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Abstract 
The Psikharpax project aims at endowing a robot with a 
sensori-motor equipment and a neural control 
architecture that will afford some of the capacities of 
autonomy and adaptation that are exhibited by real rats.  
The paper summarizes the current state of achievement of 
the project. It successively describes the robot’s future 
sensors and actuators, and several biomimetic models of 
the anatomy and physiology of structures in the rat’s 
brain, like the hippocampus and the basal ganglia, that 
have already been put at work on various robots and that 
make navigation and action selection possible. 
Preliminary results on the implementation of learning 
mechanisms in these structures are also presented. 

I. Introduction 

Since the two-month workshop of Darmouth that founded 
the field of artificial intelligence in 1956, and since the 
enthusiastic comments on the prospects of the discipline 
that this event triggered (Simon, 1957; Feigenbaum and 
Feldman, 1963), serious doubts have been raised (e.g., 
Dreyfus, 1979, 1992) about the chances that an artificial 
system might compete in the near future with the 
amazing capacities exhibited by the human brain. In 
particular, several researchers consider that it is largely 
premature to try to understand and reproduce human 
intelligence – whatever this expression really means – 
and that one should first try to understand and reproduce 
the likely roots of this intelligence, i.e., the basic adaptive 
capacities of animals (Brooks, 1999). In other words, 
before aiming at reproducing unique capacities that 
characterize man, like logical reasoning or natural 
language understanding, it might be wise to concentrate 
first on simpler abilities that human beings share with 
other animals, like navigating, seeking food and avoiding 
dangers.  In this spirit, several research efforts are 
devoted to the design of so-called animats, i.e., simulated 
animals or real robots whose sensors, actuators and 
control architectures are as closely inspired from those of 
animals as possible, and that are able to “survive” or 
fulfill their mission in changing and unpredictable 
environments (Guillot and Meyer, 2001).  

This article describes one such endeavor, the Psikharpax 
project which aims at designing an artificial rat that will 
exhibit at least some of the capacities of autonomy and 
adaptation that characterize its natural counterpart. In 
particular, this robot will be endowed with internal needs 
- such as hunger, rest, or curiosity - which it will try to 
satisfy in order to survive within the challenging 
environment of a laboratory populated with humans and, 
possibly, other robots. To this end, it will sense and act 
on its environment in pursuit of its own goals and in the 
service of its needs, without help or interpretation from 
outside the system.  

This article summarizes the current state of this project. 
In particular, it describes the robot’s future sensori-motor 
equipment and the major modules of its control 
architecture. It also describes the behaviors that the robot 
Psikharpax already exhibits in simulation. 

II. Sensori-motor equipment 

Psikharpax will be a 50cm-long robot (Figure 1) 
equipped with three sets of allothetic sensors: a two-eyed 
visual system, an auditory system calling upon two 
electronic cochleas, and a haptic system made of 50 
whiskers on each side of its head. Sensor fusion will be 
realized through the use of GVPP, a biomimetic chip 
dedicated to low-level real-time signal processing that 
already serves robot vision (Gourichon et al., 2002).  

 

 

 

 

 

Figure 1. The overall design of Psikharpax.  

Psikharpax will also be endowed with three sets of 
idiothetic sensors: a vestibular system reacting to linear 



and angular accelerations of its head, an odometry system 
monitoring the length of its displacements, and capacities 
to assess its current energy level.  

Psikharpax will be equipped with several motors and 
actuators. In particular - despite the fact that such device 
is not really biomimetic - two wheels will allow the robot 
to move at a maximum speed of a few meters per second. 
Although it will usually lie flat on the ground, it will also 
have the possibility of setting upright, as well as of 
seizing objects with two forelegs. Likewise, its head will 
be able to rotate, and three pairs of motors will actuate 
each of its eyes (Figure 2).  

 

Figure 2. An eye equipped with a camera and a log-polar 
sensor, which is actuated by three motors. The whole 
device obeys the Listing's law (von Helmholtz, 1955). 

Several low-level reflexes will connect Psikharpax’s 
sensors to its actuators, thus making it possible, for 
instance, to keep looking at an object even when its head 
is moving, and to avoid an obstacle detected by its 
whiskers or by its visual or auditory systems.  

 

III. Control architecture 

Likewise, several models of nervous circuits that 
contribute to the adaptive capacities of the rat are 
currently simulated or tested on real robots, and will be 
implemented in the final control architecture of 
Psikharpax. In particular, this artificial rat will be 
endowed with the capacity of effecting visual or auditory 
saccades towards salient objects, of relying on the optical 
flow to determine whether a given landmark is close or 
distant, of merging visual and vestibular information to 
permanently monitor its own orientation. Among such 
circuits, those that afford capacities for navigation and 
action selection have already been validated on 
preliminary versions of the future Psikharpax. The 
corresponding realizations will be now briefly described. 

    

 

   III.1. Navigation 
 
Numerous simulation models – see Trullier et al. (1997) 
for a review – call upon so-called place cells and head 
direction cells to implement navigation systems that are 
inspired from the anatomy and physiology of dedicated 
structures in the rat’s brain, like the hippocampus and the 
postsubiculum. The model described here implements a 
multiple-hypothesis tracking navigation strategy, 
maintaining a set of hypotheses about the robot’s position 
that are all updated in parallel  (Filliat and Meyer, 2003; 
Meyer and Filliat, 2003). It serves to build a dense 
topological map (Filliat and Meyer, 2002), in which 
nodes store the allothetic data that the robot can perceive 
at the corresponding places in the environment. A link 
between two nodes memorizes at which distance and in 
which direction the corresponding places are positioned 
relatively to each other, as measured by the robot’s 
idiothetic sensors (Figure 3, left). The robot’s position is 
represented by an activity distribution over the nodes, the 
activity level of a given node representing the probability 
that the robot is currently located at the corresponding 
position (Figure 3, right).  

                           

Figure 3. Left: The topological map (bottom) created by 
the robot when it explores an unknown environment 
(top).  Right: This map may be used by the robot to 
localize itself because the activity distribution of the 
nodes in the map changes as the robot moves through 
successive places a, b,…g in the environment (top). Thus, 
when the robot is at place d, a blob of activity in the map 
surrounds the node that corresponds to this place 
(bottom). The grey level of each small node in the map 
indicates its activity, ranging from 0 for white nodes to 1 
for black nodes. Larger black dots indicate the 
successfully recognized nodes. 

   III.2. Action selection 

To survive, the rat must be able to solve the so-called 
action selection problem – i.e., it must be able to decide 
at every moment what to do next in the service of its 
needs. Some of the circuits that are involved in this task 



are known to be located in basal ganglia-thalamus-cortex 
loops and have inspired the GPR model designed by 
Gurney, Prescott and Redgrave (2001). This model has 
been implemented in a Lego robot whose task was to 
efficiently select between four actions – wandering, 
avoiding obstacles, “feeding” and “resting” – in order to 
“survive” in an environment where it could find “food” 
and “rest” places (Girard et al., 2003) (Figure 4). The 
inputs to the model are variables called saliences that are 
weighted functions computed from allothetic and 
idiothetic information monitoring the urgency associated 
with each possible act. The outputs of the model are 
inhibitions assigned to each possible action. At each 
time-step, the act which is the less inhibited is performed. 
Experimental results demonstrate the model’s ability to 
promote survival in the sense that it permanently keeps 
two essential variables (Ashby, 1952) above minimal 
levels: Potential Energy (obtained via “feeding”) and 
Energy (converted from Potential Energy via “resting”). 
Moreover, the model ensures clean and efficient 
switching between actions. However, the robot’s survival 
depends on its chances of getting to the right place at the 
right moment, i.e., to a food place when it’s Potential 
Energy level is low, or to a rest place when it lacks 
Energy. Obviously, additional adaptive capacities would 
depend on the robot’s capacity to record the position of 
such places on its map and to use this map to reach such 
places when needed. This has been made possible thanks 
to a model combining navigation and action selection 
capacities. 

 

Figure 4. Left: The environment showing “food” (A) and 
“rest” (B) places. Right: A Lego robot equipped with 
light sensors (A) and bumpers (B).  

   III.3. Navigation and action selection 

The connection of the previously-described navigation 
and action selection models and their implementation on 
a simulated robot were inspired by recent hypotheses 
concerning the role of dedicated structures – like the 
nucleus accumbens in particular – and of several basal 
ganglia-thalamus-cortex loops in the rat’s brain (Girard 
et al., 2003; Girard et al., In Press). The corresponding 
model (Figure 5) involves a ventral loop that selects 
directions of movement suggested by simple sensor 
processing – according to a simple guidance strategy – or 
by a more elaborated topological navigation strategy 
(Trullier et al., 1997). The latter puts some constraints on 

action selection because the robot is committed to 
regularly return to previously mapped areas in its 
environment in order to check the correctness of the 
current map. This need is expressed by a Disorientation 
variable managed by the model, which increases when 
the robot enters unexplored areas, which decreases when 
it returns to known areas, and which affects the 
computation of saliences. Likewise, the model takes into 
account a dorsal loop that controls non-locomotor 
behaviors, i.e., those corresponding to reloading actions 
that change the Energy and Potential Energy levels.    

 

Figure 5. The model integrating navigation and action 
selection calls upon two basal ganglia-thalamus-cortex 
loops. Each loop is managed by a GPR model and the 
coordination between loops is provided by the 
subthalamic nucleus (STN) of the dorsal loop, which is 
connected to the ventral loop. The dorsal loop selects a 
reloading action among two, the ventral loop selects a 
direction of movement among 36. Inhibitory connections 
are represented by black arrows, excitatory connections 
by white arrows. 

The robot simulated in the environment on the left of 
Figure 6 survives successfully because it uses its map to 
navigate between places E and Ep where it can reload its 
Energy and Potential Energy levels. Likewise, in the 
environment on the right of Figure 6, assuming that place 
Ep1 is the only one that the robot has previously 
encountered and recorded on its map, if it decides to 
move towards that place to reload its Potential Energy 
and if it detects on its way the close presence of another 
food place like Ep2, it will give up navigating towards 
Ep1 and will opportunistically divert via Ep2. Then, 
having consumed the corresponding “food”, it will record 
the position of Ep2 on its map. Thus, next time it will 
need to reload its Potential Energy, it will have the 
choice of navigating towards Ep1 or Ep2. 

In the environment of Figure 7, the robot has the choice 
between two trajectories leading to a “food” place. The 
first one is shorter but entails passing through a 
“dangerous” place. The second one is longer, but safer. 



 

Figure 6. Two environments used to test the connection of 
navigation and action selection models. E: “rest” place, 
Ep: “food” place. 

The robot is able to decide to navigate through the longer 
path when its Potential Energy level is not low enough to 
compromise its survival by a long journey, but it chooses 
the shorter path in the opposite case, at the risk of facing 
the potential danger recorded on its map. 

 

Figure 7. Two trajectories leading to “food” places (Ep).  
One is shorter than the other but entails passing through 
a dangerous place (Danger). 

In the complex and challenging environment of Figure 8, 
the simulated robot autonomously survives, thanks to the 
numerous adaptive mechanisms and behaviors it has been 
endowed with (Girard, 2003).    

   III. 4. Learning 

In an unknown environment, a rat is able to explore it and 
to incrementally build a map that describes the topology 
of this environment. Such associative learning, which 
combines both allothetic and idiothetic data, has been 
implemented in the navigation model described above. 

However, a rat is also able to improve its behavior over 
time through reinforcement learning, i.e., thanks to 
adaptive mechanisms that raise its chances of exhibiting 
behaviors leading to rewards and that lower those of 
behaviors leading to punishments. Concerning action 
selection, a recently debated hypothesis (Barto, 1995; 
Houk et al., 1995; Schultz et al., 1997) postulates that 

such mechanisms could be mediated by dopamine signals 
within so-called actor-critic architectures (Figure 9). 

Within such architectures, an action-selection module 
plays the role of an actor, while a critic module calls upon 
both the episodic reinforcement signal rt occasionally 
generated by the robot’s actions and a dopamine signal 
that is assumed to evaluate the difference gPt-Pt-1 between 
currently expected and future rewards. This estimate is 
used in the actor module to adapt the way saliences are 
computed and used to select the most appropriate action, 
i.e., the action the most likely to maximize the reward 
that it will generate.   

         

Figure 8. A complex environment with four “rest” places 
(E), four “food” places (Ep) and two dangerous places 
(ZD).  

This type of model has been implemented in a simulated 
robot that must learn in a plus maze, and through 
successive trials, which movement to perform in order to 
get to the end of an arm where a door may provide access 
to a reward - i.e., some water to drink (Figure 10). At 
every trial, one lamp out of four is lighted indicating 
behind which door the reward is accessible. When the 
robot succeeds to get such reward, the corresponding 
lamp is turned off and the robot has to learn to return to 
the center of the maze to trigger the lighting of another 
lamp designing another reward place. This setting 
reproduces an experiment on real rats (Albertin et al., 
2000) and helps to interpret the corresponding results. 
 
Two different critic modules, respectively adapted from 
Houk, Adams and Barto (1995) and from Baldassare 
(2002), have been implemented and connected to the 
same actor module, i.e., the action selection model 
described in section III.2 above (Khamassi et al., in 
Press). The main difference between these modules is 



that the first module (Critic 1) calls upon only one unit to 
predict the reward, while the second (Critic 2) calls upon  
two. The corresponding results were compared on the 
basis of two criteria: the zone in the environment where 
the robot has already learned something - i.e., where it is 
able to select the appropriate actions to get to the reward - 
and the way the prediction errors decrease at reward 
location along successive trials - an information that is 
essential to propagate learning to other regions of the 
environment. 

 

Figure 9. The actor-critic model of reinforcement 
learning. The actor module is a GPR model that is 
segregated in different channels, with saliences as inputs 
and actions as outputs. The critic module propagates 
towards the actor module an estimate ř of the 
instantaneous reinforcement triggered by the selected 
action. 
 
It thus turns out that Critic 2 gives better results than 
Critic 1 (Figure 11) but that the corresponding module 
has still to be improved, for instance through the use of a 
greater number of prediction units,  to let learning extend 
to the whole experimental environment and to speed up 
the corresponding process. 

 

         

Figure 10. Left: the robot in the plus maze environment. A 
lighted lamp indicates which door (in white) leads to 
reward. The other doors do not lead to reward and are 
shown in black. Upper right: the robot’s visual 
perceptions. Lower right: activation level of each channel 
in the actor module. 

          

Figure 11. Reinforcement learning results obtained with 
an actor-critic architecture in which two different critic 
modules have been tested (left: Critic 1; right: Critic 2). 
Depending on which module is used, the correct actions 
to perform are learned in specific regions of the maze 
(top: white areas in the plus maze) and the improvement 
patterns of the prediction error at reward location over 
successive trials are different (bottom).   

IV. Conclusions 

The Psikharpax project aims at designing an artificial rat 
able to “survive” in a laboratory populated by humans 
and other robots. This animat will be endowed with 
numerous sensors and motors that are currently under 
development and that will serve to implement various 
reflexes. Its control architecture has been already tested in 
simulation and implemented on simpler versions of the 
future robot. In particular, models for navigation and 
action selection - which afford capacities of associative 
and reinforcement learning - have been successfully 
tested. It thus appears that Psikharpax will be able to 
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explore an unknown environment, to build a topological 
map of it, and to plan trajectories to places where it will 
fulfill various internal needs, like “eating”, “resting”, 
“exploring” or “avoiding danger”. The first version of 
such an efficient robot is expected to be available at the 
end of year 2005: still a long way to the "whole rat" that 
Dennett (1978) - the spiritual father of the “whole 
iguana” - might have advocated; even a longer way to the 
intelligence of man. 
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