
A biomimetic reactive navigation system using the optical flow  
for a rotary-wing UAV in urban environment. 

 

Laurent Muratet , Stéphane Doncieux , Jean-Arcady Meyer  

AnimatLab, LIP 6, University of Paris 6 - CNRS, France 

Abstract— Flying insects, such as houseflies or bees, 
have sensory-motor abilities that still outperform 
those of UAV. Beyond their flying manoeuvrability, 
they benefit from a reactive navigation system that 
enables them to wander in cluttered environments 
thanks to visual information. Their nervous system, 
relatively simple compared to that of other animals, 
exploits this information to efficiently extract the 
optical flow, which informs them about the distances 
of perceived objects. A navigation strategy that 
exploits the optical flow to avoid collisions with both 
lateral and frontal obstacles has been used here to 
control a realistic simulated rotary-wing UAV in a 3D 
urban textured environment.  
 
 
I. Introduction 
 
Flying robots are specific platforms whose control raises 
new problems with respect to ground robots.  
For instance, they can hardly call upon usual sensors to 
navigate in their environment because infra-red sensors 
are sensitive to external light and can detect nearby 
obstacles only; because sonar sensors are too slow or too 
heavy for small platforms; and because lasers are too 
dangerous to be used in urban environments. Not 
surprisingly in these conditions, there is currently no 
obvious solution to the problem of deciding with which 
sensor to equip a small UAV capable of flying in an 
urban environment without hitting obstacles.  
In this paper, we draw inspiration from biology to assess 
the capacity of vision to tackle this problem. Indeed, 
visual images provided by a moving camera inform about 
the structure of the environment and notably about the 
distance of surrounding obstacles. This information can 
be extracted from the analysis of pixel movements in the 
image, i.e., by what is called the optical flow. Because an 
equivalent strategy has been exploited for millions of 
years by flying insects or birds, we have implemented it 
on a simulated helicopter moving in a realistic 3D 
environment to assess its adaptive value in these 
conditions.  
 
Results to be shown here are based on a realistic physical 
model of a rotary-wing UAV, which is combined with a 
3D-engine that generates images that are used by the 
obstacle-avoidance system. This system interacts with a 
low-level controller in charge of keeping the helicopter as 

stable as possible. The 3D environment is generated and 
monitored with Crystal Space1, an open source software. 
A real-time correlation-based algorithm is used to 
compute the optical flow. 
 
The paper successively describes the physical model of 
the UAV and its low-level controller, the optical flow 
algorithm, the navigation strategy and its biological 
background, the high-level controller for obstacle-
avoidance. The results of several simulations realized in 
three different urban environments are then presented and 
discussed. Finally, possible improvements of the system 
are suggested. 
 
 
II. The simulated UAV platform 

 
 The physical model 

  
The simulated robot is a rotary-wing UAV inspired from 
the Concept 60 SR II (Figure 2), a remote-controlled 
helicopter produced by the Kyosho Company. It has six 
degrees of freedom: three coordinates (x, y, z) and three 
attitude angles, i.e., the yaw (ψ), pitch (θ) and roll (φ). It 
weights 4.5 kg, with a length of 140 cm, a width of 15 cm 
and a height of 47 cm. Its main rotor has a diameter of 
150 cm while that of the tail rotor is 26 cm. It is assumed 
to be able to carry the visual system described below. 
 
 

 
 

Figure 1. The Concept 60 SR II. 
 
 
                                                
1 http://crystal.sourceforge.net 



To simulate this engine, we used Autopilot2, a physical 
simulator that has already been efficiently applied to such 
purpose3. 
 
 

 The robot’s sensors and  effectors 
  
The navigation strategy implemented in this work called 
upon seven sensors: a video camera, two accelerometers, 
two gyros, a compass and an altimeter. 
Data acquisition by the video camera is simulated using 
the realistic 3D environment generated by Crystal Space. 
This software outputs 25 images per second that make it 
possible to compute an optical flow that can be used by 
the high-level controller to avoid obstacles.  
Inertial information is obtained from the attitude angles 
and from the speed of the UAV that are provided by the 
physical model. These values are corrupted by a Gaussian 
noise that simulates measurement errors.  
 
 

 The robot’s low-level controller 
  
A helicopter is an unstable platform that must be 
controlled permanently. Therefore, besides using the 
optical flow to monitor horizontal displacements that 
would serve to avoid obstacles, the six degrees of 
freedom of the robot must be controlled in parallel. To 
this end, a low-level controller has been designed that 
makes possible a flight in straight lines, with a small 
lateral component (Vy) and at a constant altitude. This 
low-level controller capitalizes upon six PID blocks 
(Figure 2) whose inner coefficients were empirically 
determined during the experiments. More specifically, the 
main rotor collective block is used to keep the helicopter 
at a target altitude. The tail rotor collective block controls 
the yaw motion during turns and compensates the anti-
torque generated by the main rotor in order to keep a 
target heading Ψtarget. The longitudinal attitude block 
regulates the pitch and, consequently, the forward motion 
Vx. The lateral attitude block controls the roll and the 
lateral motion Vy that the strategy described below needs 
to keep as low as possible. 
θ, φ, Vx and Vy are obtained trough integration of gyro 
and accelerometer values. Z is obtained from the 
altimeter and Ψ from the compass. 
This low-level controller efficiently keeps each of the 
DOF, but can't avoid small pitch, roll and heading 
oscillations. As they corrupt the computation of the 
optical flow, a simple linear filter that simulates a 
mechanical gyro stabilization system4 has been used to 
eliminate these oscillations. 
 
                                                
2 http://autopilot.sourceforce.net 
3 http://autopilot.sourceforge.net/gallery.html 
4 http://www.ken-lab.com/stabilizers.html#KS2 

 
 

Figure 2. The low-level controller calling upon six PID 
modules. Z-target remains constant and Vy-target remains null 
during an experiment. Ψtarget and Vx-target are determined 
by the high-level obstacle-avoidance controller. The 
dynamics of the helicopter depend upon four output 
signals: B, A, M and T.  
 
 
III. The optical flow 
 

 Computational principle 
 
The optical flow perceived by a camera is the velocity 
field created by the projection of the scene onto the image 
plan. Two main categories of algorithms may be used to 
compute this flow [1]. Those that are based on 
differential methods focus on accuracy. Those that are 
based on correlations are targeted at robustness and have 
been preferred in the present application.  
 
Standard correlation-based methods try to determine, for 
each pixel (x,y), the v*v pixel-wide patch Pv centered on 
(x+u,y+w) in frame t that best matches the patch Pv 
centered on (x,y) in frame t-1. Matching patches are 
sought in a square region delimited by points of 
coordinates (x-n,y-n) and (x+n,y+n). For each possible 
match, a matching strength value M is computed from 
equation (1) that compares the pixel intensities I of the 
two patches. We use f, the absolute difference between 
their intensities, to compare two pixels. 
 
For each pixel (x,y): 
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Under these conditions, the actual motion of pixel (x,y) is 
(u,w), which corresponds  to the displacement between 



(x,y) and the centre of the patch that minimizes the 
matching function M (Figure 3). However, to determine 
this motion is computationally expensive and hardly 
applicable to real-time applications because of the 
quadratic dependency of the search upon n, the maximum 
motion detected: to find the best one, the algorithm must 
compute (2n+1)*(2n+1) matches. This is why we used a 
variant of this algorithm – the so-called real-time 
quantized version [3] - that was more compatible with 
our needs. 
 

 
Figure 3: Best match between two Pv patches of pixels in 
two consecutive frames. Accordingly, pixel (0,0) is 
assumed to have moved to position  (2,-4) between frames 
t-1 and t. In this example, 3*3 pixel-wide patches, and a 
target region defined by a n value of 5, were used.  
 

 Real-time application 
 
The real-time quantized algorithm is a correlation-based 
algorithm in which the search over space is replaced by a 
search over time. Using equation (1), the matching 
strength is computed in a n=1 neighbourhood. Thus, the 
possible values for u and w are restricted to the range     
{-1,0,1}. For each pixel, a motion between the image at 
time t-1 and the image at time t is computed, as well as 
motions between images at t-2 and t, t-3 and t, and so on 
until t-S, S being an empirically-determined depth value.  
 

 
Figure 4: A motion of (-1,-1) between t-2 and t is 
equivalent to a motion of (-1/2,-1/2) between t-1 and t if 
we make the assumption of a constant motion.  

 
As demonstrated on figure 4, with the assumption of 
constant motion, the actual motion of pixel (x,y) is 
(u/i,w/i), which corresponds  to the displacement (u,w) 

between (x,y) in frame t-i and the centre of the patch in 
frame t that minimizes the matching function M.  As a 
consequence, this variant evaluates pixel motions in the 
range 1/S to 1, while the original algorithm operates in 
the range 1 to n. Moreover, with n set to 1, the variant 
computes 3*3 matches per frame, i.e., 9*S matches for S 
frames.  Therefore, this method is a trade-off between a 
quadratic search over space and a linear search over time. 
There is however a slight drawback associated with this 
computational gain, because the method doesn't afford 
detecting motions greater than one pixel per frame. 
Nevertheless, this limitation may be overcome by 
considering blocks of pixels instead of isolated ones.  
Pooling pixels by blocks of p*p multiplies the amplitude 
of detectable motions by p, and reduces the number of 
pixels considered by p*p. Hence, it improves both the 
range and the speed of the algorithm. Such improvement 
has not been used here. 
 
 

 Obstacle-avoidance  
 
Biological inspiration 
 
In 1865, Von Helmholtz explained how some animals are 
able to evaluate the distances of lateral objects by using 
motion parallax. Since that time, numerous studies have 
investigated the corresponding mechanisms. In particular, 
Franceschini [6] described how the organization of the 
compound eye of the housefly, and how the neural 
processing of visual information obtained during the 
flight, allow this insect to compute its distances to lateral 
obstacles and to avoid them. This biological knowledge 
was exploited to implement a real opto-electronic device 
inspired by the visual system of the housefly on several 
terrestrial and aerial robots, thus allowing them to wander 
in their environments [6], [7] and [8]. However, the 
corresponding control laws concerned one degree of 
freedom only, and the flying robots that were used were 
not entirely free of their movements. Moreover, the real-
time computation of the optical flow calculation was 
made easy thanks to the specific environments that were 
used, in which dedicated white and black stripes helped 
to detect motion.  
 
Likewise, other scientists have understood how other 
animals use the frontal optical flow to estimate the so-
called time-to-contact, i.e., the time before a frontal 
collision is likely to occur. The gannet is supposed to use 
this information when it quickly dives to catch a fish and 
determines the exact moment when to fold its wings 
before entering into the water [9]. 
 
 
 
 
 



The high-level obstacle-avoidance controller 
 
The component of the optical flow that is required to 
avoid obstacles is generated by a forward translation of 
the observer. In this case, the horizontal velocity of an 
object is proportional to the inverse of its distance to the 
observer. 
From figure 5, one may derive the following relationship: 
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Replacing 
•
x  by Vx, 

•
Z  by –Vo and Z by d*cos(β), it 

finally appears that the pixel velocity Vx is given by 
equation: 
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From this equation, we can deduce that a strategy that 
equalizes the perceived pixel velocities will tend to 
maintain equal the distances to obstacles on both sides of 
the helicopter. This strategy is called a balance strategy 
[5].  
 

 
 

Figure 5. The moving UAV in point O perceives the 
circular object P(t) with a relative angle β. d is the 
distance between the observer and the object. Vo is the 
speed of the UAV. 
 
To be efficient, this strategy must rely on the optical flow 
that is generated by forward translations only.  
Accordingly, the high-level controller that implements it 
must make decisions about the platform’s trajectory only 
in situations where this platform is neither turning (|Ψ- 
Ψtarget|<1°) nor skidding (|Vy|<V0*0.05,  
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0 += ). When the high-level controller has 

triggered a turn by determining an appropriate Ψtarget 
value in order to avoid an obstacle, skids occur for some 
time, even after the platform gets aligned on the right 
course. To minimize such skids and to limit the risk of 
collisions, a target forward speed of 0 is transmitted to 
the low-level controller whenever the helicopter needs to 
turn. An equivalent behaviour has been observed in the 
housefly whose flight trajectories are a combination of 
straight lines and tight turns, during which any decision 
based on the optical flow is inhibited [6]. 
Under these conditions, the control law that served to 
balance the optical flow on both sides of the helicopter 
was: 
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In this equation, Vxmean

right
and Vxmean

left
represent the 

means of horizontal motions of pixels on the left and on 
the right, k being a proportionality factor. 
 
Moreover, as the optical flow algorithm can detect 
motions in a limited range only (from 1/S to 1 pixel), care 
must be taken to avoid  pixel motions getting past these 
bounds. As the horizontal pixel velocity is proportional to 
the ratio V0/d, the longitudinal speed V0 must be adapted 
to the average distance to obstacles. The more cluttered 
this environment, the slower the robot must fly, and vice 
versa.  This behaviour has been observed in bees, which 
adapt their velocity to the distance of perceived obstacles 
[10]. 
For these reasons, we compute a target speed Vx_target 
according to the following equation: 

Vx∆ _target ( )VxVxOF mean
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mean
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where OFD corresponds to the desired average optical 
flow (we empirically set  OFD to 0.06 in these 
experiments). In this equation, the maximum of the 
optical flows on both sides of the platform was used 
instead of an average value, thus avoiding premature 
accelerations in cases when near obstacles could be 
detected on one side only. 
 
Finally, the high-level controller was endowed with a 
second reflex that served to avoid hitting a front wall, a 
situation in which the lateral optical flows are equal on 
both sides of the robot. This reflex called upon a rough 
estimate of the time-to-contact τ , according to which a 
U-turn order (∆Ψtarget  = 180°) was generated when the 
quantity of movement on both sides of the image was 
above a given threshold ε.  

Thus, the high-level controller that was used in this work 
implemented a subsumption architecture [2] according to 
which the U-turn reflex had a higher priority level than 
the balance strategy. 
 
 



IV. Experimental results 
 
The controller just described has been put at work in 
three different environments. They are 100m-wide cubes, 
while the main rotor of the simulated helicopter has a 
length of 150 cm. They are closed by detectable walls 
thus making it possible for the helicopter to wander 
inside of them for a long time, if no crash occurs. Twenty 
experiments, lasting five minutes each, were performed 
in each environment. The starting point of each such run 
was a randomly-chosen position S, with no near frontal 
obstacle. 
 
We used a simulated camera with a field of view of 90 
degrees, with an extended-in-time optical flow algorithm 
using a S value of 10 steps and a 3x3 patch Pv. An input 
visual flow of 25 simulated images of 256x256 pixels per 
second was thus generated that served to control the 
helicopter (Figure 6). 
 

 
Figure 6. The left image represents the simulated 
environment. The central image shows horizontal 
motions detected by the optical flow algorithm: black 
pixels are not moving, light-grey pixels are moving 
towards the left, dark-grey pixels are moving towards the 
right. The right image indicates the velocity: clearer 
pixels move faster. 
 
Table I shows the results that have been obtained in each 
environment. Figures 7 to 9 show specific trajectories.  
 
 Env 1 Env 2 Env 3 Env 3 with 

constant ambient 
light 

Survival rate 
(%) 

 
100 

 
95 

 
70 

 
100 

Average survival 
time (sec) 

 
300 

 
299.82 

 
258.7 

 
300 

Standard 
deviation of 
survival time 

(sec) 

 
0 

 
0.79 

 
79 

 
0 

Average velocity 
(ms) 

 
0.64 

 
0.56 

 
0.47 

 
0.45 

Standard 
deviation of 

velocity (m/s) 

 
0.06 

 
0.03 

 
0.04 

 
0.04 

Table I. Experimental results obtained in three different 
environments. 20 experiments, lasting 300 seconds  each, 

were performed in each environment. 
 

It thus appears that the helicopter never hit an obstacle in 
the first environment, but that its survival rate dropped to, 
respectively, 95% and 70% in the two others, more 
cluttered, environments. 
To avoid the corresponding crashes, lowering the ε 
threshold implied in the τ reflex wouldn't be wise 
because it would prevent the helicopter from entering into 
narrow corridors and, thus, from exploring its 
environment.  
 

 
Figure 7: first environment including six obstacles which 
cover around 20% of the surface. S is the starting point of 

a specific trajectory among 20. 
 

A closer inspection of all the situations in which crashes 
occurred revealed that these episodes all concerned dark-
textured walls. They were due to the sensitivity of the 
algorithm to light conditions: not enough moving pixels 
being detected, the total optical flow was underestimated 
and the avoidance reflex was not triggered. This is why 
we performed a fourth series of 20 runs in Environment 
3, with the same initial conditions that were previously 
used in this environment, but using a constant ambient 
light to eliminate dark places (Table I column 4). The 
corresponding survival rate raised to 100 %. 
 

 
Figure 8: second environment including 11 obstacles 

which cover around 30% of the surface. S is the starting 
point of a specific trajectory among 20. The helicopter 

has made two U-turns to escape from dead-ends. 
 
Concerning velocity control, the average speed of the 
helicopter decreased with the number of obstacles from 
0.64 m/s in Environment 1 to 0.47 m/s in Environment 3. 
Although additional information would be necessary to 
confirm this conclusion, it seems that the low-level 



controller succeeds to adapt the helicopter's velocity to its 
local environment, confining it to a range (from 1 to 1/S) 
where the optical flow extraction algorithm works 
correctly.  

 
Figure 9: third environment including 18 obstacles which 
cover around 40% of the surface. S is the starting point of 

a specific trajectory among 20. 
 

 
V. Discussion 

 
Several improvements on the current simulations are 
conceivable at this stage of development. A first 
possibility would be to call upon evolutionary algorithms, 
like those we already applied to other flying platforms 
[4], to generate low-level controllers likely to reduce 
blind periods when the UAV is turning or skidding. Still 
another possibility would be to improve the optical flow 
extraction algorithm, notably by considering blocks of 
pixels instead of isolated ones, so as to make the 
computation less time-consuming and to detect motions 
of greater amplitude. The impact of light variations on the 
algorithm should also be considered, as this effect 
seemed to be responsible for the observed collisions in 
the experiments described above. 
 
The ultimate goal of this research effort being to 
implement the navigation strategy on a real helicopter, 
three major improvements seem necessary to bridge gaps 
between simulation and reality. In particular, a wind 
model must be added to the present system. This is an 
ambitious challenge because the dynamics of a wind 
blowing between buildings is very hard to simulate. 
Additionally, we have to assess whether the current 
simulation of the UAV's sensors is realistic enough. 
Likewise, the optical flow computation algorithm that has 
been used here must be checked on real images. 
 

 
VI. Conclusion 
 
The preliminary simulation results presented here are 
encouraging. The rotary-wing UAV is able to explore a 
cluttered environment without hitting obstacles, thanks to 
a two-level controller based on optical flow calculations 
that has been tested in unknown urban-like environments. 
This controller generates a cautious behaviour: the 

corresponding helicopter is preferentially following wide 
corridors and it tends to stay in their middle. At the same 
time, its longitudinal translation velocity is automatically 
adapted to obstacle density: the helicopter moves faster in 
free space and slows down in presence of obstacles. 
Moreover, when facing a frontal obstacle, the controller 
is able to generate a tight U-turn that ensures the UAV's 
survival. 
Several improvements to the current simulated system are 
considered in the text that should help implementing it on 
a real platform. 
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