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Abstract

This article reports preliminary results obtained with an evolutionary approach to the design of
neural controllers for flapping-wing animats. This approach involves a multi-objective evolutionary
algorithm and continuous-time neural networks. It has been used to automatically generate controllers
securing an energetically thrifty horizontal flight at constant speed in a simulated artificial bird.

1 Introduction

Born as a reaction to the limitations of the good old fashioned artificial intelligence (GOFAI) [14], the
animat approach [21] aims at designing autonomous and adaptive artefacts – mostly simulated or
real robots – whose inner workings are inspired by living creatures. However, if most researches
in this field have been targeted at designing wheeled robots – for instance Psikharpax, an artificial
rat [10] –, walking robots [17, 13, 18] or swimming ones [15], up to now an important part of the
animal kingdom has been neglected, at least from the point of view of its locomotive capacities:
that of flying animals.

The flapping-wing locomotion mode has, indeed, clear potential for small-scale robots as
demonstrated by the efficiency and manoeuvrability of real birds, who still outperform any arti-
ficial aircraft of the same size.

As standard airplanes only need to maintain their forward speed to fly, they do not expend
a lot of energy for sustainment. However, the range of their flying abilities is limited, as they
can’t hover, for instance. On the other hand are helicopters, which are highly manoeuvrable,
but consume a high amount of energy. Between these two extremes, flapping-wing aircraft are
an interesting trade-off because they are able to both glide and hover. Such a skill has not been
exhibited yet by any artificial platform, although several birds, like hummingbirds or hawks,
are capable of hovering or near hovering flight. Thus, flapping-wing aircraft seem to have a
promising future among flying robots, but their design and use require a thorough understanding
of both the potentialities and constraints of their flying mode. The Robur project [1] aims at
studying these potentialities and constraints from the point of view of the animat approach.

As a contribution to this project, the work described herein explores a methodology ded-
icated to the design of adaptive controllers for flapping-wing animats. This methodology in-
volves continuous-time neural networks that are automatically generated by a multi-objective
evolutionary algorithm using a dedicated encoding scheme, without any previous knowledge
about the wing movements likely to secure an efficient flight.



A few research efforts are currently devoted to the design of flapping-wing UAVs [23, 25, 22,
2]. However, these efforts focus on aeronautical and mechanical aspects; none of them is targeted
at the optimal control of such platforms, nor on the design of biomimetic controllers.

This paper is organized into two parts. The first describes the four major components of the
proposed methodology, which is used, in the second part, to design controllers for flapping-wing
aircraft flying horizontally and at constant speed.

2 The proposed methodology

2.1 Principles of flapping-wing flight

Weight

Drag

Lift

Traction

Downstroke Upstroke

Global
wind

Relative
wind

Relative
wind

Figure 1: The force produced by the pressure difference between the intrados and the extrados
is oriented forward and upward during a down-stroke. It can therefore be decomposed into a lift
force and a traction force. Lift is produced as well during an up-stroke, but it is accompanied by
a significant drag.

Birds use the pressure difference between wing intrados 1 and extrados 2 to counter their
weight, and to generate a traction that allows them to maintain their relative speed or to acceler-
ate. These two forces are both produced during the down-stroke (figure 1). The wing is powered
downward with its leading-edge tilted down and, as a consequence, the relative wind – i.e., the
sum of the bird’s center of gravity speed in the air mass and of the speed of the wing relative to
the bird’s body – is directed upward. The corresponding force is therefore oriented both upward
and forward and can be divided into two contributions, the lift and the traction. Lift is produced
during the up-stroke as well, since birds change the angle of attack of the wing to adapt to the
corresponding new relative wind. However, this lift is accompanied by a significant drag and, to
reduce it, birds partially fold their wings during the up-stroke. Additional information on flight
kinematics can be found in [24].

2.2 Oscillating patterns and continuous-time neural networks

While the understanding of the neural mechanisms involved in bird flight is not complete, com-
parative studies [5] suggest that flying animals could resort to similar solutions to those securing
locomotion in walking and swimming creatures. These solutions would call upon oscillating
neural circuits called Central Pattern Generators (CPG) that generate rhythmic movements even in
the absence of any sensory input, and that have been successfully implemented on walking and
swimming robots [16, 9, 18, 17, 13] for instance.

It turns out that these rhythmic behaviors include a temporal component which is difficult
to generate with a standard neural network [19] because the state of such a device changes at

1lower part of the wing.
2upper part of the wing.



discrete time-steps only. This is why continuous-time neural networks are more appropriate
for the design of CPGs. Among the corresponding models, those calling upon leaky-integrator
neurons are the most widely used [16, 9, 18, 17, 13]. The behavior of these neurons is defined by
the following differential equation:

ẏi =
1
τi

−yi +
N∑

j=1

wijσ(yi + θj) + Ii


i = 1, 2, .., N

where τj is the time constant of neuron j, wij the weight of the connection from neuron j to
neuron i, θj is a bias, Ii a constant input and σ(x) = 1

1+exp(−x) .
Implementing CPGs as networks of leaky integrator neurons has four advantages [3]:

• the leaky integrator is the simplest, non-linear, model of a continuous dynamic neuron;

• networks of such neurons are universal dynamic approximators [12] that can approximate
the trajectory of any smooth system arbitrarily well;

• they stem from a plausible neurobiological background;

• by varying the neurons’ time constants, the frequency of the rhythmic behaviors generated
can be modulated without changing the topology of the corresponding network.

This is why this variety of neural network was used here.

2.3 Evolutionary algorithms and multi-objective optimization
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Figure 2: The general organization of an evolutionary algorithm.

The most convenient method for designing such controllers calls upon evolutionary algo-
rithms, especially when the configurations of the networks likely to produce the desired behav-
iors are unknown. These optimization algorithms are loosely inspired by Darwin’s theory of
evolution, as illustrated in figure 2, and they unfold in the four following steps:

1. step 1. A random population is created;



Figure 3: Among possible solutions to a given optimization problem, in which the two objectives
f1 and f2 must be minimized, non-dominated solutions are represented using a red disk and
dominated ones using a blue disk. No solution is better than a red one on both f1 and f2.

2. step 2. The fitness of each individual is computed and a subset of the population is selected
according to the fitness;

3. step 3. Genetic operators like mutation and cross-over are used to form a new population;

4. step 4. if the desired number of generations or if performance criteria are not reached,
return to step 2.

To implement these algorithms one must choose a way to encode each phenotype – i.e., each
possible solution to the problem considered – into a genotype that will be manipulated by ap-
propriate genetic operators that also must be hand-designed. The way this has been done for the
current application will be described below.

One of the most interesting properties of such evolutionary optimization methods is their
ability to deal with multi-objective problems. Indeed, while most optimization problems involve
numerous objectives in practice, the standard approach to such problems is to transform them
into single-objective ones, for example by using a weighted sum of the relevant objectives. Such
practice raises the issue of choosing by trial and error the right set of weights, because no alterna-
tive method exists. Multi-objective optimization procedures find the set of all the compromises
at once, among which a higher-level algorithm, or the user, may select the preferred one without
the need to first choose relative weights.

Numerous algorithms have been proposed [4] to find the set of compromises. Most of them
rely on the concept of domination and generate the so-called Pareto Front (figure 3).

Definition 1 A solution x(1) is said to dominate another solution x(2), if both conditions 1 and 2 are true:

1. the solution x(1) is not worse than x(2) for all objectives;

2. the solution x(1) is strictly better than x(2) for at least one objective.

This leads to the definition of the globally Pareto optimal set:

Definition 2 The non-dominated set of the entire feasible search space is the globally Pareto-optimal set.

In this work, to generate globally Pareto-optimal sets, we used MOGA (Multi-Objective Ge-
netic Algorithm), an algorithm introduced in [11] that offers an interesting trade-off between
ease-of-use and performance.



2.4 ModNet

The attempt to optimize both the structure and the parameters of a neural network raises impor-
tant issues concerning the way the network should be coded and, then, handled by evolution.
Classical approaches to the evolution of neural controllers [20] call upon individual neurons and
connections that are assembled to generate whole networks. The problem with such approaches
[8] is that evolution either starts from scratch – i.e., with randomly generated initial networks
– or it is bootstrapped by a human designer who decomposes the original control problem into
separate sub-problems to which partial solutions are sought. In the first case, the evolutionary
process may need numerous iterations to converge. In the second one, it may be extremely dif-
ficult to decompose the initial problem and/or to recombine the separate networks into a single
and coherent one. Moreover, it may happen that such an incremental procedure misses interest-
ing solutions involving subtle couplings not foreseen by the experimenter [6].

Instead of manipulating individual neurons and connections, the ModNet encoding scheme
[7] that is used in this work operates on modules, i.e., on small networks that are used to build
the whole controller. They may be spontaneously discovered by the evolutionary process, or
they may also stem from an initial pool of templates provided by the experimenter, either be-
cause, having been generated during previous evolutionary runs, they may be useful to solve the
current problem, or because they encode some expert knowledge.
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Figure 4: Left: Example of chromosome manipulated by ModNet. The chromosome is made of
three components: a list of model-modules, a list of modules and a list of links. ml are modules, in
are sensory (or input) neurons, and om are motor (or output) neurons. Right: the corresponding
decoded neural network. Modules m3 and m4 are copies of the same model-module 1. Likewise,
modules m2 and m7 are copies of model-module 2.

ModNet solutions are encoded in chromosomes made up of three components: a list of model-
modules, a list of modules and a list of links (Figure 4). At the initialization of the algorithm, the
first list contains a copy of randomly chosen modules of the initial pool. During the evolutionary
process, some parameters of these modules – for instance connection weights – may evolve. The
second list connects the number of a given module that will appear in the neural network with
the corresponding model-module. This mechanism makes it possible for a given model-module
to be included several times in the final controller, for instance to build a symmetric network or
just to compress the representation of the neural network.

There are two categories of mutation operators in ModNet: those of the first category may
modify parameters in the neural network., while those of the second category may change the
network’s structure by occasionally mutating each of a chromosome’s three components. As
for cross-over operators, they serve to exchange model-modules between genotypes. It turns out



that the set of these different operators fosters synergies that allow evolution to quickly propagate
useful structures into the population [7].

2.5 Aerodynamic model

We have developed a computationally-efficient, but realistic, aerodynamic model (Figure 5) of
any flapping-wing engine that makes it possible to compare various morphologies and flight
controllers. This model is purely phenomenological and does not aim at taking all the complex-
ities of aerodynamic behavior into account. In particular, it neglects the local direction of free
flow velocity. Basically, it calls upon the classical splitting into lift and drag components of aero-
dynamic forces acting upon thin, small, quasi-plane, and rigid quadrilateral panels. These forces
are computed as the sum of four independent contributions: friction drag, parachute, leading
edge lift and leading edge vortex lift.
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Figure 5: A modelled flapping-wing engine. Each wing is made of three panels. The body is
made of cylinders and cones.

In the present work, each simulated engine’s wing is modelled with three panels roughly
representing the morphology of a bird’s wing (figure 5) and each panel has three degrees of
freedom : sweep, dihedral and twist. As for the engine’s body, it is modelled with cones and
cylinders.

3 Experiments

In principle, the components just introduced – a continuous time neural network, a multi-objective
evolutionary algorithm, an appropriate encoding scheme, and an adequate aerodynamic model
– allow the automatic generation of neural controllers able to take into account data acquired
by miscellaneous sensors in order to modulate wing beats. In this preliminary work, we used
these components to design simpler open-loop controllers according to which an artificial bird
has to fly horizontally, at constant speed, and without sensory feedback. The objectives were to
check the effectiveness of our approach, to assess the difficulties of synchronizing the degrees of
freedom of a pair of wings, and to highlight the characteristics of any adapted rhythm that this
approach would thus discover.

To this end, the evolutionary process was set so that it could generate only neural controllers
exhibiting no sensory inputs, on the one hand, and three motor outputs corresponding to a wing’s
three degrees of freedom, on the other hand. Thus, symmetry constraints were imposed on the
flying engines, which were forced to beat their two wings in synchrony. No other constraints



were imposed on the topology of the neural networks produced, which could thus include any
number of hidden neurons and connections.

3.1 Fitness evaluation

The performance of each controller was assessed in a simulated wind-tunnel, in which the artifi-
cial bird faced a constant speed air flow and could only move its wings. The corresponding lift,
traction and moments were evaluated at each time step and averaged after a 1024-step evaluation
period in order to quantify the fitness of the current solution.

The fitness function we used had four different objectives to optimize. They describe the
different aspects of the desired behavior of our bird:

1. The bird should fly at a constant speed. The difference between the traction force and the
drag must then be minimized : − 1

N

∣∣∣∑N Ftraction(n)− Ftrainee(n)
∣∣∣;

2. the bird should move horizontally. The difference between the lift and the weight must
then also be minimized : − 1

N

∣∣∣∑N Fportance(n)− Fpoids

∣∣∣;
3. the bird must be stable. Its mean aerodynamical moments have to be as small as possible :
− 1

N ||
∑

N

−−−−−−→
Maero(n)||;

4. energy consumption should be minimized: − 1
N

∑
N E(t).

where Ftraction(n) is the traction force at time n, Fdrag(n) the drag force, Flift(n) the lift,
Fweight the weight, Maero(n) the aerodynamical moment, and N the number of evaluation time-
steps.

Finally, to avoid the drawbacks of evaluating fitnesses during short periods, three additional
constraints were taken into account according to the penalty method described in [4]. This pro-
cedure forced evolution to discover solutions that forced the wings to move 3, and that were
periodic, with a constant amplitude 4.

3.2 Parameters

Population size was 300. Only one template seeded the initial pool. Its internal structure was
randomly generated when copied from the pool to a chromosome. This structure was then re-
tained with a low mutation rate (10−4)). A maximum number of 10 modules per chromosome
was allowed, with less than 5 hidden neurons and less than 10 connections each. Input and out-
put neurons were all characterized by a time constant of 0.025s, a bias of 0 and a slope of 1. All
other parameters were submitted to evolution. The time constant of each hidden neuron could
vary between 1.0 and 0.001, their bias between 0 and 2, and their slope between 0 and 5. Each
connection weight could vary between 0 and 32.

3.3 Results

Figure 6 represents the Pareto front obtained after 420 generations. It thus appears that most
solutions are both stable (first objective) and entail a low energy consumption (fourth objective),
thus suggesting that stability and energy-efficiency are easy to optimize and to combine with the
other objectives. On the contrary, the traction and lift objectives seem antagonistic since most
solutions which generate a good traction fail on the lift objective – and reciprocally.

3This constraint penalized gliding behaviors that could otherwise get high fitness values, thus competing with non-
optimal flapping wing behaviors especially on energy and stability objectives.

4This constraint ensured a steady-state behavior that couldn’t be properly evaluated otherwise as the evaluation time
is very short.



Besides the automatic and quantitative evaluation of its fitness through simulated wind-
tunnel experiments, the quality of each solution could also be evaluated by letting the corre-
sponding bird fly freely in a simulated landscape. Whereas, a majority of individuals in the first
generations were unable to stay horizontal after a few wing beats and quickly crashed, more
and more individuals able to generate convincing bird-like flights, with regular and energetically
thrifty wing beats, were generated. Two such solutions are singularized on figure 6, with a dotted
and a dashed line respectively.

Solution (a) (figure 7) is relatively smooth and energy efficient. The dihedral and twist oscil-
late at a frequency of approximately 7Hz. Their phase difference is approximately of π

4 . Succes-
sive snapshots of this behavior are shown on figure 8.

Solution (b) (figure 9) presents sharper twist variations and is more energy consuming. The
dihedral and twist oscillate faster, at 12.5Hz.

Both of these solutions share a common feature: the twist is positive during a down-stroke
and negative during the up-stroke. It turns out that this characteristic is mandatory to generate
an efficient flight and that evolution has spontaneously discovered it. It should also be noted that
the corresponding behaviors are both periodic, but are not generated by mere sinusoid activa-
tions of the controllers’ output neurons. This gives some clues about how diverse efficient flying
behaviors may be.

The neural network that generated the behavior plotted on figures 7 and 8 is displayed on fig-
ure 10. This network contains five modules coming from three different model-modules. Module
3 forms a recurrent loop that allows the network to generate the cyclic behavior. The controllers
of most of the individuals in the final generation included between 11 and 15 neurons. These net-
work sizes are then small enough to be implemented on a dedicated on-board computing system.

Additional work will be devoted to the study of the inner workings of these neural networks
with the hope that this will serve to extract relevant modules that could bootstrap further evolu-
tionary runs, and prove to be useful for the resolution of more elaborate problems.

4 Conclusion

The results just described demonstrate the effectiveness of the proposed methodology. In partic-
ular, it seems capable of generating a variety of flapping-wing rhythms that may be adapted to
the engine’s morphology or to specific environmental constraints. Moreover, because evolving
open-loop controllers thus appears to be relatively easy, one may hope that the same approach
will also be efficient for relaxing the synchrony constraint and for designing close-loop controllers
able to take sensory inputs into account and able to generate more complex and adaptive flight
behaviors. This is the major short-term objective of the Robur project [1].
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Figure 6: Pareto front obtained after 420 generations. Each line represents an individual of the
Pareto front. The X axis represents the different criteria, and the Y axis the value of these criteria
normalized according to the minimum and maximum values observed on each criterion (on all
experiments). The first criterion is the mean aerodynamic moment, the second one corresponds
to the lift, the third to the traction, and the fourth to the energy. The cases of two individuals,
respectively represented by a dotted and a dashed lines, are singularized on the figure and dis-
cussed in the text.
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Figure 7:
Wing movements corresponding to solution (a) that are represented with a dotted line on figure

6. The X axis represents time steps (a time step equals 0.0025s), the Y axis represents the
amplitude of each effector (in degrees, the maximum amplitude is 35 deg)

Figure 8: Example of a bird-like behavior generated by the evolutionary process.
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Figure 9: Wing movements corresponding to solution (b) that is represented with a dashed line
on figure 6. The X axis represents time steps (a time step equals 0.0025s), the Y axis represents the
amplitude of each effector (in degrees, the maximum amplitude is 35 deg)
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Figure 10: The neural network that generates the behavior plotted on figures 7 and 8. Modules
are displayed using grey blocks. The neuron labeled o0 is linked to the dihedral and the one
labeled o1 to the twist. This network did not use the sweep.
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