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eAbstra
t. Fa
tored Markov De
ision Pro
esses is the theoreti
al frameworkunderlying multi-step Learning Classi�er Systems resear
h. This framework ismostly used in the 
ontext of Two-stage Bayes Networks, a subset of BayesNetworks. In this paper, we 
ompare the Learning Classi�er Systems approa
hand the Bayes Networks approa
h to fa
tored Markov De
ision Problems. Morespe
i�
ally, we fo
us on a 
omparison between MACS, an Anti
ipatory Learn-ing Classi�er System, and Stru
tured Poli
y Iteration, a general planning al-gorithm used in the 
ontext of Two-stage Bayes Networks. From that 
ompar-ison, we de�ne a new algorithm resulting from the adaptation of Stru
turedPoli
y Iteration to the 
ontext of MACS. We 
on
lude by 
alling for a 
loser
ommuni
ation between both resear
h 
ommunities.1 Introdu
tionAs [Lan02℄ did show very 
learly, Learning Classi�er Systems (LCSs) are a family ofReinfor
ement Learning (RL) systems endowed with a generalization property. Theusual formal representation of RL problems is a Markov De
ision Pro
ess (MDP),whi
h is de�ned by a �nite state spa
e S, a �nite set of a
tions A, a transition fun
tion
T and a reward fun
tion R.In the LCS framework, the states 
onsist of several independent attributes whosevalue de�ne a per
eptual situation. Indeed, instead of the (state, a
tion, payo�) triplesin the Q-Table of standard RL algorithms, a LCS 
ontains rules 
alled �
lassi�ers�organized into a [
ondition℄ part (or C part), an [a
tion℄ part (or A part) and apayo�. The C part spe
i�es the value of a set of attributes. It is satis�ed only if allvalues spe
i�ed mat
h the 
orresponding values in the 
urrent state.In the LCS framework, �nding a 
ompa
t representation is seen as a generaliza-tion problem. The generalization 
apability of LCSs 
omes from their use of don't
are symbols # in the C part of the 
lassi�ers. Indeed, a # mat
hes any parti
ularvalue of the 
onsidered attribute. Therefore, 
hanging an attribute into a # makesthe 
orresponding C part more general (it mat
hes more situations). As a result, therepresentation is more 
ompa
t.The same framework is also used in a sub-part of the Bayes Networks (BNs)
ommunity, under the name �fa
tored MDP�. Indeed, a fa
tored MDP is a MDP whereea
h state is a 
olle
tion of random variables. This representation takes advantage onlo
al probabilisti
 
onditional dependen
es among some variables to build a more
ompa
t model of the underlying MDP by fa
toring the dependent variables. Morepre
isely, a

ording to [BDH99℄, if the situation is 
omposed of n variables su
h that



any of them only depends of the value of l other variables at the previous time step,then the size of the fa
tored representation is in O(n2l) instead of O(2n).Thus the intuition giving rise to the use of fa
tored MDPs in BNs seem to beexa
tly the same as the intuition underlying LCS resear
h, parti
ularly in the multi-step 
ontext. In both 
ases, the goal is to solve MDPs with a 
ompa
t representation.Given this identity, we present a 
omparison between both perspe
tives, showingthat 2TBN, a formalism devoted to solving fa
tored MDPs in BNs, is very similar tothe one of MACS, an Anti
ipatory Learning Classi�er System (ALCS). Then, as aresult of the 
omparison, we show how the Stru
tured Poli
y Iteration (SPI) algorithmdesigned in the 2TBN 
ase 
an be adapted to MACS and we dis
uss the improvementsthat result from this adaptation.The paper is organized as follows. In se
tion 2, we brie�y present the formalismused in MACS. In se
tion 3, we present how 2TBNs ta
kle fa
tored MDP problemsand we illustrate their formalism through an example used as a basis for a 
omparison.In se
tion 4, we 
ompare the 2TBN formalism with the one used in MACS, and inse
tion 5, we show how to adapt SPI to MACS. We dis
uss in se
tion 6 the insightsthat result from this adaptation both by the 2TBN side and by the ALCS side. Finally,we 
on
lude by 
alling for more ex
hanges between both resear
h 
ommunities.2 Brief overview of MACS2.1 Anti
ipatory Learning Classi�er SystemsAs indi
ated in the introdu
tion, among RL systems, LCSs are a family of systemsdesigned to solve problems where the state 
onsists of several attributes. They takeadvantage of fa
tored representations with respe
t to plain RL te
hniques tabularQ-learning thanks to their generalization 
apability. As a 
onsequen
e, they 
an solveproblems with fewer 
lassi�ers than a system dealing with tabular representations.Most standard LCSs 
all upon a 
ombination of a RL algorithm su
h as Q-learningwith a Geneti
 Algorithm (GA) [Gol89℄. The RL algorithm estimates the quality ofa
tions in the situations spe
i�ed by the di�erent 
lassi�ers, while the GA evolvesthe population of 
lassi�ers. Thus ea
h 
lassi�er holds both an estimated qualityand a �tness. In strength-based LCSs su
h as ZCS [Wil94℄, the �tness is equal tothe estimated quality. As a result, only the 
lassi�ers spe
ifying a
tions with a highpayo� are kept. In a

ura
y-based LCSs su
h as XCS [Wil95℄, the �tness is equal to the
apa
ity of the 
lassi�er to a

urately predi
t the payo� it will re
eive. This results ina more e�
ient 
overage of the (state, a
tion) spa
e, and XCS is now the most widelyused LCS. For a general overview of re
ent LCS resear
h, see [LR00℄.Instead of dire
tly learning a model of the quality fun
tion as standard LCSsdo, Anti
ipatory Learning Classi�er Systems (ALCSs) su
h as ACS [Sto98,BGS00℄,ACS2 [But02℄, YACS [GS01,GSS02℄ and MACS [GMS03,GS03℄ learn a model of thetransition fun
tion T . This model is then used to speed up the RL pro
ess.In ALCSs, the 
lassi�ers are organized into [
ondition℄ [a
tion℄ [effe
t℄parts, denoted C-A-E. The E part represents the e�e
ts of a
tion A in situationsmat
hed by 
ondition C. It re
ords the per
eived 
hanges in the environment. Di�erentformalisms giving rise to generalization in this approa
h are des
ribed hereafter.



2.2 From YACS to MACSIn ACS, ACS2 and YACS, a C part may 
ontain don't 
are symbols �#� or spe
i�
values (like 0 or 1), as in XCS. An E part may 
ontain either spe
i�
 values or don't
hange symbols �= �, meaning that the attribute remains un
hanged when the a
tionis performed. A spe
i�
 value in the E part means that the value of the 
orrespondingattribute 
hanges to the value spe
i�ed in that E part.Unfortunately, su
h a formalism 
annot represent regularities a
ross di�erent at-tributes from one time step to another, though su
h regularities are 
ommon.[01020100℄ [A
tion℄ Anti
ipated situation[0#######℄ [East℄ [???????0℄[#1######℄ [East℄ [1???????℄[##02####℄ [East℄ [????2???℄[###2####℄ [East℄ [????1???℄[####0###℄ [East℄ [?????0??℄[#####1##℄ [East℄ [?1??????℄[######0#℄ [East℄ [??0?????℄[#######0℄ [East℄ [???1????℄[########℄ [East℄ [??????0?℄Resulting anti
ipations → [11012000℄or [11011000℄Table 1. During the integration pro
ess, MACS s
ans the E parts and sele
ts 
lassi�erswhose A part mat
hes the a
tion and whose C part mat
hes the situation. The integrationpro
ess builds all the possible anti
ipated situations with respe
t to the possible values ofevery attribute. Here, MACS anti
ipates that using [01020100℄ as a 
urrent situation shouldlead either to [11012000℄ or to [11011000℄. If all the 
lassi�ers were a

urate, this pro
esswould generate only one possible anti
ipation.In order to dis
over more regularities, our se
ond ALCS, MACS [GMS03,GS03℄,uses don't know symbols �?� instead of don't 
hange symbols in the E part. Thanks tothat formalism, the overall system gains the opportunity to dis
over regularities a
rossdi�erent attributes in the C and the E parts. As a result of this modi�
ation, we 
ansplit the model of transitions into modules predi
ting the value of di�erent attributes.The 
onsequen
e is that the system needs an additional me
hanism whi
h integratesthe partial anti
ipations provided by the modules and builds a whole anti
ipatedsituation, without any don't know symbol in its des
ription, as shown in Table 1.2.3 The ar
hite
ture of MACSThe MACS ar
hite
ture is illustrated in �gure 1. As shown in [GS03℄, it is similar to aDyna ar
hite
ture in all respe
ts, but it is additionally endowed with a generalization
apability. It 
onsists of a model of transitions, whi
h models the dynami
s of theagent-environment intera
tions, and a model of the payo�, whi
h models the payo�sthat the agent 
an get from its a
tions. The main pro
esses in MACS are devoted tolearning the model of transitions thanks to dedi
ated generalization and spe
ializationheuristi
s, and learning the model of the payo�, a

ording to di�erent 
riteria thatendow MACS with an a
tive exploration 
apability. These pro
esses have already
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Fig. 1. MACS global ar
hite
ture.been presented in detail in [GMS03℄. We must just mention that MACS uses themodel of transitions to speed up the learning of the model of the payo� thanks to aValue Iteration algorithm that is somewhat ine�
ient: the model of the payo� 
onsistsin storing two values for ea
h en
ountered state without generalization, and ValueIteration requires a 
ostly lookahead operation involving the anti
ipations integrationpro
ess des
ribed in se
tion 2.2.Experimental results presented in [GMS03℄ demonstrated that the new formal-ism used by MACS a
tually a�ords more powerful generalization 
apa
ities than theformer ones, without any 
ost in terms of learning speed.3 DBNs and 2TBNsAs we have said in the introdu
tion, a fa
tored MDP is a MDP where all statesare de�ned as 
olle
tions of random variables Xi. The set of states 
an be denoted
S = (X1, ..., Xn). Ea
h variable Xi takes its value xi in a domain: ∀i, xi ∈ Dom(Xi).Thus a given state s is de�ned by a ve
tor of values of the random variables: we have
s = (x1, ..., xn) whi
h de�nes the states exa
tly as in LCSs. A Bayesian Network (BN)is a tool to deal with probabilisti
 dependen
ies among these random variables.The BN framework [Pea88℄ in
ludes a graphi
al formalism devoted to the repre-sentation of 
onditional relations between variables. Graphi
ally, variables are rep-resented as nodes in a Dire
ted A
y
li
 Graph. A link between two nodes representa probabilisti
 dependen
y between the 
orresponding variable su
h that the jointprobability of all variables 
an be de
omposed into a produ
t of 
onditional proba-bilities of ea
h variable, given its parents in the graph. Hen
e BNs provide an easyway to spe
ify 
onditional independen
es between variables. Moreover, they providea 
ompa
t parameterization of the model.Dynami
 Bayesian Networks (DBNs) [DK89℄ are BNs of sto
hasti
 pro
esses, rep-resenting (temporal) sequential data. They extend BNs by fo
using on modeling




hanges on sto
hasti
 variables (Xt+1 = f(Xt) ) over time with a BN. Hen
e thesequen
e is in�nite but the time sli
e is �nite and (usually) stati
. DBNs generalizeHidden Markov Models (HMMs), Linear Dynami
al Systems (LDSs) and Kalman �l-ters, and represent (hidden and observed) states in terms of probabilisti
 variables.Note that the assumption of time sli
e invariability (relations do not 
hange over time)may be relaxed for the parameters as well as for the stru
ture. Usually, a DBN is rep-resented by 2 time sli
es, under the name 2TBN (2 Time (sli
es) Bayesian Network).The former sli
e represents the initial state of the model; the se
ond one represents thegeneri
 state. The relations between the two sli
es represent the sto
hasti
 pro
ess.In the following we will 
onsider restri
tions of 2TBNs where there are no relationsbetween variables in the se
ond time sli
e.With respe
t to the standard BNs, this parti
ular 
lass is very restri
ted, but itis nevertheless ri
h enough to adequately represent fa
tored MDPs and give rise totra
table algorithms, whereas more powerful representations are generally untra
table.In order to show how 2TBNs are used to model a fa
tored MDP, we will use theexample given in [BDG00℄. In this example, a robot must go to a 
afé to buy some
o�ee and deliver it to its owner in her o�
e. It may rain on the way, in whi
h 
asethe robot may get wet, unless it has an umbrella. There are six boolean propositionsdes
ribing the state of the system:� O: the robot is at the o�
e (O means that it is at the 
afé);� R: it is raining; W : the robot is wet;� U : the robot has its umbrella;� HCR: the robot has 
o�ee; HCO: the owner has 
o�ee.The robot 
an take four a
tions:� Go: move to the opposite lo
ation; GetU : get the umbrella.� BuyC: buy 
o�ee; DelC: deliver 
o�ee to the user;A 2TBN 
an be used to model the e�e
t of ea
h a
tion on the state of the problem.Su
h 2TBNs are 
alled �a
tion networks� [DG94℄. In �gure 2.a, we show the a
tionnetwork 
orresponding to the a
tion �DelC�.
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(c)Fig. 2. (a) The a
tion network for DelC, represented as a 2TBN; (b) The CPT for
HCO/DelC; (
) The 
orresponding tree representationFrom this network we 
an see for instan
e that, when the robot delivers 
o�ee, thefa
t that he is wet afterwards does only depend on whether he was wet beforehand,



sin
e delivering 
o�ee does not happen outdoors. On the 
ontrary, the fa
t that theowner �nally gets some 
o�ee depends on three propositions: is the robot at the o�
e?did the robot have 
o�ee? did the owner have 
o�ee?There is one su
h network per a
tion. But these networks do only indi
ate whetherthere is a probabilisti
 dependen
y or not, they do not provide enough informationto determine the a
tual dynami
s of the environment. The missing information isrepresented in Conditional Probabilisti
 Tables (CPTs). An example of CPT is shownin �gure 2.b. This table gives the probability that HCO will hold depending on O,
HCR and HCO if the agent takes a
tion DelC. Finally, the same information 
anbe represented in a tree, as shown in �gure 2.
. One su
h table or tree must be givenfor ea
h variable and for ea
h a
tion in order to get a 
omplete spe
i�
ation of thedynami
s of the fa
tored MDP.
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0.0 0.10.9 1.0Fig. 3. The reward tree for the 
afé exampleFinally, one 
an also represent the reward fun
tion of the problem with a de
ision,tree, as shown in �gure 3. Let us now 
ompare this formalism with the one used inMACS before 
omparing the pro
esses used to deal with these representations.4 Comparison of formalismsFirst of all, at the level of the organization of data, the representations in 2TBNs andMACS are slightly di�erent.In MACS, ea
h module in the model of transitions tries to predi
t the value ofone parti
ular attribute for all possible situations and all possible a
tions, while inthe standard BN representation, there is one 2TBN for ea
h possible a
tion and then,for any su
h a
tion, there is one CPT for ea
h predi
ted attribute.Thus in the 2TBN representation, the distin
tion between a
tions is prior to thedistin
tion between attributes, while it is the 
ontrary in MACS. But this is just adi�erent organization for the same data.At a lower level, the 
ontent of these data is similar. Indeed, for a given a
tion,CPTs 
onvey the same information as a subset of possible modules dedi
ated to pre-di
ting the same attribute for the same a
tion in MACS, as shown in table 2.Thus expressing a CPT as a set of MACS 
lassi�ers is straightforward: for ea
hleaf in the tree, add a new 
lassi�er with a # in front of all irrelevant variables inthe C part, the 
onsidered a
tion in the A part, and an E part whose only spe
ializedattribute is the one predi
ted by the CPT.When this is done, one obvious di�eren
e remains: the CPT 
onveys a probabilitythat the attribute will take the predi
ted value, while MACS 
onveys a deterministi
information. Indeed, MACS was designed to solve deterministi
 MDPs and should beextended in that dire
tion if we want to redu
e the distan
e between both formalisms.



W U R O HCR HCO A
tion W U R O HCR HCO missing proba.# # # # # 1 DelC ? ? ? ? ? 1 1.0# # # 1 1 0 DelC ? ? ? ? ? 1 0.8# # # # 0 0 DelC ? ? ? ? ? 0 1.0# # # 0 # 0 DelC ? ? ? ? ? 0 1.0Table 2. The CPT for HCO/DelC represented with the formalism of MACSAnother important di�eren
e 
omes from the way the payo� is modeled in bothapproa
hes. In MACS we map the values to all situations en
ountered, giving rise toa �at (situation, value) table. On the 
ontrary, [BDG95℄ indi
ates that the rewardfun
tion 
an be represented as a tree whose nodes are variables, as shown in �gure 3.This gives rise both to a more 
ompa
t representation and to more e�
ient algorithms,as we will dis
uss now.5 In
orporating a 2TBN planning algorithm in MACSThe main di�eren
e between me
hanisms in MACS and in 2TBNs 
omes from thefa
t that MACS is designed to learn by itself a representation from its intera
tion withthe MDP thanks to a RL me
hanism, while in most 2TBNs 
ases the representationis 
onsidered as given by the user.Thus MACS must solve both a learning problem and a planning problem whilemost 2TBNs just solve the planning problem. Note however that some authors areinterested in learning the stru
ture of DBNs [FMR98,HGC95,Gha97℄, but in generalthey do so separately from ta
kling the planning problem, drawing inspiration fromalgorithms developed for Hidden Markov Models [RJ86℄, and they fo
us on more
omplex stru
tures than 2TBNs.As a 
onsequen
e of this di�eren
e, in order to go further in the 
omparison, wemust fo
us on the way the planning problem is solved both in MACS and in 2TBNs.5.1 Stru
tured Poli
y IterationThe algorithm we will present in order to build an optimal poli
y in 2TBNs is Stru
-tured Poli
y Iteration (SPI) [BDG95,BDG00℄. SPI is inspired from the tabular Mod-i�ed Poli
y Iteration (MPI) algorithm [How71,PS78℄ improved in order to work ex-
lusively on tree stru
tures, whi
h results in favorable 
ases in a signi�
ant redu
tionof the 
omputational 
ost of the algorithm with respe
t to tabular MPI. For a moredetailed presentation of SPI than the one given below, read [BDG00℄.The 
entral operation 
ommon to all dynami
 programming and reinfor
ementlearning algorithms is the propagation of values or qualities among the states of theMDP 1, a

ording to the Bellman equation:
∀si ∈ S, QV

a (si) = R(si, a) + β
∑

sj∈S

T (si, a, sj)V (sj) (1)The key idea in SPI 
onsists in a
hieving this propagation more e�
iently thanin tabular representations by grouping together the states that share the same values1 This pro
ess is 
alled �De
ision-Theoreti
 Regression� in [BDG00℄.



into tree-based representations. Indeed, all stru
tures in SPI are de
ision trees whoseleaves 
orrespond to groups of states sharing the same values on the variables presentin the parent nodes of these leaves.In this tree-based representation, we note:� QTreeV
a (s) the quality tree of a
tion a given the value fun
tion V ;� RTree(s, a) the tree of rewards obtained from performing a
tion a in state s;� V Tree(s) the value tree of state s.As a 
onsequen
e, the Bellman equation be
omes:

∀si ∈ S, QTreeV
a (si) = RTree(si, a) + β

∑

sj∈S

T (si, a, sj)V Tree(sj) (2)The value propagation algorithm in the tree-based 
ase stri
tly follows the stan-dard algorithm for the tabular 
ase:� It starts with an initial value fun
tion V Tree0(s) = RTree(s, a).� Then, in order to update QTreeV
a (s), it looks for the term T (si, a, sj), i.e. for tran-sitions from one state to the next through a
tions, so as to propagate the valuesalong these transitions. Instead of looking for these transitions in a (st, at, st+1)table, the tree-based algorithm uses the CPT s of all a
tions, whi
h dire
tly givea tree-based representation of the same information.This algorithm 
an infer the tree-based representation of the quality of all a
tions froma tree-based representation of the 
urrent value fun
tion and ba
k, so as to perform atree-based value iteration, that we will 
all Stru
tured Value Iteration (SVI) hereafter.The details of this algorithm 
an be found in [BDG00℄.Taking SVI as a basi
 
omponent, SPI 
an be de
omposed into two stages as for allPoli
y Iteration algorithms: a Stru
tured Poli
y Evaluation 2 stage, and a Stru
turedPoli
y Improvement stage. The former 
onsists in evaluating the long term rewardthat an agent 
an expe
t from a given poli
y. It is based on the estimation of thevalue fun
tion explained above. The latter 
onsists in improving the 
urrent poli
ya

ording to the new value fun
tion 
al
ulated by the former. It 
an be seen as avariant of the former where, instead of labelling the leaves of V Tree(s) with themaximum estimated values, the algorithm labels them with the a
tions that deliverthese maximum values.5.2 CbVI, a Classi�er-based SVIAs we brie�y mentioned in se
tion 2.3, in MACS, determining the rea
hable situationsis an expensive pro
ess, sin
e it implies the partial anti
ipations integration pro
essdes
ribed in se
tion 2.2. This pro
ess is used both when the agent 
ontrolled by MACS
hooses the next a
tion and when the model of the payo� is improved thanks to aValue Iteration algorithm. Thus it would be interesting to improve this part of MACSby drawing inspiration from the way SVI is performed in 2TBNs.In order to do so, we must distinguish two di�erent sub-problems:� The planning problem: Given a perfe
t model of transitions under the form ofa list of 
lassi�ers and a perfe
t knowledge of the reward fun
tion, adapt SVI towork with 
lassi�ers. We deal with that sub-problem below.2 
alled Stru
tured Su

essive Approximation (or SSA) in [BDG00℄.



� The learning problem: Adapt SVI or its 
lassi�er-based version to the 
asewhere the model of transitions is learned simultaneously with looking for an op-timal poli
y. We keep this se
ond sub-problem for the �nal dis
ussion.One way to integrate the insights from the SVI algorithm into MACS would be toderive from the 
lassi�er-based representation of the model of transitions a tree-basedrepresentation and then apply SVI as su
h.In this se
tion we rather present our adaptation of SVI to work dire
tly with a
lassi�er-based representation.Let us 
all �token� the spe
i�
ation of a value or a # for one attribute, and letus 
all �message� a set of k tokens, where k is the number of attributes that de�ne astate. In parti
ular, the C part of 
lassi�ers are messages.Our algorithm, 
alled CbVI, heavily relies on an asso
iative and 
ommutativeinterse
tion operator ∩ between two messages. The interse
tion between two tokens
Ta and Tb is de�ned as follows (we note xa the value of token a):

Ta ∩ Tb =







xa if xa = xb or xb = #
xb if xa = #
∅ otherwiseNow, if we note Message = {Ti(Message)}i∈[1,m] the fa
t that the message 
ontainsthe tokens Ti for ea
h attribute i, then we have:

Mess1 ∩ Mess2 =

{

∅ if ∃i ∈ [1, m] su
h that Ti(Mess1) ∩ Ti(Mess2) = ∅
{Ti(Mess1) ∩ Ti(Mess2)}i∈[1,m] otherwiseWith this operator, we 
an give the 
lassi�er-based version of SVI.Let {PreL(A, Ti)} be the list of C parts of 
lassi�ers in the model of transitionsspe
ifying a
tion A and predi
ting Ti in their E part.The 
urrent value fun
tion Vn is a list of p messages (Mn)n∈[1,p] with one rewardvalue for ea
h message. To 
ompute Vn+1, we do the following:1. For ea
h a
tion A(a) For ea
h message Mn,i. For ea
h value xi of token Ti(Mn) su
h that xi 6= #, retrieve {PreL(A, xi)}.ii. Compute the list L(A, Mn) of all the non-empty interse
tions between ea
hpossible 
ombination of C parts from the di�erent {PreL(A, Ti(Mn))},taking one message in ea
h list per i ∈ {1, ..., m}.iii. If some messages of L(A, Mn) overlap, spe
ialize them so as to get non-overlapping messages.iv. For ea
h element M ′ in L(A, Mn), 
ompute the 
ontribution of Mn to thevalue of M ′. The attributes being 
onsidered independent, the probabilityof rea
hing Mn from M ′ is equal to the produ
t of the probabilities givenby ea
h 
lassi�er implied in the interse
tion. We note Πproba this produ
t.Thus the 
ontribution of Mn is contribV (Mn, M ′) = ΠprobaV (Mn).(b) If some messages M ′

j and M ′

k among the di�erent L(A, Mn), n ∈ [1, p] stri
tlyoverlap, spe
ialize them so as to get non-overlapping messages M ′′ 3.3 If the messages de�ning Vn do not overlap, if the problem is markov and deterministi
 andif the C parts in the model of transitions do not overlap, there will not be any overlappingbetween the L(A, Mn) lists, so this step 
an be simpli�ed. But in a 
ontext where welearn the model of transitions and where new sour
es of rewards 
an be dis
overed, it isne
essary to use this more se
ure version.



(
) For all M ′′ in all L(A, Mn), sum the 
ontributions from all states Mn 
om-puting their value a

ording to the Bellman equation :
V (M ′′) = R(M ′′, A) + β

∑

Mn

contribV (Mn, M ′′) (3)where R(M ′′, A) is the immediate reward (if any) for performing a
tion A insituations mat
hed by M ′′ and β the dis
ount fa
tor. We obtain a unique list
L(A), 
orresponding to the quality fun
tion of the a
tion A for any situation,a

ording to the previous value fun
tion 4.2. Finally, in order to 
ompute Vn+1, �nd the maximum value for ea
h M ′′′ amongthe di�erent L(A) given by the di�erent a
tions A. This implies the same mergingpro
ess as in step 1
, taking the greatest value when two M ′′′ overlap.In step 2, we 
an re
ord both the value of ea
h situation and the a
tion that gaverise to that value. By doing so, we re
ord the poli
y giving the best a
tion in anysituation.6 Dis
ussion and Future WorkCbVI is very similar to SVI, apart from the fa
t that the basi
 operator in CbVI 
on-sists of an interse
tion between messages while SVI relies on merging trees, appendingtrees and tree simpli�
ations. Though we did not measure that yet, we suspe
t thatour version is mu
h simpler to 
ode, though 
omputationally more expensive than theoriginal SVI. Furthermore, CbVI over
omes two main drawba
ks of MACS:� it makes it possible to build a 
ompa
t representation of the value fun
tion, whereMACS previously had to store a value for ea
h en
ountered state separately;� as a side e�e
t, it makes it possible to store a 
ompa
t representation of the poli
ywith very little extra 
ost, where MACS had to perform an expensive lookaheadoperation at ea
h time step to sele
t the best a
tion.Nevertheless, before in
orporating CbVI into MACS, one must 
onsider 
arefullythe fa
t that MACS is a latent learning system building its own model of transitionswhile we made in the previous se
tion the assumption that we had a perfe
t model oftransitions and a perfe
t knowledge of the immediate reward fun
tion at hand.To fa
e the 
ase where this assumption does not hold, there are four solutions:� First build a perfe
t model of transitions and of immediate reward through randomor a
tive exploration before starting to perform value iteration loops. This is notsatisfa
tory in the 
ontext of large problems.� Reinitialize the value fun
tion to the immediate reward 
lassi�er-based represen-tation ea
h time the model of transitions or of immediate reward 
hanges.� Try to repair lo
ally the 
urrent value fun
tion in 
ase of model 
hanges.� Consider that CbVI will be robust and do nothing spe
ial. This is more or lesswhat previous versions of MACS were doing, and it seems to work, so it must beinvestigated.4 In the deterministi
 
ase to whi
h MACS was restri
ted so far, Πproba is always 1.0 forone parti
ular Mn and 0 for any other, thus this sum does not need to be 
omputed.



The third solution seems to be the most appealing. On a more theoreti
al line ofresear
h, we believe that a formal fun
tional equivalen
e between the SVI and CbVI
an be proven, whi
h would result in the possibility to import all the theoreti
al resultsfrom [BDG00℄ in our framework. This must be investigated soon.7 Con
lusionsAs designers of MACS, we have drawn some interesting ideas about a way to make oursystem 
omputationally more e�
ient by adapting the SVI algorithm to a 
lassi�er-based representation. But we feel that the reader 
an draw some more general lessonsfrom the work presented in that paper.Indeed, we believe that a 
loser 
ommuni
ation between the LCS 
ommunity andthe BN 
ommunity 
an result in a signi�
ant mutual enri
hment, sin
e both ap-proa
hes 
ome with a di�erent perspe
tive on the same framework, namely fa
toredMDPs, and have developed di�erent te
hni
al and theoreti
al tools to deal with thatframework.We feel that 
oming from one perspe
tive to the other 
an raise interesting ques-tions. For instan
e, sin
e DBNs are just 2TBNs where some probabilisti
 dependen-
ies between variables within the same time step (
alled �syn
hroni
 ar
s�) mighthold, 
ould su
h dependen
ies be integrated in the LCS framework without deeplyre
onsidering the 
lassi�er-based representation?From a more global perspe
tive, LCS resear
hers seem more fo
used on the learn-ing problem than BN resear
hers, who are more interested in the planning/inferen
eproblem. It seems also that BN resear
h is often more mathemati
ally formalized thanLCS resear
h and that this formalization 
ould be imported into the LCS framework.Conversely, a greater knowledge of the LCS framework in the BN 
ommunity wouldprobably result in more interest in the 2TBN 
ase, often disregarded as too simple byBN resear
hers. And, above all, the RL approa
h used in LCSs should probably beimported into the 2TBN 
ontext, sin
e learning the stru
ture of a problem is be
omingan important resear
h topi
 in the BN 
ommunity.Referen
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