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Abstract. Actor-Critic architectures of reinforcement learning were found to show a 
strong resemblance with known anatomy and function of a part of the vertebrate's 
brain: the basal ganglia. Based on this analogy, a large number of Actor-Critic 
models were simulated to reproduce behaviours of rats performing laboratory tasks. 
However, most of these models were tested in different tasks and it is often difficult 
to compare their efficiency. The work presented here concerns the comparison of 
three Critics, tested with the same Actor part taking into account known basal 
ganglia anatomy. The specificities of the three Critics connected to this Actor lie on 
the absence or presence of a temporal representation of stimuli, and on the use of 
one or more units for the prediction of reward. These architectures are implemented 
in the same simulated robot performing the same stimulus-response (S-R) 
experiment: a reward-seeking task. Results show that both temporal representation 
of stimuli and multiple prediction units are mandatory for the achievement of the 
task. Improvements for Critic modelling and competing hypotheses for Actor-Critic 
models are finally discussed. 

 
Introduction 

 
In the frame of Artificial Intelligence, Actor-Critic architectures have been proposed to 
provide reinforcement learning algorithms by which “embedded agents” can improve 
performance and show autonomous behaviour while acting in complex dynamic 
environments [3; 13]. In such architectures, an Actor network learns to select the right 
actions in the right context so as to maximize the weighted sum of future rewards [3]. The 
Critic network is designed to compute a prediction of this sum at each timestep based on 
the current sensory input and the Actor's policy. By means of an iterative process by which 
the Critic compares its own predictions to the actual rewards obtained by the agent, the 
Critic can induce a positive or negative reinforcement signal. This signal is used to improve 
the Actor's policy and to increase the Critic's capacity to estimate correctly the weighted 
sum of future rewards. The learning rule used by this adaptive Critic is the TD learning rule 
[13] in which the error between two adjacent predictions (the TD error) is used to update 
both the Actor's and the Critic's synaptic weights: 

wi ← wi + η.řt.Eit          (1) 
where wi is a synaptic weight, η > 0 is the learning rate, Eit is the input value of the synapse 
wi at time t, and řt is the reinforcement signal given by the equation of the Temporal 
Difference error: 

řt = rt + g.Pt - Pt-1          (2) 
where g is the discount factor (0 < g < 1) which determines how far in the future expected 
rewards are taken into account in the weighted sum of future rewards. 



 

 

Actor-Critic models of the basal ganglia have been proposed since the TD error has 
shown a strong resemblance with the dopamine signal projecting to this part of the 
vertebrate's brain [6]. There is now large evidence that dopamine is a neuromodulator 
which can control synaptic plasticity of the basal ganglia's input layer - the striatum - and 
thus can be considered as a neural reinforcement signal. Moreover, electrophysiological 
studies of monkey dopamine neurons projecting to the striatum have shown that the 
dopamine signal have the same pattern of activity than the TD error signal described by 
equation 2 [10]: 

• It responds to unexpected rewards (unconditioned stimuli), producing a signal of 
positive reinforcement when something better than predicted occurs ([rt+g.Pt]>Pt-1). 

• After learning, when reward is predicted by a stimulus (conditioned stimulus), 
dopamine neurons do not discharge at reward occurrence but anticipate it by 
responding to the conditioned stimulus. 

• Dopamine neurons depress their activity when an expected reward does not actually 
occur, producing a signal of negative reinforcement when something is worst than 
predicted. 

This analogy lead neurobiologists to assess that basal ganglia could play the function of 
an Actor-Critic, and helped them understand the functional distinction between two 
anatomically distinct substructures of the basal ganglia: one in dorsal striatum selecting 
motor orders, and the other in ventral striatum, particularly in the nucleus accumbens, 
controlling reinforcement learning by projections to dopamine neurons [6; 11]. 

Based on this analogy, a large number of Actor-Critic models of information processing 
in the basal ganglia have been developed in recent years. A recent review highlights that 
most of these models describe the Actor part at the striatal level without taking into account 
known anatomy of this neural structure [7]. These models usually implement an Actor only 
constituted of a series of competitive components, each one representing a specific action. 
The action that gives the higher response to a sensorial input wins the competition and is 
selected. Besides, the Critic parts of these models implement different solutions to 
reproduce the TD-algorithm. They mainly differ in the way in which the temporal 
dynamics of dopamine firing are reproduced [7], and in the mechanism implemented to 
coordinate several units that compute the TD error. 

However, it is difficult to compare the efficiency of these models for they were tested in 
different tasks (e.g., sensorimotor associations, navigation tasks or mental tasks like the 
Wisconsin Card Sorting Test). It is also difficult to judge their adequacy for modelling 
reinforcement learning in animals, as they were often tested in non realistic environmental 
conditions, characterized by a discrete state space and instantaneous reward deliveries. 

 
The objective of this work is to compare, in the same continuous state space task - a S-R 

learning classically performed by real animals -, the efficiency of three different Critics 
connected to a same Actor. This Actor is chosen to be more inspired by the dorsal striatum 
circuitry than the previous ones. The criteria chosen for the comparison are related to the 
specificities of the Critics, i.e. the accuracy of the predictions computation and the ability to 
extend learning to the whole experimental environment using one or more prediction units. 

 
 

1 Methods 
 

1.1 The Environment and the Simulated Robot 
 

The model was implemented in a simulated robot performing a task in a 2D plus-maze 
(figure 1). This task was chosen in relation with a neurobiological experiment that will 
serve as a future validation for the model [1]. This is why, notwithstanding the virtual 
aspect of this work, we will employ terms equivalent to the ones describing the real 
experiment. 



 

 

The maze is constituted of four arms, at the end of which are boxes containing a water 
trough and a lamp. Reward delivery is available only at boxes having their lamp on. Only 
one box is illuminated at a time (white box on figure 1), and the robot has to learn going to 
this box to get a non instantaneous reward - i.e. three drops of water, each one being 
separated from the others by a one second bin. When reward consumption is over, the lamp 
is turned off, and the robot has to learn to go back to the center of the maze to trigger the 
onset of another box's lamp. The model will have to build a sequence of stimulus-response 
associations to allow the robot reaching the lighted box from any starting point in the maze. 

At each timestep, the robot's perception is reduced to a 36 colours table, giving a 
specific colour for 36 different directions (figure 1, upper right). The robot only sees walls 
(black), the lit box (white), the darkened boxes (dark grey) and the center of the maze 
which is represented by a grey cross (figure 1, left). Twelve sensorial variables (0 < vari < 
1; 0 < i < 12) are computed out of the colour table to constitute the inputs to both the Actor 
and the Critic parts of the model (figure 2). Variables are computed as following: 

• seeWhite (resp. seeGrey, seeDarkGrey) = 1 if the colour table contains the value 255 
(resp. 191, 127). 

• angleWhite, angleGrey, angleDarkGrey = (number of boxes in the colour table 
between the robot's head direction and the desired colour) / 18. 

• distanceWhite, distanceGrey, distanceDarkGrey = (number of consecutive boxes in the 
colour table containing the desired colour) / 18. 

• nearWhite (resp. nearGrey, nearDarkGrey) = 1 - distanceWhite (resp. distanceGrey, 
distanceDarkGrey). 

Representing the environment with such continuous variables, and not with discrete 
events pre-defined by the experimenter, implies for the model to permanently receive a 
flow of sensorial information and having to learn to detect autonomously events that can be 
relevant for the task resolution. In this way, the task used for this work is in continuous 
state space. This characteristic and the use of non instantaneous rewards make the task 
more realistic than the ones chosen by the previous authors. 

 
The robot has a repertoire of 8 actions, which constitute the outputs of the model. Four 

of these actions are expected to be relevant for the resolution of the task: drinking, moving 
forward, turning to white perception, turning to grey perception. The model has to learn to 
associate specific values of sensorial variables with these appropriate actions. For 
examples, the behaviour drinking will have to be associated with seeWhite and nearWhite, 
whereas moving forward will have to be strongly associated with seeWhite and 
distanceWhite and weakly associated to angleWhite. The other behaviours - random 
exploration, turning to dark grey perception, eating, waiting - are used to test if learning 
would avoid reinforcing them. 

 
 

1.2 The Actor 
 

The architecture we implemented in the Actor part replaces the simple winner-takes-all 
which usually constitutes Actor models (figure 2). It is a recent model proposed by Gurney, 
Prescott and Redgrave - the so called GPR model -, taking into account known anatomy 
and physiology of the basal ganglia [5]. It has been tested successfully in the frame of 
action selection and has shown to be able to generate coherent and relevant behavioural 
sequences when implemented in different robots, performing different behavioural tasks, 
despite its lack of learning ability [4; 8]. Fully described in [5], we will only introduce here 
its main properties. 
Like other Actors, the GPR is constituted of a series of segregated channels, each one 
representing an action. The specificity of the model is that all these channels are being 
processed by two different pathways through dorsal striatum: the first implements action 
selection, whereas the second regulates this selection by enhancing the selectivity under 



 

 

inter-channels competition, and controls the global activity, allowing effective selection 
irrespective of the number of channels in the model. A cortex-basal ganglia-thalamus-
cortex loop allows the model to take into account each channel's persistence (figure 2). The 
input values of the model are saliences - commitments toward displaying a given action - 
that are computed out of the twelve sensorial variables, a constant and a persistence factor - 
equal to 1 if the action was selected at previous timestep. 

 
Figure 1: Left: The plus maze task (walls 
in black; lit box in white; switch-off boxes 
in dark grey; center of the maze in grey). 
The robot is represented by a circle with a 
feature indicating its orientation. Upper 
right: the robot's perception given by a 
panoramic camera. Lower right: activation 
of each channel in the Actor. 

 

 

 
Figure 2: The Actor-Critic model. In 
dorsal striatum, the GPR model is 
assumed to process action selection as an 
Actor (right). Its different layers are 
constituted of segregated channels 
(saliences as inputs, actions as outputs). 
A persistence of last selected action is 
taken into account in saliences 
computation via the cortex-basal ganlia-
thalamus (Th.)-cortex loop. The Critic 
(left) computes predictions and signals of 
reinforcement - symbols are those used 
in equation 2. It is constituted of one or 
more prediction units, assumed to be in 
the nucleus accumbens (Nacc Core), and 
projecting to the striatum via dopamine 
neurons in the substantia nigra pars 
compacta (Snc). 

 
1.3 The Critics 

 
Concerning the Critic part (figure 2), we implemented three different processes of TD-
learning derived from three different models [2; 6; 12]. Table 3 shows each Critic model's 
main characteristics relevant for this work. 

 
 Discrete state 

space task 
Instantaneous 
rewards 

Temporal 
representation 
of stimuli 

More than 1 
prediction 
unit 

Autonomous 
specialization of 
prediction units 

Houk et al., 1995    
Suri & Schultz, 2001   
Baldassarre, 2002   

Table 3: Main characteristics of each of the three Critic models as they were simulated by their authors. 

 
 



 

 

1.3.1 Critic 1 (Houk et al., 1995) 
 

The model proposed by Houk et al. was one of the first Actor-Critic models [6]. At each 
timestep, the Critic computes equation 2 and uses it to update the model's synaptic weights 
with equation 1 (figure 2). The model does not include any temporal representation of 
stimuli. It uses a single prediction unit receiving the same input variables than the Actor, 
except the persistence variable. This unit is supposed to induce learning in the whole 
environment and no autonomous specialization is required. The prediction computed by the 
unit at time t is: 

Pt = f_sigmo(w'1.seeWhitet + w'2.seeGreyt + ... + w'12.nearDarkGreyt + constant)  (3) 
where w'j is a synaptic weight of the prediction unit, and f_sigmo is a sigmoid function to 
restrict the output domain of the neuron to the interval (0;1) with a discharge threshold set 
to 0.25. In our simulations, we set to 0.95 the discount factor g used in equation 2, and we 
set to 0.2 the learning rate η used in equation 1. 

 
 

1.3.2 Critic 2 (Suri & Schultz, 2001) 
 

For the second series of simulations, we have provided the previous model with a solution 
derived from another Critic [12], which uses a temporal representation of events - such as 
stimuli and rewards. It allows the Critic to decrease its prediction between the beginning of 
a non instantaneous reward until its end, even if the sensorial input received by the model 
does not change during this period of time. This contribution generally provides a timing 
mechanism to the model, enabling its functioning in the case of non instantaneous rewards. 
Besides, the model uses several prediction units, but Suri & Schultz do not propose any 
autonomous specialization mechanism for these units, so that each unit has to be affected 
ad hoc by the experimenter to arbitrary stimuli in the environment. 

In this work, as the model has to learn to autonomously discriminate relevant stimuli, we 
could not do this arbitrary affectation and rather used only one prediction unit. Besides, 
instead of implementing a special module which has to learn to filter perceived stimuli and 
to transform them into a temporal representation [12], we have used a single memory cell 
which cumulates quantities of reward consumed by the robot during a temporal window (10 
iterations). The memory cell inhibits the prediction unit of the model, so that the cumulated 
scalar value ct is removed to the total prediction computed at time t. With this method, 
equation 3 computed by the prediction unit of the Critic becomes: 

Pt = f_sigmo(w'1.seeWhitet + w'2.seeGreyt + ... + w'12.nearDarkGreyt + constant) - ct  (4) 
 
 

1.3.3 Critic 3 (Baldassarre, 2002) 
 

In the third series of simulations, we used a model which implements a mixture of experts 
for the use of several prediction units in the Critic module [2]. In this method, each 
prediction unit is an expert which can learn autonomously to specialize itself in the 
prediction of reward in a particular sensorial context. To do so, at each timestep, each 
expert computes its own prediction of reward, which determines its contribution in the 
Critic's global prediction - the latter is computed as the sum of each expert's prediction, 
weighted by a gating network taking into account each expert's prediction error. 

The principle of the learning method proposed by Baldassarre's model is: the less an 
expert makes prediction errors in a region of the maze, the more it will learn so as to 
specialize in areas of the environment where it does very few errors. 

So, the equation used to update the expert's weights depend only on the expert's own 
error, and is a modification of the Widrow-Hoff rule [15]: 

wij ← wij + η.ejt.hjt.Eijt         (5) 



 

 

where wij is a synaptic weight of expert j, η > 0 is the learning rate, Eijt is the input value of 
the synapse wij at time t, ejt is the expert's error signal and hjt is the contribution of expert j 
to the Critic's global prediction error. Detailed equations describing Baldassarre's model 
can be found in [2]. 

In Baldassarre's simulations, no temporal representation of stimuli was used because 
rewards were instantaneous. For our implementation, we added this feature by the use of 
the same memory cell as described above. Then the Critic's global prediction becomes: 

Pt = ∑j [pjt.gatejt] - ct         (6) 
where pjt is the prediction of expert j and gatejt is a weight associated to expert j by the 
gating network. 
 

Figure 4: Results of the GPR Actor part connected with Critic 1, 2 and 3 (resp. from left to right). Top: areas 
were learning has occurred; bottom: prediction error (x-axis: trials; y-axis: prediction error rate). 

 
 

2 Results 
 

Figure 4 illustrates results corresponding to the three experiments we did, one per model. 
Each experiment is constituted of 29 trials. A trial begins when a new box is lit, and it ends 
when the robot has consumed the third drop of water at this box. As a consequence, the 
lamp of this box is automatically turned off and a new trial begins. Darkened areas in 
figures 4.a, 4.c and 4.e show, for each experiment, the region of the maze where learning 
did not occur. Figures 4.b, 4.d and 4.f show, for each trial (x-axis) of each experiment, the 
cumulated prediction error (y-axis) made by the Critic during reward consumption. This 
cumulated error is computed over a temporal window of 4 iterations of the model: one for 
each drop of water plus one iteration after the light has just turned off. According to these 
figures, we can notice that the three models differ in two main criteria: 

• The areas where the robot selects the appropriate actions to solve the task - i.e. the 
areas where learning has already occurred. 

• The way the Critic's prediction errors decrease along the experiment - which is an 
indication of the efficiency of learning, because the model has to decrease its 
prediction error at reward location in order to propagate learning to the rest of the 
maze. 



 

 

Critic 1: Houk et al's Critic has learned in an area restricted to the neighbourhood of 
reward location (figure 4.a). It has built a sequence of two actions: when the robot is in 
front of the lit box, it selects moving forward, and when the robot reaches the box, it selects 
drinking. But the behavioural sequence was not extended to the whole maze. This is due to 
the use of only one prediction neuron, which has a limited computing capacity and cannot 
extend its domain of correct predictions to a large proportion of the state space. 
Furthermore, figure 4.b show that prediction errors made by the Critic do not decrease 
during the experiment. We identified this issue as the fact that the model was first designed 
to predict instantaneous rewards. In this case, the Critic's prediction was set to zero at the 
precise time when reward occurred, so that no reward was predicted at the next timestep 
and no error was thus made by the model. Here, as the reward is constituted of several 
successive drops of water, if the Critic's prediction is null at first drop, the second drop will 
not be predicted and the model will thus make a prediction error at next timestep. 

Critic 2: The temporal representation of stimuli and rewards used by Suri and Schultz's 
model is designed to solve this issue [12]. In our experiments, it allowed the Critic to 
decrease its prediction errors in the neighbourhood of the lit box (figure 4.d). It permitted 
the model to transfer its learning domain and to start reinforcing the robot's behaviour at the 
center of the maze. It has started extending the behavioural sequence described for Critic 1 
to a three-action sequence: the model has reinforced the action turning to white stimulus 
when the robot arrived at the center of the maze. But as we still used one prediction unit, 
the Critic's capacity to make correct prediction is limited to a restricted sensorial context 
input, having as a consequence for the area of correct prediction to dither between reward 
location and the center of the maze (as illustrated in figure 4.d by the oscillations of the 
error value after the 16th trial), which sometimes prevents the robot from reaching the 
reward (figure 4.c). 

Critic 3: The mixture of experts used by Baldassarre allows making correct prediction in 
various sensorial contexts [2]. Figures 4.e and 4.f show the results obtain with the 
simulation of a two-expert Critic model. Learning has occurred correctly in a large area 
including the center of the maze and the reward location. The model has built and stabilized 
a three-action sequence: when the robot reaches the center of the maze, it selects turning to 
white stimulus, when the robot is oriented in the direction of the lit box, it selects moving 
forward, and when the robot is close to the box, it selects drinking. Nevertheless, there 
remains a portion of the maze where learning did not occur (darkened area on figure 4.e). 

 
According to the above-mentioned criteria, Critic 1 is the less appropriate for the 

achievement of the task, and Critic 3 the most successful. However, the latter’s prediction 
errors decrease much slower than Critic 2 (figure 4.f), partly because prediction units have 
to share reinforcement signals. As a consequence, it has a longer learning time to achieve 
the 29 trials of the experiments: 18h56 for Critic 3, compared to 7h01 for Critic 2 (19h47 
for Critic 1). This duration is related to the number of iterations of the TD algorithm (one 
lasting 800ms) during a trial, as the faster the robot reaches reward location, the less 
iterations there are in a trial: Critic 3 has an average number of iterations per trial of 2938, 
compared to 1090 for Critic 2 (3069 for Critic 1). Thus, in our experiments, even if Critic 3 
is the only one that could extend learning, its time performance would have to be improved. 

 
 

3 Discussion and Conclusion 
 

In this work, we tested three models of Critic, connected with the same detailed Actor, in a 
S-R reward-seeking task. Results demonstrate that learning can occur with all these models, 
as they never associate non pertinent actions with the task resolution. They also show that 
both temporal representation of stimuli and coordination of several prediction units that 
autonomously specialize in a particular context – only present in Critic 3 - are more 
effective for a Critic to achieve a learning task characterized by a continuous state space 



 

 

and by non instantaneous occurrence of stimuli. However, results also indicate that Critics 
have still to be improved to extend learning to the whole experimental environment and to 
prevent a long-lasting learning process when several prediction units are used. In our future 
work, we will adapt the last Critic model to a mixture of experts method which implements 
independent experts that can learn to specialize without slowing down the learning process 
[14]. 

With such developments, Actor-Critic models could provide a powerful tool for robots 
that need to adapt autonomously in complex dynamic environments, and with unfamiliar 
perceptive characteristics. These models constitute the most common hypothesis for the 
modelling of S-R learning process, which is supposed to be located in the part of the 
vertebrate's basal ganglia bound to the dorsal striatum. However, another hypothesis, based 
on recent electrophysiological studies, showing that dopamine has a more complex pattern 
activity than being a simple reinforcement signal, proposes an alternative model to the TD 
rule based on a Hebbian learning rule using glutamate reinforcement signals [9]. Another 
perspective of our work will consist of comparing both hypotheses. 
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