
Improving MACS thanks toa omparison with 2TBNsOlivier Sigaud, Thierry Gourdin and Pierre-Henri WuilleminLaboratoire d'Informatique de Paris 6Université Pierre et Marie Curie - Paris64 plae Jussieu, Paris, F-75005 FraneAbstrat. Fatored Markov Deision Proesses is the theoretial frameworkunderlying multi-step Learning Classi�er Systems researh. This framework ismostly used in the ontext of Two-stage Bayes Networks, a subset of BayesNetworks. In this paper, we ompare the Learning Classi�er Systems approahand the Bayes Networks approah to fatored Markov Deision Problems. Morespei�ally, we fous on a omparison between MACS, an Antiipatory Learn-ing Classi�er System, and Strutured Poliy Iteration, a general planning al-gorithm used in the ontext of Two-stage Bayes Networks. From that ompar-ison, we de�ne a new algorithm resulting from the adaptation of StruturedPoliy Iteration to the ontext of MACS. We onlude by alling for a loserommuniation between both researh ommunities.1 IntrodutionAs [Lan02℄ did show very learly, Learning Classi�er Systems (LCSs) are a family ofReinforement Learning (RL) systems endowed with a generalization property. Theusual formal representation of RL problems is a Markov Deision Proess (MDP),whih is de�ned by a �nite state spae S, a �nite set of ations A, a transition funtion
T and a reward funtion R.In the LCS framework, the states onsist of several independent attributes whosevalue de�ne a pereptual situation. Indeed, instead of the (state, ation, payo�) triplesin the Q-Table of standard RL algorithms, a LCS ontains rules alled �lassi�ers�organized into a [ondition℄ part (or C part), an [ation℄ part (or A part) and apayo�. The C part spei�es the value of a set of attributes. It is satis�ed only if allvalues spei�ed math the orresponding values in the urrent state.In the LCS framework, �nding a ompat representation is seen as a generaliza-tion problem. The generalization apability of LCSs omes from their use of don'tare symbols # in the C part of the lassi�ers. Indeed, a # mathes any partiularvalue of the onsidered attribute. Therefore, hanging an attribute into a # makesthe orresponding C part more general (it mathes more situations). As a result, therepresentation is more ompat.The same framework is also used in a sub-part of the Bayes Networks (BNs)ommunity, under the name �fatored MDP�. Indeed, a fatored MDP is a MDP whereeah state is a olletion of random variables. This representation takes advantage onloal probabilisti onditional dependenes among some variables to build a moreompat model of the underlying MDP by fatoring the dependent variables. Morepreisely, aording to [BDH99℄, if the situation is omposed of n variables suh that



any of them only depends of the value of l other variables at the previous time step,then the size of the fatored representation is in O(n2l) instead of O(2n).Thus the intuition giving rise to the use of fatored MDPs in BNs seem to beexatly the same as the intuition underlying LCS researh, partiularly in the multi-step ontext. In both ases, the goal is to solve MDPs with a ompat representation.Given this identity, we present a omparison between both perspetives, showingthat 2TBN, a formalism devoted to solving fatored MDPs in BNs, is very similar tothe one of MACS, an Antiipatory Learning Classi�er System (ALCS). Then, as aresult of the omparison, we show how the Strutured Poliy Iteration (SPI) algorithmdesigned in the 2TBN ase an be adapted to MACS and we disuss the improvementsthat result from this adaptation.The paper is organized as follows. In setion 2, we brie�y present the formalismused in MACS. In setion 3, we present how 2TBNs takle fatored MDP problemsand we illustrate their formalism through an example used as a basis for a omparison.In setion 4, we ompare the 2TBN formalism with the one used in MACS, and insetion 5, we show how to adapt SPI to MACS. We disuss in setion 6 the insightsthat result from this adaptation both by the 2TBN side and by the ALCS side. Finally,we onlude by alling for more exhanges between both researh ommunities.2 Brief overview of MACS2.1 Antiipatory Learning Classi�er SystemsAs indiated in the introdution, among RL systems, LCSs are a family of systemsdesigned to solve problems where the state onsists of several attributes. They takeadvantage of fatored representations with respet to plain RL tehniques tabularQ-learning thanks to their generalization apability. As a onsequene, they an solveproblems with fewer lassi�ers than a system dealing with tabular representations.Most standard LCSs all upon a ombination of a RL algorithm suh as Q-learningwith a Geneti Algorithm (GA) [Gol89℄. The RL algorithm estimates the quality ofations in the situations spei�ed by the di�erent lassi�ers, while the GA evolvesthe population of lassi�ers. Thus eah lassi�er holds both an estimated qualityand a �tness. In strength-based LCSs suh as ZCS [Wil94℄, the �tness is equal tothe estimated quality. As a result, only the lassi�ers speifying ations with a highpayo� are kept. In auray-based LCSs suh as XCS [Wil95℄, the �tness is equal to theapaity of the lassi�er to aurately predit the payo� it will reeive. This results ina more e�ient overage of the (state, ation) spae, and XCS is now the most widelyused LCS. For a general overview of reent LCS researh, see [LR00℄.Instead of diretly learning a model of the quality funtion as standard LCSsdo, Antiipatory Learning Classi�er Systems (ALCSs) suh as ACS [Sto98,BGS00℄,ACS2 [But02℄, YACS [GS01,GSS02℄ and MACS [GMS03,GS03℄ learn a model of thetransition funtion T . This model is then used to speed up the RL proess.In ALCSs, the lassi�ers are organized into [ondition℄ [ation℄ [effet℄parts, denoted C-A-E. The E part represents the e�ets of ation A in situationsmathed by ondition C. It reords the pereived hanges in the environment. Di�erentformalisms giving rise to generalization in this approah are desribed hereafter.



2.2 From YACS to MACSIn ACS, ACS2 and YACS, a C part may ontain don't are symbols �#� or spei�values (like 0 or 1), as in XCS. An E part may ontain either spei� values or don'thange symbols �= �, meaning that the attribute remains unhanged when the ationis performed. A spei� value in the E part means that the value of the orrespondingattribute hanges to the value spei�ed in that E part.Unfortunately, suh a formalism annot represent regularities aross di�erent at-tributes from one time step to another, though suh regularities are ommon.[01020100℄ [Ation℄ Antiipated situation[0#######℄ [East℄ [???????0℄[#1######℄ [East℄ [1???????℄[##02####℄ [East℄ [????2???℄[###2####℄ [East℄ [????1???℄[####0###℄ [East℄ [?????0??℄[#####1##℄ [East℄ [?1??????℄[######0#℄ [East℄ [??0?????℄[#######0℄ [East℄ [???1????℄[########℄ [East℄ [??????0?℄Resulting antiipations → [11012000℄or [11011000℄Table 1. During the integration proess, MACS sans the E parts and selets lassi�erswhose A part mathes the ation and whose C part mathes the situation. The integrationproess builds all the possible antiipated situations with respet to the possible values ofevery attribute. Here, MACS antiipates that using [01020100℄ as a urrent situation shouldlead either to [11012000℄ or to [11011000℄. If all the lassi�ers were aurate, this proesswould generate only one possible antiipation.In order to disover more regularities, our seond ALCS, MACS [GMS03,GS03℄,uses don't know symbols �?� instead of don't hange symbols in the E part. Thanks tothat formalism, the overall system gains the opportunity to disover regularities arossdi�erent attributes in the C and the E parts. As a result of this modi�ation, we ansplit the model of transitions into modules prediting the value of di�erent attributes.The onsequene is that the system needs an additional mehanism whih integratesthe partial antiipations provided by the modules and builds a whole antiipatedsituation, without any don't know symbol in its desription, as shown in Table 1.2.3 The arhiteture of MACSThe MACS arhiteture is illustrated in �gure 1. As shown in [GS03℄, it is similar to aDyna arhiteture in all respets, but it is additionally endowed with a generalizationapability. It onsists of a model of transitions, whih models the dynamis of theagent-environment interations, and a model of the payo�, whih models the payo�sthat the agent an get from its ations. The main proesses in MACS are devoted tolearning the model of transitions thanks to dediated generalization and speializationheuristis, and learning the model of the payo�, aording to di�erent riteria thatendow MACS with an ative exploration apability. These proesses have already
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Fig. 1. MACS global arhiteture.been presented in detail in [GMS03℄. We must just mention that MACS uses themodel of transitions to speed up the learning of the model of the payo� thanks to aValue Iteration algorithm that is somewhat ine�ient: the model of the payo� onsistsin storing two values for eah enountered state without generalization, and ValueIteration requires a ostly lookahead operation involving the antiipations integrationproess desribed in setion 2.2.Experimental results presented in [GMS03℄ demonstrated that the new formal-ism used by MACS atually a�ords more powerful generalization apaities than theformer ones, without any ost in terms of learning speed.3 DBNs and 2TBNsAs we have said in the introdution, a fatored MDP is a MDP where all statesare de�ned as olletions of random variables Xi. The set of states an be denoted
S = (X1, ..., Xn). Eah variable Xi takes its value xi in a domain: ∀i, xi ∈ Dom(Xi).Thus a given state s is de�ned by a vetor of values of the random variables: we have
s = (x1, ..., xn) whih de�nes the states exatly as in LCSs. A Bayesian Network (BN)is a tool to deal with probabilisti dependenies among these random variables.The BN framework [Pea88℄ inludes a graphial formalism devoted to the repre-sentation of onditional relations between variables. Graphially, variables are rep-resented as nodes in a Direted Ayli Graph. A link between two nodes representa probabilisti dependeny between the orresponding variable suh that the jointprobability of all variables an be deomposed into a produt of onditional proba-bilities of eah variable, given its parents in the graph. Hene BNs provide an easyway to speify onditional independenes between variables. Moreover, they providea ompat parameterization of the model.Dynami Bayesian Networks (DBNs) [DK89℄ are BNs of stohasti proesses, rep-resenting (temporal) sequential data. They extend BNs by fousing on modeling



hanges on stohasti variables (Xt+1 = f(Xt) ) over time with a BN. Hene thesequene is in�nite but the time slie is �nite and (usually) stati. DBNs generalizeHidden Markov Models (HMMs), Linear Dynamial Systems (LDSs) and Kalman �l-ters, and represent (hidden and observed) states in terms of probabilisti variables.Note that the assumption of time slie invariability (relations do not hange over time)may be relaxed for the parameters as well as for the struture. Usually, a DBN is rep-resented by 2 time slies, under the name 2TBN (2 Time (slies) Bayesian Network).The former slie represents the initial state of the model; the seond one represents thegeneri state. The relations between the two slies represent the stohasti proess.In the following we will onsider restritions of 2TBNs where there are no relationsbetween variables in the seond time slie.With respet to the standard BNs, this partiular lass is very restrited, but itis nevertheless rih enough to adequately represent fatored MDPs and give rise totratable algorithms, whereas more powerful representations are generally untratable.In order to show how 2TBNs are used to model a fatored MDP, we will use theexample given in [BDG00℄. In this example, a robot must go to a afé to buy someo�ee and deliver it to its owner in her o�e. It may rain on the way, in whih asethe robot may get wet, unless it has an umbrella. There are six boolean propositionsdesribing the state of the system:� O: the robot is at the o�e (O means that it is at the afé);� R: it is raining; W : the robot is wet;� U : the robot has its umbrella;� HCR: the robot has o�ee; HCO: the owner has o�ee.The robot an take four ations:� Go: move to the opposite loation; GetU : get the umbrella.� BuyC: buy o�ee; DelC: deliver o�ee to the user;A 2TBN an be used to model the e�et of eah ation on the state of the problem.Suh 2TBNs are alled �ation networks� [DG94℄. In �gure 2.a, we show the ationnetwork orresponding to the ation �DelC�.
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(c)Fig. 2. (a) The ation network for DelC, represented as a 2TBN; (b) The CPT for
HCO/DelC; () The orresponding tree representationFrom this network we an see for instane that, when the robot delivers o�ee, thefat that he is wet afterwards does only depend on whether he was wet beforehand,



sine delivering o�ee does not happen outdoors. On the ontrary, the fat that theowner �nally gets some o�ee depends on three propositions: is the robot at the o�e?did the robot have o�ee? did the owner have o�ee?There is one suh network per ation. But these networks do only indiate whetherthere is a probabilisti dependeny or not, they do not provide enough informationto determine the atual dynamis of the environment. The missing information isrepresented in Conditional Probabilisti Tables (CPTs). An example of CPT is shownin �gure 2.b. This table gives the probability that HCO will hold depending on O,
HCR and HCO if the agent takes ation DelC. Finally, the same information anbe represented in a tree, as shown in �gure 2.. One suh table or tree must be givenfor eah variable and for eah ation in order to get a omplete spei�ation of thedynamis of the fatored MDP.
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0.0 0.10.9 1.0Fig. 3. The reward tree for the afé exampleFinally, one an also represent the reward funtion of the problem with a deision,tree, as shown in �gure 3. Let us now ompare this formalism with the one used inMACS before omparing the proesses used to deal with these representations.4 Comparison of formalismsFirst of all, at the level of the organization of data, the representations in 2TBNs andMACS are slightly di�erent.In MACS, eah module in the model of transitions tries to predit the value ofone partiular attribute for all possible situations and all possible ations, while inthe standard BN representation, there is one 2TBN for eah possible ation and then,for any suh ation, there is one CPT for eah predited attribute.Thus in the 2TBN representation, the distintion between ations is prior to thedistintion between attributes, while it is the ontrary in MACS. But this is just adi�erent organization for the same data.At a lower level, the ontent of these data is similar. Indeed, for a given ation,CPTs onvey the same information as a subset of possible modules dediated to pre-diting the same attribute for the same ation in MACS, as shown in table 2.Thus expressing a CPT as a set of MACS lassi�ers is straightforward: for eahleaf in the tree, add a new lassi�er with a # in front of all irrelevant variables inthe C part, the onsidered ation in the A part, and an E part whose only speializedattribute is the one predited by the CPT.When this is done, one obvious di�erene remains: the CPT onveys a probabilitythat the attribute will take the predited value, while MACS onveys a deterministiinformation. Indeed, MACS was designed to solve deterministi MDPs and should beextended in that diretion if we want to redue the distane between both formalisms.



W U R O HCR HCO Ation W U R O HCR HCO missing proba.# # # # # 1 DelC ? ? ? ? ? 1 1.0# # # 1 1 0 DelC ? ? ? ? ? 1 0.8# # # # 0 0 DelC ? ? ? ? ? 0 1.0# # # 0 # 0 DelC ? ? ? ? ? 0 1.0Table 2. The CPT for HCO/DelC represented with the formalism of MACSAnother important di�erene omes from the way the payo� is modeled in bothapproahes. In MACS we map the values to all situations enountered, giving rise toa �at (situation, value) table. On the ontrary, [BDG95℄ indiates that the rewardfuntion an be represented as a tree whose nodes are variables, as shown in �gure 3.This gives rise both to a more ompat representation and to more e�ient algorithms,as we will disuss now.5 Inorporating a 2TBN planning algorithm in MACSThe main di�erene between mehanisms in MACS and in 2TBNs omes from thefat that MACS is designed to learn by itself a representation from its interation withthe MDP thanks to a RL mehanism, while in most 2TBNs ases the representationis onsidered as given by the user.Thus MACS must solve both a learning problem and a planning problem whilemost 2TBNs just solve the planning problem. Note however that some authors areinterested in learning the struture of DBNs [FMR98,HGC95,Gha97℄, but in generalthey do so separately from takling the planning problem, drawing inspiration fromalgorithms developed for Hidden Markov Models [RJ86℄, and they fous on moreomplex strutures than 2TBNs.As a onsequene of this di�erene, in order to go further in the omparison, wemust fous on the way the planning problem is solved both in MACS and in 2TBNs.5.1 Strutured Poliy IterationThe algorithm we will present in order to build an optimal poliy in 2TBNs is Stru-tured Poliy Iteration (SPI) [BDG95,BDG00℄. SPI is inspired from the tabular Mod-i�ed Poliy Iteration (MPI) algorithm [How71,PS78℄ improved in order to work ex-lusively on tree strutures, whih results in favorable ases in a signi�ant redutionof the omputational ost of the algorithm with respet to tabular MPI. For a moredetailed presentation of SPI than the one given below, read [BDG00℄.The entral operation ommon to all dynami programming and reinforementlearning algorithms is the propagation of values or qualities among the states of theMDP 1, aording to the Bellman equation:
∀si ∈ S, QV

a (si) = R(si, a) + β
∑

sj∈S

T (si, a, sj)V (sj) (1)The key idea in SPI onsists in ahieving this propagation more e�iently thanin tabular representations by grouping together the states that share the same values1 This proess is alled �Deision-Theoreti Regression� in [BDG00℄.



into tree-based representations. Indeed, all strutures in SPI are deision trees whoseleaves orrespond to groups of states sharing the same values on the variables presentin the parent nodes of these leaves.In this tree-based representation, we note:� QTreeV
a (s) the quality tree of ation a given the value funtion V ;� RTree(s, a) the tree of rewards obtained from performing ation a in state s;� V Tree(s) the value tree of state s.As a onsequene, the Bellman equation beomes:

∀si ∈ S, QTreeV
a (si) = RTree(si, a) + β

∑

sj∈S

T (si, a, sj)V Tree(sj) (2)The value propagation algorithm in the tree-based ase stritly follows the stan-dard algorithm for the tabular ase:� It starts with an initial value funtion V Tree0(s) = RTree(s, a).� Then, in order to update QTreeV
a (s), it looks for the term T (si, a, sj), i.e. for tran-sitions from one state to the next through ations, so as to propagate the valuesalong these transitions. Instead of looking for these transitions in a (st, at, st+1)table, the tree-based algorithm uses the CPT s of all ations, whih diretly givea tree-based representation of the same information.This algorithm an infer the tree-based representation of the quality of all ations froma tree-based representation of the urrent value funtion and bak, so as to perform atree-based value iteration, that we will all Strutured Value Iteration (SVI) hereafter.The details of this algorithm an be found in [BDG00℄.Taking SVI as a basi omponent, SPI an be deomposed into two stages as for allPoliy Iteration algorithms: a Strutured Poliy Evaluation 2 stage, and a StruturedPoliy Improvement stage. The former onsists in evaluating the long term rewardthat an agent an expet from a given poliy. It is based on the estimation of thevalue funtion explained above. The latter onsists in improving the urrent poliyaording to the new value funtion alulated by the former. It an be seen as avariant of the former where, instead of labelling the leaves of V Tree(s) with themaximum estimated values, the algorithm labels them with the ations that deliverthese maximum values.5.2 CbVI, a Classi�er-based SVIAs we brie�y mentioned in setion 2.3, in MACS, determining the reahable situationsis an expensive proess, sine it implies the partial antiipations integration proessdesribed in setion 2.2. This proess is used both when the agent ontrolled by MACShooses the next ation and when the model of the payo� is improved thanks to aValue Iteration algorithm. Thus it would be interesting to improve this part of MACSby drawing inspiration from the way SVI is performed in 2TBNs.In order to do so, we must distinguish two di�erent sub-problems:� The planning problem: Given a perfet model of transitions under the form ofa list of lassi�ers and a perfet knowledge of the reward funtion, adapt SVI towork with lassi�ers. We deal with that sub-problem below.2 alled Strutured Suessive Approximation (or SSA) in [BDG00℄.



� The learning problem: Adapt SVI or its lassi�er-based version to the asewhere the model of transitions is learned simultaneously with looking for an op-timal poliy. We keep this seond sub-problem for the �nal disussion.One way to integrate the insights from the SVI algorithm into MACS would be toderive from the lassi�er-based representation of the model of transitions a tree-basedrepresentation and then apply SVI as suh.In this setion we rather present our adaptation of SVI to work diretly with alassi�er-based representation.Let us all �token� the spei�ation of a value or a # for one attribute, and letus all �message� a set of k tokens, where k is the number of attributes that de�ne astate. In partiular, the C part of lassi�ers are messages.Our algorithm, alled CbVI, heavily relies on an assoiative and ommutativeintersetion operator ∩ between two messages. The intersetion between two tokens
Ta and Tb is de�ned as follows (we note xa the value of token a):

Ta ∩ Tb =







xa if xa = xb or xb = #
xb if xa = #
∅ otherwiseNow, if we note Message = {Ti(Message)}i∈[1,m] the fat that the message ontainsthe tokens Ti for eah attribute i, then we have:

Mess1 ∩ Mess2 =

{

∅ if ∃i ∈ [1, m] suh that Ti(Mess1) ∩ Ti(Mess2) = ∅
{Ti(Mess1) ∩ Ti(Mess2)}i∈[1,m] otherwiseWith this operator, we an give the lassi�er-based version of SVI.Let {PreL(A, Ti)} be the list of C parts of lassi�ers in the model of transitionsspeifying ation A and prediting Ti in their E part.The urrent value funtion Vn is a list of p messages (Mn)n∈[1,p] with one rewardvalue for eah message. To ompute Vn+1, we do the following:1. For eah ation A(a) For eah message Mn,i. For eah value xi of token Ti(Mn) suh that xi 6= #, retrieve {PreL(A, xi)}.ii. Compute the list L(A, Mn) of all the non-empty intersetions between eahpossible ombination of C parts from the di�erent {PreL(A, Ti(Mn))},taking one message in eah list per i ∈ {1, ..., m}.iii. If some messages of L(A, Mn) overlap, speialize them so as to get non-overlapping messages.iv. For eah element M ′ in L(A, Mn), ompute the ontribution of Mn to thevalue of M ′. The attributes being onsidered independent, the probabilityof reahing Mn from M ′ is equal to the produt of the probabilities givenby eah lassi�er implied in the intersetion. We note Πproba this produt.Thus the ontribution of Mn is contribV (Mn, M ′) = ΠprobaV (Mn).(b) If some messages M ′

j and M ′

k among the di�erent L(A, Mn), n ∈ [1, p] stritlyoverlap, speialize them so as to get non-overlapping messages M ′′ 3.3 If the messages de�ning Vn do not overlap, if the problem is markov and deterministi andif the C parts in the model of transitions do not overlap, there will not be any overlappingbetween the L(A, Mn) lists, so this step an be simpli�ed. But in a ontext where welearn the model of transitions and where new soures of rewards an be disovered, it isneessary to use this more seure version.



() For all M ′′ in all L(A, Mn), sum the ontributions from all states Mn om-puting their value aording to the Bellman equation :
V (M ′′) = R(M ′′, A) + β

∑

Mn

contribV (Mn, M ′′) (3)where R(M ′′, A) is the immediate reward (if any) for performing ation A insituations mathed by M ′′ and β the disount fator. We obtain a unique list
L(A), orresponding to the quality funtion of the ation A for any situation,aording to the previous value funtion 4.2. Finally, in order to ompute Vn+1, �nd the maximum value for eah M ′′′ amongthe di�erent L(A) given by the di�erent ations A. This implies the same mergingproess as in step 1, taking the greatest value when two M ′′′ overlap.In step 2, we an reord both the value of eah situation and the ation that gaverise to that value. By doing so, we reord the poliy giving the best ation in anysituation.6 Disussion and Future WorkCbVI is very similar to SVI, apart from the fat that the basi operator in CbVI on-sists of an intersetion between messages while SVI relies on merging trees, appendingtrees and tree simpli�ations. Though we did not measure that yet, we suspet thatour version is muh simpler to ode, though omputationally more expensive than theoriginal SVI. Furthermore, CbVI overomes two main drawbaks of MACS:� it makes it possible to build a ompat representation of the value funtion, whereMACS previously had to store a value for eah enountered state separately;� as a side e�et, it makes it possible to store a ompat representation of the poliywith very little extra ost, where MACS had to perform an expensive lookaheadoperation at eah time step to selet the best ation.Nevertheless, before inorporating CbVI into MACS, one must onsider arefullythe fat that MACS is a latent learning system building its own model of transitionswhile we made in the previous setion the assumption that we had a perfet model oftransitions and a perfet knowledge of the immediate reward funtion at hand.To fae the ase where this assumption does not hold, there are four solutions:� First build a perfet model of transitions and of immediate reward through randomor ative exploration before starting to perform value iteration loops. This is notsatisfatory in the ontext of large problems.� Reinitialize the value funtion to the immediate reward lassi�er-based represen-tation eah time the model of transitions or of immediate reward hanges.� Try to repair loally the urrent value funtion in ase of model hanges.� Consider that CbVI will be robust and do nothing speial. This is more or lesswhat previous versions of MACS were doing, and it seems to work, so it must beinvestigated.4 In the deterministi ase to whih MACS was restrited so far, Πproba is always 1.0 forone partiular Mn and 0 for any other, thus this sum does not need to be omputed.
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