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Abstract. In this paper we present a method to anticipate periodic movements 
in a multi-agent reactive context, of which a typical example is the guard who 
patrols. Our system relies on a dynamic modeling of motion, based on a state 
anticipation method. This modeling is achieved with an incremental learning 
algorithm, dedicated to 3D real time environments. We analyze the perform-
ance of the method and demonstrate its usefulness to improve the credibility of 
pursuit and infiltration behaviors in front of patrolling agents. 

1   Introduction 

In a dynamic multi-agent environment, the reactive anticipation of movements of an 
opponent may be crucial to survive. In this paper, we focus on the anticipation of the 
motion of an agent who follows a well-defined periodic path. The guard who goes 
his rounds is a typical example. This guard is going to face another agent, for whom 
he will be either a prey or a predator. If the guard is a predator, it may induce several 
problems for the other agent: how to cut his trajectory without being seen, how to 
mislead him in another direction, etc. In the other case, the agent has to intercept the 
guard in what he thinks is the most favorable way for himself. Various criteria can 
be used, such as the quickest way, the one with the least hazard, etc. The method 
presented in this paper deals with this kind of matters. It is based on an incremental 
modeling of periodic movements carried out by a learning algorithm, dedicated to 
3D real time environments. 
Hereafter, we will use the verb “to patrol” in the meaning of “to patrol along a well-
defined periodic path, while no major perturbation stops one’s behavior”. 
Modeling this kind of patrol is interesting for video games, particularly in FPS1 and 
strategic games. When a player commands several agents, it is interesting to be able 
to give them high level orders such as “watch a zone”, “infiltrate the enemy’s area” 
or “lay an ambush”. The “zone watching” behavior already exists in strategic games 
like StarCraft or Conflict Zone. But players miss infiltration or ambush behaviors 
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orders. Our anticipation method allows one to get this kind of behaviors facing pa-
trols.  
This paper is organized as follows. In the next section we present related work re-
garding movement anticipation, especially in 3D real time surroundings. Then our 
method is explained in section 3. In section 4, our main results are presented and 
discussed. The following section discusses the possibility to apply our algorithm for 
the video game prey/predator context. In section 6, we discuss the benefits and limits 
of our method. Finally, we highlight the role of anticipation in our approach. 

2   Background 

A classification of anticipatory mechanisms is proposed in [1]. It describes four kinds 
of anticipation: implicit, payoff, sensorial and state-based. Our approach deals with 
the fourth category: state anticipation. To anticipate the movement of a patrolling 
agent, we build a model of the movement. This model allows the explicit simulation 
of the future motions of the agent. These predictions are directly used to improve 
escape or pursuit abilities and to obtain infiltration and ambush behaviors. 

Christophe Meyer’s SAGACE method [4] provides another example of state an-
ticipation. His system learns how to anticipate the actions of a human opponent in 
the context of repeated games with complete or incomplete information. It is based 
on two Learning Classifier Systems (LCSs) whose rules can evolve thanks to a Ge-
netic Algorithm. The first one models the opponents’ behaviors, the other one plays 
depending on this model. These systems refine themselves during each game. Tested 
on the game ALESIA, with opponents using a fixed strategy, this method gives very 
good results because it determines an adapted strategy. However, it is designed to be 
used in “turn by turn” games. It seems that the SAGACE method is difficult to adapt 
to continuous real time games because LCSs scale poorly to continuous domains [2]. 

For continuous environments, Craig Reynolds developed algorithms to simulate 
motion behaviors in a visually credible way, notably of groups of animals, such as a 
fish shoal or a bird flock. These algorithms use simple and very quickly calculated 
mechanisms and which, combined, well adjusted and applied in a reactive way 
(about 30 times a sec) offer realistic motion results. A pursuit behavior endowed with 
a capacity of anticipation is proposed in [5]. It consists in leading the predator to-
wards an estimation, at T steps of time ahead, of the prey’s position. To realize this 
prediction, the predator supposes that the prey’s speed will remain constant. The 
issue is to determine T. Reynolds suggests a simple method based on the distance 
between the prey and the predator, which is: DcT = , where D is the prey/predator 
distance and c a parameter. This prediction is carried out at each time step, using the 
last observed velocity vector of the prey. This method does not pretend to be optimal, 
but improves the credibility of the pursuit behavior. Indeed, the extremely quick 
calculation does not reduce the agent’s reactivity, and it seems to pursue his prey in a 
more efficient manner. 



However, such anticipation finds its limits in the periodic motion framework. As 
an example, if the prey is following a circular closed path, if it is going faster than 
the predator and the parameter c is not well adjusted, this one will move on a smaller 
circle inside the one followed by the prey, without ever reaching it (see fig 1).  

 

 
Fig. 1: A pathological case for Reynolds’ pursuit behavior 

 
Our method solves this kind of problem thanks to a more sophisticated model of 

the prey’s motion than Reynolds’ one (which is limited by the fact that the velocity 
vector is supposed constant). This model is learned in an incremental and reactive 
way and provides an estimation of a crossing point with the prey’s trajectory without 
reducing the predator’s reactivity. 

Cyril Panatier [6] exposes another motion anticipation method, based on potential 
fields. The method is tested in a real time 3D environment with agents divided into 
two categories: friends and opponents. Each side has to push some pucks towards an 
opposed zone. Only one agent, the “adaptive” one, tries to interpret the others’ 
movements in order to guess who his friends are. It assumes that the agent’s velocity 
results in a combination of attraction/repulsion forces caused by other agents. To 
calculate the others’ attraction/repulsion coefficients, the adaptive agent uses his 
surrounding perception, i.e. every agent’s position, and his memory of the last per-
ception and calculation. Thus it learns the potential field functions of every agent, in 
an incremental manner. Once the coefficients are calculated, the adaptive agent gets 
a global transition function letting him simulate the movement of each agent. In 
order to choose his next behavior it performs simulations of each agent motion. Then 
the selection is made by comparing the outcomes of each behavior. 

This kind of anticipatory mechanism eventually endows one with infiltration or 
ambush abilities, but not facing a patrol. Indeed, by definition, the patrol’s path is 
defined independently of the current behavior of other agents. Therefore the interpre-
tation of a patrolling guard, by the mean of potential fields, would not result in a 
correct model. 

In the video game Quake III, more centered on the prey/predator relationship, 
John Laird explains how his quakebot [7], based on Soar architecture, can anticipate 
some movements and other actions of his opponents. The bot starts by modeling its 
opponent from its observations. The model consists in observable variables like posi-
tion, health, and current weapon, as well as non observable ones such as the current 
aim, which has to be guessed. Then he predicts the future behavior by simulating 
what he should do if he was in his opponent’s situation with his own tactical knowl-
edge. Thus Laird assumes that the enemy’s goals and tactics are basically the same 

 Predator 

Prey 



as the quakebot’s. Using simple rules to simulate his opponent’s actions, the bot 
anticipates until he finds an interesting or too uncertain situation. The prediction is 
used to lay an ambush or to deny the enemy of a weapon or life bonus. This anticipa-
tory mechanism, whose calculation takes a lot of time, is used only under some con-
ditions in order not to reduce the bot’s reactivity. Designed to anticipate human play-
ers’ actions, this method seems unable to anticipate patrol movements. Indeed, in 
order to anticipate the guard’s periodic motion, the bot should be able to consider the 
“patrol” mode like an internal state and above all, to model the path. As far as we 
know, this modeling capacity is not part of to the quakebot’s characteristics.  

We propose to address this problem thanks to our periodic motion modeling 
method viable in a highly reactive 3D environment such as Quake III’s. 

3   Movement learning algorithm 

Our algorithm is dedicated to a real time modeling of periodic motion in 3D worlds. 
The model performs a linear approximation of motion so as to anticipate the next 
position. The velocity is supposed constant on each segment, equal to the average of 
velocities observed between both extremities of the segment. When the agent accel-
erates, the anticipation happens to be wrong and the model is updated. In order to do 
so, edges are adapted permanently to fit to the motion points that present the strong-
est accelerations. This dynamical adaptation is made through experience, justifying 
the notion of learning. It is driven by comparisons between predictions and observa-
tions and implies a motion abstraction. Hereafter, we call “track” the motion model. 

3.1   Model  

The model itself consists of a circular chained list. The circularity of the list means 
that the motion is considered periodic a priori. The maximal size of the list is the 
only model parameter. List elements are called “edges”, they are made of four com-
ponents: 

1. a position vector in 3D space 
2. a distance: estimation of the distance between last and current edges. 
3. a time: estimation of run time between last and current edges. 
4. a radius: estimation of the maximal distance between prediction and 

observation on the segment. 
Figure 2 illustrates the relationship between a 2D motion and the track. There are:  

• The motion trajectory: undulant pull. 
• The corresponding learned model: arrows linking A to B, B to C etc., edges 

and the grey circles that symbolize uncertainty radius of these edges. 
• The position of the observed object at instant t: the star 
• The prediction of the model for the same instant t: the dotted circle. 

As shown by the orientation of the arrows, A is before B in the list. If A is the last 
point of the trace reached, then the motion prediction is made according to the [AB] 



segment and the uncertainty radius in B. The prediction is made of a position and a 
radius representing an uncertainty. In other words, it points out that the object 
should be in a perimeter around an accurate point. This uncertainty can be inter-
preted like a motion abstraction carried out by the algorithm. 
 

 
Fig. 2: example of track 

 
On this scheme, the prediction is a success because the star is inside the dotted circle. 
Along time, the dotted circle moves from A to B where its radius will become the 
next edge’s one, etc. Its velocity is constant on a segment: it represents an approxi-
mation of the average speed of the observed object on this segment. 

3.2   Algorithm outline 

At any time, the algorithm compares the position vector and observation date with 
the prediction realized thanks to the current model, and the model is updated accord-
ing to the comparisons. When the prediction is wrong, a new edge corresponding to 
the current observation is added in the list. Then, in order to keep the model size 
constant, the algorithm must suppress an edge in a relevant way. The selected edge is 
the one whose suppression would involve a minimal loss of accuracy in prediction. 
The rest of the list is then updated in order to maintain the reliability of the model. 
We define the model uncertainty as the average of the edges’ radius weighted by the 
length of the corresponding segments. The model accuracy is the opposite of uncer-
tainty. The selection of an edge is computed by anticipating the update of the list. 
Indeed, the uncertainty of the model grows during the update. Let A, B and C be 
three consecutive points of the track (see Fig. 3). Considering that B is selected then 
C is updated in the following way: 

• ABBCAC DDD +=  

• ABBCAC TTT +=   

• The radius 1+tR  is computed as:  
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Where ABD  and BCD  are the distances from A to B and from B to C; ABT  and 

BCT  indicate the running time in the same way. H points to the position estimated 
when the real object is in B. At this moment, the gap between prediction and reality 
is theoretically2 maximal on the segment [AC]. 

 
 

 
Fig. 3: uncertainty calculation 

 
Another problem to solve is the discovery of the period. To know when the starting 
point is reached, the algorithm uses an elementary distance based on the average of 
the observed movements. If, for any reason (noise, sampling, etc.), the algorithm 
does not detect when the starting point is reached, then a dilation phenomenon ap-
pears, the track trying to model two or more periods as a single one. To deal with 
this problem, we have developed a mechanism that deletes the current first edge of 
the model when the position of a non-predicted observation is very close to another 
edge. This heuristic works quite well but can involve the inverse effect: the retraction 
phenomenon, when the trajectory has many intersection points with itself. The more 
intersection points, the more possibilities to meet a situation where the anti-dilation 
mechanism is triggered. It can result in a track reduced to a single segment to model 
the whole trajectory.  The algorithm complexity in time and space is O(n) where n is 
the maximal size of the list. We also designate this size as “model complexity”.  

4   Experiments and results  

We have tested our algorithm on several noisy periodic movements. The motion 
learning performance is evaluated according to two criteria linked with predictions: 

o The track reliability is the right predictions rate, during one period. 
o The uncertainty, as defined above. 
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this is why we need to increase the radius. 
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Hereafter, we present results on two particular trajectories, in 8 and in W shapes. We 
define critical points as the points that present an outstanding acceleration. The 
intersection points of the trajectory with itself are also important. They make the 
discovery of period more difficult because of the mechanism used to solve the dila-
tion problem. Thus the number of critical and intersection points determine the mod-
eling difficulty. For these examples, the guard moves with a constant speed. There-
fore the critical points correspond only to the curves’ acute turns. Figure 4 shows the 
8-trajectory endowed with 4 critical points (white squares in the initial curve picture) 
and the three tracks obtained after two periods. These tracks consist of 4, 12 and 24 
edges. The circles symbolize the uncertainty radius of tracks’ edges. 

    
Figure 4: initial trajectory and models with 4, 12 and 24 edges 

We can see that the edges are distributed around the critical points. Light curves 
contain only few edges. It illustrates the fact that the algorithm selects the trajectory 
points that present strong acceleration. Figure 5 presents the W-trajectory and some 
track obtained after two periods with 5, 10 and 20 edges models. 

  
Figure 5: Initial trajectory and models with 5, 10 and 20 edges 

This more complex trajectory has height critical points and five intersections. These 
pictures corroborate the trend brought to mind by the 8-trajectory: the more complex 
the model, the more accurate the predictions. The following graphs present the com-
parisons of uncertainty and reliability of three models of increasing complexity, 
along 10 periods regarding the two motions presented above. The values represent 
the averages from a sample of 10 tests. 
Figure 6 presents the evolution of uncertainty: 



8-movement

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

4 edges

12 edges

24 edges

W-movement

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

 
Fig. 6: uncertainty evolutions 

 
The average uncertainty on predictions tends to increase with the trajectory complex-
ity and to decrease with time and model complexity. After 3 periods, the uncertainty 
is relatively stationary. The curve that represents 12 edges model evolution on the 8-
movement gets higher after the fifth period. This corresponds to the dilation phe-
nomenon. Figure 7 deals with reliability evolution: 
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Fig. 7: reliability evolutions 

 
We can see that the reliability of the predictions is almost stationary after the third 
period. Furthermore, the 4 edges model is not complex enough to allow a reliable 
anticipation of the W-movement.  

5   Patrol anticipation application 

As outlined in the beginning of this paper, our learning algorithm has been designed 
to anticipate patrol movements in a real time 3D environment, such as rounding 
guards in a video game surrounding. We can anticipate the guard’s motions accord-
ing to two main objectives: interception or avoidance.  

5.1   Interception 

Our interception method is based on the following principle: from the motion model 
of the guard, the agent decides to intercept him at the first edge that he can reach 



before the guard by optimizing a particular criterion. The nature of this criterion 
determines the type of behavior. For instance: 

• Minimizing interception time to obtain a pursuit behavior 
• Maximizing position benefits to obtain an ambush behavior 

The choice and computation of this criterion depend on the application, which is not 
the point of this paper. To check if the agent can reach a position before the guard, 
one must estimate the running times. The guard’s running time is easy to estimate 
thanks to the track model corresponding to its trajectory. As far as the agent is con-
cerned, it depends on his own model. From a simple calculation in function of the 
distance and average speed, the estimation remains dependent on the application and 
computation possibilities. In order to demonstrate the feasibility of our method, we 
have implemented a simple demonstration of a pursuit behavior in the context of a 
“toy” video game environment with a 3D real time surrounding.  

5.2   Avoidance 

The guard’s avoidance behaviors are investigated from the point of view of infiltra-
tion, i.e. when an agent has to cross the guard’s trajectory without being seen nor 
touched. We propose a simple anticipation method allowing infiltration behaviors. 
We assume that the agent does not adapt his reactive steering parameters: once he 
starts moving, he will not stop anymore until he reaches his goal. The challenge is to 
start moving at the right moment to avoid being seen or touched. In order to deter-
mine this moment, the agent must simulate his movement as well as the guard’s on 
several steps. From the current situation, he checks at each step if he is not in a criti-
cal situation. Critical situations can be collisions, inclusions in the guard’s percep-
tion area, etc. If the agent fails, then he starts again until he finds a favorable mo-
ment to move. Here again, we have demonstrate this behavior in the same context as 
above. 

6   Discussion 

The anticipatory mechanism presented in this paper endows an agent with intercep-
tion or avoidance capabilities in front of a patrolling guard without equivalent in the 
video game research literature. We have empirically demonstrated how this mecha-
nism could be used, but we did not implement it yet in a actual video game. Actually, 
we must confess that there are not so many video game contexts in which our 
mechanism could be used. In most cases, the agents are designed to anticipate the 
human players’ behavior [4] [7]. But the human player seldom behaves in a periodic 
way. The only favorable context is when a software agent is confronted to another 
software agent. This is the case, for instance, when the human player can give high 
level orders like “keep a zone” or “invade this building” and the agent must realize 



the behavior on its own. Very few video games offer this possibility so far3 but we 
believe that this situation will change with the raise of interest in AI in the video 
games industry. 
From a more technical point of view, our algorithm still suffers from some limita-
tions. Given the dilation and retraction problems outlined in section 3, one needs to 
determine the horizon of the simulation, the number of steps and the complexity of 
the problem in a concrete way. In order to keep the algorithm reactive and to im-
prove the behaviors significantly, we must find a good compromise between the 
resources used and the accuracy of predictions. One way to act on this compromise is 
to tune the model complexity. Experiments show that to obtain reliable and accurate 
predictions, the model’s complexity must be sufficient in regard to the movements 
that must be anticipated. The more numerous the critical points and self-
intersections are, the more complex the model of the periodic motion must be. As we 
have shown, this concern is not critical since the algorithm complexity is in O(n). 
Another matter of discussion is the possibility to generalize the algorithm. An exten-
sion to the case where several guards patrol in the same area appears quite straight-
forward. On the contrary, its extension to non-periodic movements seems to be more 
difficult and should be studied in greater detail. 

7   Conclusion 

In this paper we have dealt with anticipatory mechanisms in two ways: on the one 
hand, anticipation is used to drive learning mechanisms, on the other hand, the 
learned model results in the possibility to anticipate periodic movements through 
mental simulations. Our system uses a dynamic modeling of movement, driven by an 
anticipatory mechanism. It is a clear case of state anticipation where the prediction 
error is used as a feedback signal to improve the model at each time step. Thanks to 
an incremental learning algorithm dedicated to real time 3D environments, it en-
dows an agent, among other things, with infiltration and pursuit behaviors. Based on 
distances computation, the algorithm can easily be extended to N dimensions space. 
Though our system has proven efficient on toy problems, its applicability to an actual 
video game still needs to be demonstrated, which we hope to do in the near future. 

References 

1. Butz, M.V., Sigaud, O. and Gérard, P. (2003) Internal Models and Anticipations in 
Adaptive Learning Systems In Butz et al. (Eds) LNCS 2684 :Anticipatory Behavior in 
Adaptive Learning Systems , pp 87-110, © Springer Verlag. 

                                                        
3 StarCraft and Conflict Zone are notable exceptions. 
 



2. Flacher, F. and Sigaud, O (2003). Coordination spatiale émergente par champs de 
potentiel, Numéro spécial de la revue TSI : Vie Artificielle, A. Guillot et J.-A. Meyer 
(Eds), Hermès, 171-195. 

3. Parenthoën, M., Tisseau, J. and Morineau, T., in Rencontres Francophones de la Logique 
Floue et ses Applications (LFA'02), 219{226, Montpellier, France, 21-22 Octobre 2002. 

4. Meyer, C., J.-G. Ganascia, and Jean-Daniel Zucker. (1997). Modélisation de stratégies 
humaines par Apprentissage et Anticipation génétiques. Journées Française de l'Appren-
tissage, JFA'97, Roscoff, France 

5. Reynolds, C. W. (1999) Steering Behaviors For Autonomous Characters, in the proceed-
ings of Game Developers Conference 1999, Miller Freeman Game Group, San Francisco, 
California, pages 763-782. 

6. Panatier, C., Sanza, C., Duthen Y. Adaptive Entity thanks to Behavioral Prediction. in: 
SAB'2000 From Animals to Animats, the 6th International Conference on the Simulation 
of Adaptive Behavior, Paris. Meyer, ... , p. 295-303, 11 septembre 16 septembre 2000.   
Accès: http://www-poleia.lip6.fr/ANIMATLAB/SAB2000/  

7. Laird, J. It Knows What You're Going to Do: Adding Anticipation to a Quakebot. in 
AAAI 2000 Spring Symposium Series: Artificial Intelligence and Interactive Entertain-
ment, March 2000: AAAI Technical Report SS-00-02. 


