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Abstract— This paper addresses the control of a hybrid wheel-
legged system evolving on rough terrain. First, the posture and
trajectory parameters are introduced. Then, a decoupled posture
and trajectory control algorithm based on the velocity model
of the robot is proposed. Last, the performance and feasibility
of the control algorithm are evaluated through simulations and
experiments with the Hylos robot.

I. INTRODUCTION

Autonomous exploration missions require mobile robots that
can carry out high performance locomotion tasks while insur-
ing the system integrity. For applications such as planetary or
volcanic exploration or various missions in hazardous areas
or construction sites, the locomotion performances in terms of
power consumption, autonomy and reliability are of first im-
portance. Vehicle motion on uneven surfaces involves complex
wheel-ground interactions that are related to the geometrical
and physical soil properties: roughness, rocks distribution, soil
compaction, friction characteristics, etc... Therefore, enhancing
the locomotion performances in such environment requires the
design of innovative locomotion systems and the research of
original control schemes.

Available locomotion systems can roughly be divided into
wheeled, tracked and legged systems. For wheeled robots
evolving on natural rough terrain, the main research activity
concerns the design of innovative steering (Nomad[1]) and
suspension systems. The use of passive suspension systems
for high terrain adaptability can be illustrated by the Rocky
rovers developed at the JPL[2] or Shrimp developed at the
EPFL[3]. They can be seen as wheeled systems with passive
mobilities allowing the vehicle to address more challenging
terrain including ground discontinuities that are higher than
the wheel radius. The main advantage of wheeled locomotion
systems is their performances in terms of power consumption,
velocity and available payload. Legged systems have been
considered for a long time as a possible way to increase
the field of accessible terrains for autonomous vehicles [4],
[5]. Research activities in this field concern the control of
complex kinematics structure by considering gait schemes and
stability margin. The main relevance of walking machines is
their abilities to adapt their posture on uneven terrain and to
cross over high terrain discontinuities.

Among these classical categories of locomotion mechanisms,
a new way exists for hybrid vehicles, which consists in

a combination of the first solutions. They can be seen as
articulated vehicle with active internal mobilities and can
be illustrated by the system WAAV[6] (Wheeled Actively
Articulated Vehicle) or the Marsokhod[7], [8] robot. Typical
hybrid wheeled, tracked and legged vehicles can be illustrated
by the Roller-Walker[9], the Workpartner[10] or more recently
the robot Azimut[11], which are able to combine different
locomotion modes. Another approach is proposed in [12] with
the compliant-legged hexapod Rhex. In this paper, we consider
the hybrid wheel-legged vehicle Hylos[13] developed at LRP
and we will focus on the control of this robot.

The control of such locomotion systems is not a trivial problem
since we must find algorithms and strategies for the control
of a redundantly actuated system1 exhibiting complex inter-
actions with the environment. The kineto-static analyses of
such complex vehicle have already been addressed by previous
authors[6], [14]. Solutions for the WAAV’s specific kinematics
are presented and studied in simulation. This mathematical
analysis leads to a model based control [15] that considers
the problem of contact forces distribution in the case of the
GOFOR mini-rover, which have four internal mobility degrees.
However, this work considers only planar vehicle motion
and was not experimentally validated. More recently, the
research on control of articulated suspension vehicle was also
considered [16]. The authors proposed a method for stability-
based articulated suspension control that is experimentally
demonstrated on the SRR robot of the JPL. They address the
tipover stability in the case of the SRR robot that possesses
two internal mobilities. By considering also the motion of a
three degrees of freedom arm manipulator mounted on the
platform they improve the vehicle tipover stability.

In this paper, we propose a method for the control of both
the trajectory and the posture of the wheel-legged robot Hylos
(see Fig. 10). This method is based on the inverse velocity
model of the vehicle. In Section II, we introduce the kinematic
parameters and develop the general velocity model of a wheel-
legged vehicle. Then, the specific inverse velocity model of
Hylos platform is proposed. In Section III, we propose a
kinematically decoupled control algorithm of both the vehicle
trajectory and posture. In the last section, the performance
of this control algorithm is analyzed through simulations and

1the number of actuated degrees of freedom is greater than the dimension
of the system workspace



experiments of the Hylos robot evolving on an irregular and
sloping ground.

II. SYSTEM MODELING

This section deals with the development of direct and in-
verse velocity model of the wheel-legged robot Hylos. It is
a lightweight mini-robot and it has 16 actuated degrees of
freedom with four wheel-legs, each one combining a two
degrees of freedom suspension mechanism and a steering and
driven wheel. The models developed in this section will be
used for the posture and trajectory control of vehicle evolving
on rough terrain.

The system is composed by a main body (the platform S)
connected to serial articulated chains ended by a cylindrical
wheel (Fig. 1). Lets us define R=(G,x,y,z) a frame attached to
the platform. The platform center-of-gravity (c.o.g) is denoted
G. The orientation of the platform frame is given by three
angles with respect to the fixed frame R0, which are the
conventional yaw(θ)-pitch(ψ)-roll(ϕ) angles[17].

A. Posture and trajectory parameters

The number of posture parameters is related to the degree of
mobility of the vehicle which depends on the particular design
of Hylos robot. The degree of mobility is computed using the
Kutzbach form of Gruebler’s equation:

m =
j∑
i=0

fi − 6(j − b+ 1) (1)

where b is the number of bodies, j is the number of joints and
fi is number of freedom for each joint.
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Fig. 1. Hylos posture parameters

The Hylos specific kinematics presented on Fig. 1 has a
mobility degree m = 10 with 16 actuated joints: b = 18 (4
bodies for each leg, the platform and the ground), j = 20 (4
joints on each leg + 4 wheel-ground contacts) and

∑
fi = 28

(4 rotational joints for each leg and 3 degrees of freedom
joints at each wheel-ground contact considering ideal rolling
constraint).

These 10 mobilities correspond in the operational velocity
space to the 6 platform parameters vp and to the 4 wheel-
base velocities ẋi of each contact (Fig. 1). These parameters
can be split in one part dealing with path tracking vt =
(vx, vy, ωz) and the other with the posture reconfiguration
ṗ = (ωx, ωy, vz, ẋ1, ẋ2, ẋ3, ẋ4). Then, the corresponding geo-
metrical parameters for the posture and the trajectory are:

p = (zg, ϕ, ψ, x1, x2, x3, x4)t

u = (xp, yp, θ)t
(2)

where : θ, ψ and ϕ are the yaw-pitch-roll angles, xi the
wheelbase of each wheel, xp, yp the position of the platform
center of mass, and zg the height of platform center relative
to ground which is defined as the average of contact heights
zi : zg = (

∑
i zi)/4.

B. General velocity model

We assume that all wheels are in contact with the ground.
Lets call Pi the ith contact point and ni the normal vector to
the tangent contact plane. The associated contact frame Ri =
(Pi, ti, li,ni) is defined such as ti = σi×ni

||σi×ni|| (σi is the ith

wheel axis unit vector) and li = ni × ti.

Fig. 2. Contact frame and average plane definition

The velocity of each contact point Pi with respect to ground
can be written as:

v(Pi/R0) = v + ω × ri + v(Pi/R) (3)

where (v, ω)t = vp is the components vector expressing
the twist of the platform and ri is the vector connecting the
platform frame center G to the contact point Pi.

Considering the pure rolling condition at contact point Pi:
v(Pi/R0) = 0, the equation (3) becomes:

−(v + ω × ri) = v(Pi/R) (4)

and its projection along the contact frame vectors yields, in a
matrix form, to:

−
(

Ri −RiS(ri)
)
vp = Jiq̇i (5)

where Ri is the rotation matrix of contact frame with respect
to platform frame, Ji is the jacobian matrix of the ith wheel-
leg chain with respect to the platform and expressed in the



contact frame, q̇i is the joint velocities vector of the wheel-
leg chains, and S(a) is the skew-symmetric matrix of the cross
product operator:

S(a) =

 0 a3 −a2

−a3 0 a1

a2 −a1 0


This equation can be written as:

Livp = Jiq̇i (6)

Li is called the locomotion matrix of the ith wheel-leg chain.
Finally, for all wheel-legs, we obtain:
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vp =


J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4
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Fig. 3. Hylos - Parameters of a wheel-leg

C. Inverse velocity model

Let us consider the wheel-leg chain kinematics given in Fig. 3.
αi, βi are the leg’s joint angles, γi the steering angle and ωi
the wheel rate. Equation (4) expressed for the Hylos robot
becomes:

−(v + ω × ri) = α̇iy × ai + β̇iy × bi + ...

... γ̇iµi × ci + ωiσi × di (8)

where µi,σi are the unit vectors of the steering and wheel
axes, and ai,bi, ci,di are vectors connecting the joint axis to
the contact point.

Moreover, due to the particular kinematics of the steering
joint, the steering axis is almost perpendicular to the contact
surface. Then the cross product µi × ci = µi × −rwni is
almost null. The steering rate γ̇i has no noticeable effect
on the instantaneous velocity of the platform. The normal
vector is assumed to be in the wheel plane, then σi = li
and ωiσi×di = ωili× (−rwni) = −rwωiti. Assuming these
conditions, equation (4) becomes:

−(v + ω × ri) = α̇iy × ai + β̇iy × bi − rwωiti (9)

As proposed previously, this equation is projected in the ith

contact frame:

Livp = Jiq̇i (10)

where Ji = (y× ai y× bi − rwti) is the 3× 3 jacobian
matrix of each leg and q̇i = (α̇i, β̇i, ωi)t.

We remind that this equation expresses the contact condition
and the non-slippage condition along the two tangential direc-
tions. The second row scalar equation expresses the inherent
non-holonomic constraint of wheeled system:

σti(v + ω × ri + α̇iy × ai + β̇iy × bi) = 0 (11)

This constraint is satisfied at each instant by computing the
steering angle γi compatible with the system motion. Thus, the
scalar equation is eliminated from the matrix equation (10) by
multiplying it with a reduction matrix B:

B =
(

1 0 0
0 0 1

)
By computing the γi compatible with the system motion, we
reduce the number of velocity parameters to 12. The previous
equations expressed for each four legs give only 8 scalar
equations. As mentioned in previous paragraph, we introduce
the wheelbase parameter changes ẋi in order to complete
the operational parameters vector. Then, the model of the ith

wheel-legged motion can be written as:(
BLi 0
0 1

)(
vp

ẋi

)
=
(

BJi

ji

)
q̇i (12)

where ji = (−l1 cosαi−l2 cos(αi+βi),−l2 cos(αi+βi), 0) is
a reduced jacobian matrix of the leg expressed in the platform
frame. We then obtain:

Li
∗
(

vp

ẋi

)
= Ji

∗q̇i (13)

Ji
∗ is a 3x3 square matrix and can be inverted to give finally

the wheel-leg motion by:

q̇i = (Ji
∗)−1Li

∗
(

vp

ẋi

)
(14)

The steering angle is the solution of the non-lateral slippage
equation (11) which yields to the analytical form:

γi = arctan

(
v′iy

v′ixSαi,βi
− v′izCαi,βi

)
(15)

where v′iy = vy + ωzxi − ωxzi, v′ix = vx + ωyzi − ωzyi + ẋi
and v′iz = vz + ωxyi − ωyxi + żi.

(xi, yi, zi)t are the coordinates of contact point Pi in the
platform frame and are expressed as:

xi = ±lx + l1Cαi
+ l2Cαi,βi

yi = ±ly
zi = −(l1Sαi

+ l2Sαi,βi
+ rw)

(16)

where l1 and l2 are the length of the leg links, lx and ly are
the half length and width of the platform.



III. POSTURE AND TRAJECTORY CONTROL

In this section, we describe the method used for the posture
and trajectory control. We consider a proportional feedback
based on the measure of actual vehicle posture p and position
u, which provides the reconfiguration and tracking velocity
ṗ and vt as defined below. Then, the operational space
velocity terms vp and ẋi are computed as a function of these
reconfiguration velocity terms by considering the velocity
decoupling problem. Finally, the desired joint velocities are
determined by using the inverse velocity model of the robot.

A. Decoupled velocity model

The platform angular velocities ω are coupled functions of
(ϕ̇, ψ̇, θ̇)t. The relation between platform rotation components
ω and rotation parameters are:

ωx = ϕ̇− θ̇ sinψ
ωy = ψ̇ cosϕ+ θ̇ cosψ sinϕ
ωz = θ̇ cosψ cosϕ− ψ̇ sinϕ

(17)

So, the decoupling matrix D is introduced in order to compute
the platform velocity as a function of the derivate with respect
to time of posture and trajectory parameters:

vp = D (vx, vy, vz, ϕ̇, ψ̇, θ̇)t

and

D =


I3×3 0

1 0 −Sψ
0 0 Cϕ CψSϕ

0 −Sϕ CψCϕ

 (18)

B. Posture control

For a given optimal posture pd and a desired trajectory ud, the
goal of posture control is to compute the internal joint veloci-
ties q̇i to apply on each motor to reach the optimal posture dur-
ing the motion. Let us introduce ṗ = (ϕ̇, ψ̇, żg, ẋ1, ẋ2, ẋ3, ẋ4)t

the time-derivative of posture parameters. The posture control
is achieved through a proportional feedback:

ṗ = Kp ∆p (19)

where ∆p = pd − p is the posture error and Kp is a 7 × 7
diagonal positive matrix gain.

The term żg is a function of vp and, as we consider a desired
posture such that the projected platform c.o.g is equivalent
to the geometric center of wheel-ground contact points (see
Section IV), it can be approximated:

żg = vz − ωy

∑
i xi
4

+ ωx

∑
i yi
4

≈ vz (20)

C. Trajectory control

To achieve the path tracking, we suppose that the vehicle
position projected in the horizontal plane has already been
determined by a localisation procedure : u = (xp, yp, θ)t.

The trajectory is specified in the horizontal plane (O, x0, y0)
by using a parametric function (xd(t), yd(t))t. Then, for a
given path following velocity, the desired trajectory ud can
be expressed as a function of time (see Fig. 4):

ud = (xd, yd, θd)t (21)

where θd(s) = arctan(
dy

dt

dt

dx
) = arctan(

ẏ

ẋ
).

The aim of path tracking control is to compute the vehicle
velocity vt = (vx, vy, θ̇)t such that the path tracking error
∆ζ will converge to zero. This path tracking error is defined
as the projection on the local vehicle frame of the position
error ∆u = ud − u:

∆ζ =

 Cθ Sθ 0
−Sθ Cθ 0
0 0 1

 xd − xp
yd − yp
θd − θ

 = Rθ∆u (22)

where Rθ is the rotation matrix of angle θ around z0 axis.

Path tracking control of mobile robots is not a trivial
problem[18], [19]. But in our case, since the Hylos platform
is omni-directional, we can use a simple proportional strategy
to control the vehicle velocity:

vt = Kt∆ζ (23)

where Kt = DIAG(Kx, Ky, Kθ) is a positive 3×3 diagonal
gain matrix. The control strategy can be adapted through the
choice of these gains.
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Fig. 4. Path tracking model

D. Global control strategy

In the previous section, we introduced the decoupling matrix
D such as vp = D (vx, vy, vz, ϕ̇, ψ̇, θ̇)t. Considering the
velocity correction terms (vt, ṗ), the operational space
reconfiguration velocity can be computed as:

vp = D (Cpṗ + Ctvt)
ẋi = Cxi

ṗ (24)

where Cp, Ct and Cxi
are the corresponding component

selection matrices. Then, the joint velocities are computed
from this operational velocity vector by considering the inverse
velocity model described in Section II.



Fig. 5. Posture control scheme

This model is based on the knowledge of contact normal
vectors ni. Equation (9) shows that ti can be estimated if
the absolute platform velocity (v,ω) and leg’s joint velocities
(α̇i, β̇i) are measured. However, this estimation is theoreti-
cally independent from the wheel’s rotation rate ωi. But for
experimental tests, we use a simplified inverse velocity model
which is based on a contact normal vector computed from the
average plane to contact point Pi (see Fig. 2). Finally, the joint
velocities are computed using equation (14).

IV. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the control algorithm, both dynamic
simulations and experimental tests have been done. The aim
of these experimentations is to qualify the practicability of this
control method for a given locomotion task which is specified
by considering an optimal posture and a given reference path.
The presented results concern the correction of the pitch and
roll angles of the vehicle Hylos evolving on sloping ground.

The desired posture is specified by considering the optimiza-
tion of specific locomotion performance criteria. These are
the tipover stability margin, and the wheel-ground contact
forces balance. The first criterion is of primary importance
for the system reliability and the second one improves the
global traction performance. We have presented, in previous
work, a method to find a suboptimal posture with respect
to these criteria[20]: it consists in keeping the platform in
the horizontal plane (ϕ = 0, ψ = 0) and in determining
the wheelbase xi in such way that the projected distance, on
horizontal plane, between the platform c.o.g and the geometric
center of wheel-ground contact points is minimized.

Fig. 6 shows a simulation of Hylos robot evolving on irregular
terrain. The results presented in Fig. 7 show that the platform
stays horizontally with a quite good accuracy when the robot
is moving (the pitch and roll angle error is less then 3o).

Experiments have also been conducted with the Hylos robot,
which is equipped with a two axis inclinometer measuring the
platform pitch and roll angles. In this experiment, the robot
is moving at a speed of 0.15 m/s on a terrain constituted of
slopes with various inclines such that both the pitch and roll
angles are changing during the motion. The desired posture
is still ψ = 0 and ϕ = 0. In Fig. 8 and Fig. 9, the dashed
curves represent the vehicle pitch and roll angles when posture

Fig. 6. Simulation illustrations
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control is active, and the solid curves is an estimation of the
equivalent ground slope angles in pitch an roll directions. The
maximum error on corrected angles (the peak on each plot)
is partially due to the response time of the feedback control
(10 Hz) and partially due to the velocity limit of the leg’s
actuators.

V. CONCLUSION

In this paper, we have addressed the combined posture and
trajectory control of the wheel-legged robot Hylos. An orig-
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inal velocity based control algorithm has been presented.
This method allows to specify the locomotion task in terms
of: first the path tracking control and secondly the posture
reconfiguration control. A velocity based model has been
presented in order to combine the two controls (trajectory
and posture) and compute the robot joint velocities. This
method is simple to implement as it needs only few sensors
that are inclinometers for the pitch-roll measurements and
position sensors for the leg mechanisms. The algorithm has
been validated through simulations showing the capabilities of
such redundantly actuated robot to maintain a certain posture
configuration. The practical feasibility of this control algorithm
was evaluated and validated through experiments with the

Fig. 10. Experimentations with Hylos

Hylos robot.

This study could be improved by introducing the measure-
ments of forces at each wheel-ground contact. The knowledge
of these forces is a possible way to estimate the ground contact
angles and then to enhance the posture control. Furthermore,
measurement of the normal component should be introduced
in a control scheme to insure the permanent contact condition.
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