Agent, Section 3 studies the exploration/exploitation

problem, and Section 4 gives an overview of the realized
experiments to validate XCS-based agents.

2 Example

The considered application is the simulation of an eco-
nomic model. In this application, we consider a set of
firms in competition with each other within a shared mar-
ket. A firm is defined by the following main parameters:

e K, the amount of capital available,
e B, the R&D budget,

o the state variables (X vector) represent the differ-
ent types of resources (funds, people, equipment, ...)
owned by the firm,

e the Y variables represent the performances of the
firm. They are directly influenced by the X vector,

e the strategy the firm follows to allocate its resources,

e the associated organizational form. An organiza-
tional form is an abstract entity that gathers a set of
similar firms. Similar firms have similar behavior
and similar structure (see Baum and Rao (1999) and
Guessoum et al. (2003)).

Moreover, a firm is characterized by its decision process
which aims to select the most suitable strategy in a given
context. This context includes the internal parameters (K,
B, X, ...) and the firm’s perception of the other firms (their
K, their B, their Y, ...). Several solutions may be used
to represent this decision process such as inference en-
gine, case-based reasoning and LCSs (see Holland et al.
(2000)). However, the use of classifiers is more suitable to
the dynamic and unexpected variations of economic mar-
kets.

HClassifier

condition ; String

- &action ; int
Enviranment interface) & prediction : double
EpredictionError : double
®doResel() &fitness : double
SExecutesction) &numerasity : int
ByetConditionLength() Eeperience | int
HyetCurrentState) &actionSetSize : double
ByetiaxPayofi) StimesStamp ;int
*getNrActiUns() &scons KCSConstants
ProactiveComponent BismultiStepProblem()
implements PresetStatel) Baddhumerosityint
SproactiviLoop(LapplyMutation(Sting, int
stepl) mutatedctiongingy
‘pres}\ctiviwo classifierSet
Spostactivity() WOE ariables(double, int
Satatlipg o Enviranment createhtatching
pop KClassifiersat Condition(String)
nbExperiments : int ‘crea{esangomActlﬂq;mn_ i
cons | XCSConstants ‘creazla a& Umﬁ.”” tion(in{)
outFile : RandomAccessFile ‘mur:ass%Engﬁ:alﬁcneo
QdDOnEBingleSlepExpenments() "isgngeGeneral(}(Classiﬂer)
ACSBasedAgent ___ == &PdoOneSingleStepProblem aﬁatuchs(émr?;?
-
&g HCEFimm - - Exploit()
e do0neSingleStepPrablem ’m?g‘;"ﬁg”d'“°”(5m”m
FdoReset) L — Explorel) % .
" CrossaveriXClassifien
:execuleﬁﬂlﬂn(mﬁ gUg”Emul}!sg‘?pg"p;l”m;”‘ﬁ(?t 4ypdatetctionSetSizeldauble)—
‘getCDnd\tmmLengthO UDOHEMUH!E;EFPmmEmE}{pFI (E
qetPerceptiong oOnemultiStepP roblemExplare
PgetRes
SPerception(int],intl)
WiswuriStepPrablermp
HCSFim KClassiierset
-] &cons XCSConstants
HCEBasedFim Sinit<CSFim () &015et] - KCLassifier
— Bio0neMultiStep & rlisize - int
:E"DE”W“FO nurerosity ; int
do0neMultistepProblem EparentSet | KClassifizrSet

addClassifier(<Classifier
addvalues({Classifier)
add<ClassifierToPopulation(<Classifien
‘EmﬂrmC\asswﬁer\ﬂBetO
containsClassifier{Classifier)
deleteFromPopulationg
doActionSetSubsumptiong
alernentting
getldenticalClassifier(<Classifiery
increaseMumerasitySum{int)
insertDiscovered
O HC ifler Xl iflet HCl ifier Cl
assifier
isActionCoveradiint
removeClassifier(int)

removeClassifier(<Classifien
rURGA(Nt, String, inf)

select{CLassimerRWidouble)
sUbsumeXClassifier({Classifier)
I

Figure 1: Overview of the framework XCS and XCS-Agent

3 XCS-Based Agent M odel

This section presents first an overview of XCS, it then
describes the XCS-Based agents.

3.1 Overview of XCS

XCS is a recent LCS (Wilson (1995)) which can solve
complex learning problems. It is based on a standard clas-
sifier condition-action rules. Each classifier is character-
ized by three parameters: prediction p, error e, fitness f.
A condition corresponds to a chain of 0, 1 and #. # rep-
resents 0 or 1, the associated attribute is not taken into
account when checking the condition. The parameters p,
e and f are automatically updated according to the reward
obtained by the application of the chosen action.

In a context s, a step of XCS executes the following
actions (see Table 1):

e scan the environment (define the state of the environ-
ment),

e execute a step by using the exploration or exploita-
tion strategy.

XCS provides a set of generic classes which can be
reused to implement LCSs (see Figure 1). To implement
a LCS, one has to implement the Environment Interface.

XCS has been reused to build XCS-Agent. The agents
context and their behavior are described in the following
sections.

3.2 Agent Context

In a classifier, the condition represents the context of the
agent. It is defined by its local parameters and its percep-
tion of the environment. For instance, the firm’s context
includes:

o the capital, the resources, the budget,

e a representation of the competition (information on
the other firms),

Table 1: An example of method of the XCS step

actionSet.updateSet(0, reward);

private void doOneSingleStepProblemExplore (String state, int counter){
XClassifierSet matchSet= new XClassifierSet(state,pop,counter,env.getNrActions());
PredictionArray predictionArray= new PredictionArray(matchSet, env.getNrActions());
int actionWinner= predictionArray.randomActionWinner();

XClassifierSet actionSet = new XClassifierSet(matchSet, actionWinner);

double reward = env.executeAction(actionWinner);

actionSet.runGA(counter,state,env.getNrActions()); }

e a representation of the organizational forms which
is defined by the resource variations and the perfor-
mances of the associated firms. Each variation of
a resource is described by a symbolic value (small,
medium, large). In our experiments, we use the same
fuzzy granulation (Zadeh (2001)) for the various re-
sources (see Guessoum et al. (2003)).

The various attributes of a firm are not binary. We have
thus decomposed the definition domain of each attribute i
in n intervals. An attribute can be thus coded by a binary
string of n bits which indicate the corresponding interval.
However, the decomposition of the definition domain into
intervals is not easy and the performances of a firm rely on
this decomposition. Indeed, if the interval boundaries do
not fit with the natural boundaries of an optimal strategy,
the adaptive agent cannot perform optimally (see Section
5).

An action corresponds to a strategy of the firm (see Sec-
tion 2). An example of classifier is given in Table 2.

Table 2: Example of classifier

condition

K € [-300,100],

B € [0,100],

X[1] €[2,5], ..., X[8] € [1,3]
AverY[1] € [3,20], ..., AverY[3]€ [0,3]
action

strategy1l,

parameters

P=05,

e =0.01,

F=100.

The capital intervals are: [—300,100], [101,300],
[301, 500], [501,600], [601,800], [801, 1000000]. In the
condition of the given example (Table 2), it is represented
by 7bits: 1000000. Each bit indicates if the value belongs
to the corresponding interval.

The reward corresponds in our model to the aggrega-
tion of the variation of performances which result from
the application of the chosen strategy. It is calculated by

the following formula:

Vll] = Yia[1] %l2] - Yia[2)
Vi v

@)

r = agreg(
where agreg is an aggregation operator.

3.3 Agent Behavior

The used agent framework is DIMA (described in Gues-
soum and Briot (1999)). DIMA is a framework of proac-
tive components representing autonomous and proactive
entities. It is illustrated by a minimal set of classes and
methods defining the main functionality of a proactive
component. This functionality may be extended in the
subclasses. This framework is mainly composed of the
class ProactiveComponent (see Table 1) which describes:

e The goal of the proactive component, it is implicitly
or explicitly described by the method isalive ().

o the basic behaviors of the proactive component, a be-
havior is a sequence of actions that allow to change
the internal state, to perform a message or to send
a message to other proactive components. Each be-
havior is implemented as a java method of this class.

o the meta-behavior defines how the behaviors are se-
lected, sequenced and activated.

The step of a firm is defined in Table 4:

Table 4: Step of an agent

public void step() {
updateCompetitionRepresentation();
getProfitVariation();

updateBudget();

%% begin decision process
budgetRest=applyStrategy(chooseStrategy());
%% end decision process

updateCapital();

caculatePerformances();

updateMarket(); }

Table 3: Main methods of ProactiveComponent

Methods

Description

public abstract boolean isAlive()

Tests if the proactive component
has not yet reached his goal.

public abstract void step()

represents a cycle of the meta-behavior
of the proactive component.

void proactivityLoop()

Represents the meta-behavior
of the proactive component.

public void proactivityLoop()
{while (this.isAlive())

{ this.preActivity();
this.step();
this.postActivity(); } }

public void startUp()

Initialize and activate the meta-behavior.

public void startUp() {
this.proactivitylnitialize();
this.proactivityLoop();
this.proactivity Terminate(); }

XCSBasedAgent (see Figure 1) is defined as subclass
of ProactiveComponent and implements Environment.
An XCS is associated to each XCSBasedAgent and its
meta-behavior uses the XCS step (methods doOneMulti-
Step*). The step of an adaptive firm is defined in Table
5.

Table 5: Step of an adaptive firm

public void step() {
updateCompetitionRepresentation();
getProfitVariation();
updateBudget();

%% start decision process
cs.doOneMultiStepExperiment(3);
%% end decision process
updateCapital();
caculatePerformances();
updateMarket(); }

4 Exploration/Exploitation

LCSs must find a good compromise between two comple-
mentary strategies: exploration and exploitation. When
the uncertainty in the current prediction is high, the
system should better explore than exploit (see Wilson
(1996)). An adaptive agent should be able to observe
its behavior and choose the most suitable strategy ac-
cording to its experiences. To deal with that problem,
we introduce meta-rules which allow to adapt the explo-

ration/exploitation rules to the evolution of the context
and the state of the classifier set according to the vari-
ations of the firm performances. These meta-rules are
mainly based on two parameters:

e m: the number of steps during which an agent uses
exploration,

e n: the number of steps during which an agent uses
exploitation,

After each m exploration steps, the system executes n
exploitation steps. It executes then these meta-rules:

o if the Perf(t+n) =< Perf(t) then the system must still
learn, the number of exploitation steps is then de-
creased (n =n/2)

o if the Perf(t+n) > Perf(t) then the system has learned
enough, the number of exploitation steps is then in-
creased (n =n*2).

They are simple and adapt the behavior of the LCSs to the
evolution of the agent environment. They provide thus a
good solution to the Exploration/Exploitation dilemma.

5 Experiments

The proposed framework was tested on the simulation of
economic models (see Section 2). We first compared the
XCS-Based firms and firms that use a priori defined rule-
based systems. We considered two populations of firms:
rule-based firms and classifier-based firms. We injected
in each population one XCS-based firm and we observed
the performances and the number of classifier of this firm.
The considered parameters are:

Number of classifiers

Number of classifiers

A population size =800

A #_probability = 0.5

a learning rate (b)=0.2

a crossover Rate=0.8

mutation rate = 0.02

qGA =25

minimum error = 0.01

| — - =popAdap ------- popReac |

I_'_'_F

Figure 2: Convergence of the number of classifiers

The experiments show that the convergence of the clas-
sifier number within a population of non adaptive firms is
easier (see Figure 2). In fact, in adaptive-firm popula-
tion, the firms need a lot of time to learn and construct
their classifier populations. These results are, neverthe-
less, sensitive to some initial values of the parameters of
the XCS such as the learning rate. The learning coeffi-
cient beta is important in LCSs. Its default value, in XCS,
is 0.2. To show the influence of this parameter, we real-
ized experiments with different learning rates. Figure 3
shows that the reduction of this value improves the con-
vergence.

Figure 3: Comparison of the convergence of adaptive
firms using different learning coefficients

We set then this learning rate to 0.0001 for the rest of
the experiments. We study also the effect of the represen-
tation on the convergence of the firms. We use for this

Mumber of classifiers

two populations: 1) in the first population, the classifier
representation is based on a representation on 8 intervals
and 2) in the second one, the classifier representation is
based on 16 intervals. Figure 4 shows that the more pre-
cise representation allows easier convergence. So in the
rest of these experiments, we use 16 intervals.

| —-—- Representation 16 ===Represgentation 8

a

Figure 4. Comparison of the convergence of populations
with different representations

In the second series of experiments, we studied the
Exploration/Exploitation problem. We considered three
populations of 500 XCS-based firms with different strate-
gies: exploration, exploitation, and meta-rules (Explore-
Exploit).

The results (see Figure 5) show that the population
with meta-rules (the black one in the Figure) has slightly
higher performances. We note that the difference is not
important (5 %). These meta-rules are then a good tech-
nique but more experiments are needed to find the ade-
quate parameters such as m.

6 Conclusion

This paper presented a new XCS-based agent framework
and its application to simulate economic models. The lat-
ter are dynamic and complex systems. This application
showed the advantages of using LCSs in dynamic multi-
agent environments. Large-scale multi-agent systems
provide thus very good applications to validate LCSs, but
also very challenging ones, given the continuous and non-
stationary character of these applications. The first exper-
iments are interesting but more experiments are needed to
choose the most suitable parameters and intervals to im-
prove the performances. On that point, using adaptive in-
terval techniques such as the one suggesting comparison
of the profit of populations with different strategies (see
Wilson (2000)) is a major area for future work. A second
perspective of this work is the definition of a methodology
to facilitate the development of adaptive-agent systems.

8.05 T T T

T
Explore

Exploit
Exploit/Explore --------

8 | T
7.95 .
7.9 M .
?
S 785 .
©
E |
o \
5 7.8 e e
o e
7.75] -
I'E &
“ v
7.7 e - et -
i + -+
+H- &+ + +
- - - ++
+ +4 + HHE -
7.65 H + +H H+H .
4 4+
v
76 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Time
Figure 5: Comparison of the performances of the different populations with different strategies
References Daniel Kudenko and Dimitar Kazakov, editors. Adaptive

A. Joel A.C. Baum and Hayagreeva Rao. Handbook
of Organizational Change and Development, chapter
Evolutionary Dynamics of Organizational Populations
and Communities. Oxford University Press, 1999.

Z. Guessoum and J.-P. Briot. From active objects to
autonomous agents. IEEE Concurrency, 7(3):68-76,
1999.

Z. Guessoum, L. Rejeb, and R. Durand. Emergence of or-
ganizational forms. In AAMAS’03, Aberystwyth, UK,
April 2003. AISB.

J. Holland, L. B. Booker, M. Colombetti, M. Dorigo,
D. E. Godberg, S. Forrest, R. Riolo, R. E. Smith, P.-
L. Lanzi, W. Soltzmann, and S. W. Wilson. What is
a learning classifier system? in learning classifier sys-
tems: from foundations to applications. In P.-L. Lanzi,
W. Stolzmann, and S. W. Wilson, editors, Learning
Classifier Systems: from Foundations to Applications,
pages 3-32. Springer-Verlag, Heidelberg, 2000.

Dimitar Kazakov, Eduardo Alonso, and Daniel Kudenko,
editors. Adaptive Agents and Multi-Agent Systems,
York, UK, 2001. AISB.

Dimitar Kazakov, Eduardo Alonso, and Daniel Kudenko,
editors. Adaptive Agents and Multi-Agent Systems,
Aberystwyth, 2003. AISB.

Agents and Multi-Agent Systems, London, 2002. AISB.

S. W. Wilson. Classifier Fitness Based on Accuracy. Evo-
lutionary Computation, 3(2):149-175, 1995.

S. W. Wilson. Explore/exploit strategies in autonomy. In
J. Pollac J.-A. Meyer P. Maes, M. Mataric and S. Wil-
son, editors, From Animals to Animats 4, Proc. of
the 4th International Conference of Adaptive Behavior.
MA,, Cambridge, 1996.

S. W. Wilson. Get reall XCS with continuous valued
inputs. in learning classifier systems: from founda-
tions to applications. In P.-L. Lanzi, W. Stolzmann,
and S. W. Wilson, editors, Learning Classifier Sys-
tems: from Foundations to Applications, pages 209—
220. Springer-Verlag, Heidelberg, 2000.

L. A. Zadeh. A new direction in ai: Toward a computa-
tional theory of perceptions. Al Magazine, 22(1):73-
84, 2001.

