EVOLVING PID-LIKE NEUROCONTROLLERS
FOR NON-LINEAR CONTROL PROBLEMS

S. Doncieux

J.-A. Meyer

LIP6 - Animatlab
8, rue du capitaine Scott
75015 Paris
{Stephane.Doncieux,Jean-Arcady.Meyer } @lip6.fr

Abstract

This article describes an empirical approach to
non-linear control problems that calls upon the
evolution of modular neural networks. This ap-
proach may be bootstrapped with modules that
encode knowledge stemming from linear or non-
linear control theory, and it seems to be appli-
cable to non-stationary problems as well. It has
been applied here to the control of the trim and
altitude of a simulated lenticular blimp that was
subjected to several perturbations. The corre-
sponding results demonstrate the superiority of
the evolved networks over a hand-designed con-
troller. They also demonstrate the capacity of
evolution to exploit the intrinsic non-linearities
of artificial neurons in order to generate differ-
ent solutions, likely to be adapted to the context
of the considered application.

Key Words: evolution, neural networks,
modules, lenticular blimp

1. Introduction
Real world systems often exhibit non-linear and
non-stationary behaviors that deeply challenge
traditional control techniques of engineers like
PIDs. These techniques usually rely on an anal-
ysis of a model of the system to be controlled
and on an inversion around a given operating
point of a linearized version of this model. As a
consequence, the corresponding controllers re-
main effective only as long as the linearized
model represents the system’s actual behavior.
Although several research efforts have been
devoted to the extension of these mathemati-

cal approaches to non-linear and non-stationary
systems [1, 2], they do not yet seem to have con-
verged to any general conclusions, according to
which a given method would clearly seem more
appropriate to design the controller of a given
system.

Insofar as the corresponding choice is still
largely empirical, there is room for other ap-
proaches to control that, although they are less
mathematically sound than those of traditional
engineering and do not lead to any stability or
convergence theorem, still might compete with
respect to the effectiveness and efficiency of the
controllers they generate, at least for given sys-
tems and in given conditions. Among such em-
pirical approaches, those that call upon the evo-
lutionary design of neural networks look promis-
ing because they have already been applied to
complex systems [3, 4, 5] and because, as will be
shown below, they have the capacity of capital-
izing on traditional PID controllers and of being
applicable to non-linear and non-stationary do-
mains.

This point of view will be illustrated here in
the case of a highly non-linear system: a sim-
ulated lenticular blimp that has to be main-
tained as horizontal as possible at a given alti-
tude, despite various perturbing factors. It will
be shown that efficient controllers may be built
without providing any other information on the
system to be controlled than a fitness function
that assesses its performance without exploiting
any knowledge on its underlying mathematical
model. Instead, this function calls upon mere
state variables that could be monitored by off-
the-shelf sensors, thus leaving to evolution the
goal of discovering on its own how to control the
system.

The article first describes the simulation

model and the control task. Then it describes
how ModNet, the evolutionary framework that
was used in this work, may generate modular
neural controllers and how the corresponding
process may be bootstrapped with traditional
P, I and D modules. Finally, the results that
have been achieved on the considered control
task will be presented and their significance will
be discussed. These experiments have been im-
plemented thanks to the SFERES framework
described elsewhere [6].

2. The control task

Although the ultimate goal of our research is to
control a lenticular blimp 10 meters-wide with
a rich sensorimotor equipment, the objective of
the present work was to control the trim and
altitude of a simulated version of this aircraft,
calling upon two inclinometers and one altime-
ter, on the one side, and with three motors, on
the other side (fig. 1). The task to be achieved
was to maintain the blimp as horizontal as pos-
sible at a given altitude, a difficult control task
because of non-linear couplings between the en-
gine’s trim and altitude and because of the per-
turbing effects that were imposed by the experi-
menter on the wind speed and direction, as well
as on the blimp’s trim and altitude.

The simulation model that was used is more
than 3000-instructions long and is too complex
to be described here. However, some relevant
details are given in [7, 8].

Motor 7

0 : f\&wﬁg
M(?’Z
..

Figure 1: Two views of the lenticular blimp. In
the experiments reported here, only motors 1 to
3 were used.

3. The ModNet evolutionary

framework

Classical approaches to the evolution of neural
controllers [5] call upon neurons and connections
that they assemble to generate whole networks.
The problem with this approach is that evolu-
tion usually has to start from scratch and that
it is difficult to use some a priori knowledge to
speed up convergence. Therefore, to tackle dif-
ficult problems, an incremental approach is fre-
quently used, according to which a human de-
signer decomposes the overall control task and
evolves sub-controllers for each sub-task he has
identified. He then has to compose the whole
controller by assembling the sub-controllers, an
endeavor that is far from easy.

ModNet proceeds differently. Instead of ma-
nipulating neurons and connections, it operates
on modules. These modules are small neu-
ral networks that may be spontaneously discov-
ered by the evolutionary process. They may
also stem from an initial pool of templates pro-
vided by the experimenter either because, hav-
ing been generated during previous evolutionary
runs, they might be useful to solve the current
problem, or because they encode some form of
expert knowledge.

ModNet was previously applied to generate
controllers for a cartpole [8, 9]. In those exper-
iments, evolution was not provided with initial
templates and derivative modules - a functional-
ity essential to solving the problem. On the con-
trary, they were spontaneously discovered and
exploited by the evolutionary process'.

3.1 Chromosomes

A chromosome in ModNet is made up of three
components: a list of model-modules, a list of
modules and a list of links (fig. 2).

The list of model-modules codes both the or-
ganization and the inner parameters (e.g., con-
nection weights) of the modules that will ap-
pear in the final neural network. The next two
lists describe the structure of the network. They
indicate how modules are linked together and
how they are linked to the network’s inputs and
outputs. The list of modules specifies, for each
module appearing in the neural network, whose

IThese modules have indeed inspired the derivative
modules we have used in experiments described in this
article.

Model-module list

1 2 3 4 5
Module list

mil| m2| m3| m4| m5|m6|m7
3121111151412

Link list

ml->m3 ml->m2
m2->00 m6->02
m3->01 m7->01

il->m4 m4->mé
m4->m7 i0->ml

Figure 2: Left: An example of a chromosome manipulated by ModNet.

The chromosome is

made up of three components: a list of model-modules, a list of modules and a list of links.
m; are modules, i, are sensory neurons, and o,, are motor neurons. Right: the corresponding
decoded neural network. Modules m3 and m4 are copies of the same model-module 1. Likewise,
modules m2 and m7 are copies of model-module 2. Connections ending with a dot or an arrow
are respectively negative and positive connections

model-module it is a copy of. The same model-
module may then appear at different places in
the neural network, thus reducing the amount of
information required to describe the controller.
Symmetries may also be easily handled this way.

The list of links specifies how modules are in-
terconnected in the network. Instead of spec-
ifying a connection, a link concerns a module
output (or a network output) and a module in-
put (or a network input) that will be merged in
the final network. For example, because a link
associates the output of module 1 to the input
of module 2 in the network of fig. 2, the output
neuron of module 1 is merged with the input
neuron of module 2.

3.2 Genetic operators

There are two categories of mutation operators
in Modnet. In the first category, these operators
modify parameters in the neural network? that
are coded as 8-bit binary strings. In the second
category, mutation operators change the net-
work’s structure because they act on each of a
chromosome’s three components. Thus, model-
modules may be added to, or removed from, the
model-module list, while the other two lists may
be modified by inserting or deleting modules in
the chromosome.

Because, in Modnet, mutations can’t mod-
ify the internal structure of modules, fragile

2In the experiments described here, the only param-
eters concerned were connection weights.

structures are protected from destructive oper-
ations. Likewise, because crossover operators
exchange model-modules between individuals, a
useful structure can easily and quickly propa-
gate to newborn individuals, as demonstrated
in [8, 9].

3.3 ModNet’s bootstrapping pro-
cedures

Each model-module is generated from an initial
pool of templates provided by the experimenter.
Depending upon the chosen setting, it is a mere
copy of arandomly chosen template, or it recom-
bines the template’s parameters while keeping
their structure, or it recombines both the struc-
ture and the parameters. Be that as it may,
the first option makes it possible to bootstrap
the evolutionary process by providing templates
that seem, for whatever reason, to be useful for
solving the considered problem. For instance,
it is thus possible to provide artificial evolution
with templates that connect given sensory in-
puts to given motor outputs, thus avoiding a
random search throughout the pattern of all
possible connections. Likewise, the initial pool
can be seeded with templates that perform ele-
mentary computations which probably need to
be instantiated in the final network. However, it
must be emphasized that evolution is not com-
mitted to stick to such initial templates: they
only serve to provide the first generation with a
priori interesting solutions. Subsequently, dur-
ing the course of the evolutionary process, initial

templates may well get lost through mutations
if they turn out not to be as useful as expected,
or they may be transformed into more efficient
modules.

4. Application to blimp con-

trol

To evolve neural controllers for the blimp, a ded-
icated version of ModNet was used. In partic-
ular, an initial population of 10,000 individuals
was randomly generated, out of which only the
best 100 were allowed to evolve further. The se-
lection algorithm was rank-based, with 40% of
the individuals being replaced by new ones at
each generation. Finally, specific templates and
a dedicated fitness function were used in the ex-
periments reported on here.

4.1 Templates

Three different templates, liable to approxi-
mate respectively the proportional, integrate
and derivative building blocks of standard con-
trol methods, seeded the initial pool (fig. 3).
The P module merely implements a direct con-
nection from its input to its output. The D
module is likely to compute a derivative by sub-
tracting the value of an input signal received at
time step ¢t — 1 to the value of the same signal
received at time step ¢. Naturally, this will oc-
cur only provided the signs of the corresponding
connection weights are appropriately set, i.e.,
when their product is negative. As to module I,
it can integrate a signal approximately when the
weight of the self-recurrent connection is posi-
tive.

P Module I Module D Module

[

~

Figure 3: Modules P, I and D. P module is a
proportional module. I module affords the abil-
ity to integrate a given signal, and D module can
approximate a derivative, provided connections
have appropriate weights.

C

In the experiments described here, only the

structures of the templates were fixed. Their
weights had to be evolved along successive gen-
erations.

4.2 Fitness function

To evaluate individuals and select those that
were allowed to propagate their genetic mate-
rial to the next generation, their behavior was
assessed over a given evaluation period of 10,000
time steps, corresponding to 250 simulated sec-
onds - i.e., a period long enough to check that a
steady-state behavior with no subsequent drift
was obtained. A wiability zone [10, 11] of £0.35
rad was defined for pitch and roll angles, so
that every controller that allowed these essen-
tial variables move outside this range of values
was considered non-viable. Finally, the follow-
ing fitness function was used:

>

nb
DOF ;cpor

(1- zt<di;x,t>2>)

The first term, p(x), measured the percent-
age of the evaluation time that was spent before
the blimp occasionally moved outside the via-
bility bounds, and the second term, lower than
one, measured the quality of the control as it
quantified the mean deviation between a given
degree of freedom (DOF) and its target value
(di(z,t) being its instantaneous value). nb is
the number of DOFs concerned, and T is the
evaluation length. The controlled DOFs were
pitch and roll, whose target values were perma-
nently set to 0 rad, and altitude, whose target
value could change over time. Thus, the first
objective of the fitness function was to force the
evolutionary process to generate controllers that
kept the blimp inside its viability zone; a second
objective was to improve the efficiency of these
controllers. Additional capacities of robustness
were afforded by the specific conditions in which
the controllers were evaluated. In particular, the
simulated blimp was subjected to many abrupt
perturbations during the evaluation period, ac-
cording to which the orientation and amplitude
of the wind, the blimp’s current pitch and roll
values, and its target altitude were set to new,
randomly chosen values. These perturbations
occurred at randomly chosen instants, on an av-
erage rate of three times per evaluation period.

4.3 Reference controller

In the perspective of comparing the empirically
evolved controllers with more traditional engi-
neering solutions, a reference controller calling
upon three PID modules that independently
managed the blimp’s three degrees of freedom
was hand-designed. The input of each such
PID module was the error value of the degree
of freedom it was supposed to maintain, while
its output was sent to an interface that set the
three motor thrusts by summing the contribu-
tion of each controller. Thus, the altitude error
generated identical thrusts at each motor, the
roll error generated thrusts of opposite signs for
motors 2 and 3, and the pitch error generated
thrusts of opposite signs for motor 1, on the one
hand, and for motors 2 and 3, on the other hand.
The three inner parameters of each PID module
were also optimized with an evolution strategy
[12, 13] using the same fitness function as de-
scribed above.

5. Experimental results

Not all the neural networks that were thus gen-
erated retained the P, I and D-like modules that
served to bootstrap the evolutionary process.
However, these modules were empirically recom-
bined and integrated into larger controllers in
ways that extended their utility for non-linear
regimes of the simulation model, as illustrated
below in the case of two specific networks.

5.1 Exploitation of non linear cou-

plings

All the efficient controllers that were obtained
in the last generations of the evolutionary pro-
cess did exploit non-linear couplings between
pitch and altitude. These couplings stem from
the facts that, thanks to its rear fin, the blimp
quickly moves to face the wind and that, thanks
to its lenticular shape, it tends to behave like a
wing. Thus, if its nose slants at a negative angle
with respect to a facing wind?, the blimp moves
very quickly upwards. Likewise, if it faces the
wind with a positive angle, it soon moves down.

The important point to emphasize is that such
couplings were not taken into account, either
in the pool of templates that were provided to

3By convention, trim angles are considered positive
when the aircraft leans towards the ground

the evolutionary process, or in the fitness func-
tion that was used - simply because the human
experimenter had not foreseen that they would
be important. Actually, the hand-designed con-
troller that independently managed each of the
blimp’s three DOFs did not exploit such cou-
plings either, and turned out to be three times
slower than the best controller generated by evo-
lution [7] (fig. 4).

jolved controller ——

T
wi
Z with a hand-designed controller -------
desir

L L L L
2000 4000 6000 8000 10000

Figure 4: Comparison of the behaviors gener-
ated by an evolved neural network and by a
hand-designed system with respect to altitude
control. The evolved controller is three times
faster than the hand-designed one. A time step
corresponds to 25ms; altitudes are given in me-
ters.

The exploitation of non-linear couplings by an
evolved controller is clearly demonstrated on fig.
5. When the blimp falls below the desired al-
titude (between time-steps 0 and 1500, for in-
stance), the blimp has to go up. The controller
keeps the pitch around a negative non-zero value
(near —0.2 rad) that allows the blimp to exploit
the wind and quickly climb. Likewise, when the
blimp is above the desired altitude, the pitch is
kept around 0.2 rad to allow the blimp to rapidly
descend.

5.2 Evolved control strategies

Not all the networks evolved implemented the
same control strategy. In particular, some of
them generated some variety of ’bang-bang’ con-
trol, while others generated more continuous be-
haviors. However, controllers in both categories
exhibited similar efficiencies in terms of the fit-
ness function that was used.

L L L L
[2000 4000 6000 8000 10000

Figure 5: Example of behavior generated by an
evolved neurocontroller. Angles are in radians
and altitudes in meters/1000. A time step cor-
responds to 25ms.

altitude error

Figure 6: Neural network 1, which implements a
bang-bang control strategy. Connections ending
with a dot or an arrow are respectively negative
and positive connections. Grey connections only
concern sensors or effectors (they have a fixed
weight of 1). For reasons of clarity, individual
modules are not distinguished. However, it so
happens that neurons 5, 12 and 2 are included
in a I module, and that neurons 4, 10 and 3
belong to a D module, for instance.

5.2.1 Bang-Bang controllers

Neural network 1 (fig. 6), generated after 1000
generations, controls trim and altitude using a
'’bang-bang’ strategy during the phases where
the blimp’s altitude is near the target value

output of neuron 0+
output of neuron 2 x

Fll I N i AR A | PR

x . 0% Six s %
ok Lo i

at

1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950

Figure 7: Outputs of neurons 0 and 2 in neural
network 1. The output of neuron 2 exhibits a
simple bang-bang behavior: a succession of +a
and —a values, a being constant. The output
of neuron 2 is a succession of lines whose slopes
approximately equal +ka and —ka, k being con-
stant too.

This strategy is possible thanks to the recur-
rent loop between neurons 5, 8, 7, 15, 0, 9, 6,
11 and 5. If the signs of all the corresponding
connections are multiplied, a negative value is
obtained*. This means that the network tends
to bring the activity of a neuron in the loop to
a negative (resp. positive) value when it is pos-
itive (resp. negative), thus creating the oscilla-
tion required by the bang-bang strategy. Com-
mands to motors 2 and 3 are generated through
an I module that tends to integrate the signal,
as demonstrated on fig. 7.

This behavior is inhibited by high values of
the altitude error, i.e., when the blimp has to
climb or go down. Motors 2 and 3 are then
used at their maximum power to accelerate the
blimp’s ascension or descent.

A close look at the inner organization of neu-
ral network 1 further reveals that evolution did
find a tortuous way to manipulate the function-
alities of the templates it was provided with. In-
stead of directly incorporating a P module into
the controller, it used an I module (neurons 7, 15
and 0 of the neural network on fig. 6) in which
it set the weight of its recurrent connection to
0.

Although the corresponding bang-bang strat-
egy is very efficient in simulation, it would

4Provided connections between neurons 0 and 9 and
9 and 6 - which are small relative to the connection be-
tween 0 and 6 - are neglected, and provided the same
thing is done with connections involving neurons 6, 11
and 5.

not be applicable with real motors that would
have a hard time surviving such a discontinu-
ous regime. Fortunately, competing controllers
generating a more continuous behavior were also
discovered by evolution.

5.2.2 Continuous controllers

Figure 8: Neural network 2, which implements
a continuous control strategy. Connections end-
ing with a dot or an arrow are respectively neg-
ative and positive connections. Grey connec-
tions only concern sensors or effectors. Individ-
ual modules are not distinguished. However, it
so happens that neurons 6, 7 and 2, for example,
are included in an I module, and that neurons
2, 14 and 3 belong to a D module.

Neural network 2 (fig. 8), generated after
2000 generations, is one of the controllers that
implemented a continuous control strategy. Sev-
eral I and D modules within that network use
neuron 2 as both input and output. They may
all be replaced by a single neuron “B”, as shown
on fig. 9. This neuron acts as a bias whose out-
put is constant throughout an experiment. The
value it takes on is determined by the initial
conditions, and can be either —1 or +1. This
structure departs from symmetry in the control
of altitude and allows the blimp to go up faster
than down, or the opposite, depending on the
initial conditions. Interestingly, this result is
due to some sort of overfitting process accord-
ing to which evolution generated solutions that
specifically fit the particular conditions in which
the fitness was evaluated.

Other modules have been used as expected.
For instance, the D module m1 in fig. 9 gen-
erates a behavior in the linear domain that ap-
proximates a derivative behavior, as can be seen
on fig. 10 after the 3500*" time step, where the

..allltude error
mo mi - ml mi

-0.94
GO @ e
6.69

Simplified network module m0 module m1

Figure 9: Simplified representation of neural
network 2 on the left. Recurrent connections
have been replaced by an equivalent “bias” neu-
ron “B” whose output is constant throughout an
experiment: it equals —1 or +1, depending on
the initial conditions. Dotted lines correspond
to modules m0 and m1, which are described on
the right.

module removes the constant part of the input
signal. But evolution has set the parameters of
this module so that it is able to generate another
behavior in the saturated domain. Rather than
exhibiting a zero output, this module produces a
saturated output when its input is saturated, as
can be seen on the same figure before the 3500*"
time step. Thus, the evolutionary process dis-
covered a way to adapt the initial functionality
of this module so that it behaves efficiently in
two different conditions: when altitude is near
the target value (linear case) and when it is far
from it (saturated case).

output of the module ——
output of neure

o

3000 3500 4000 4500 5000

Figure 10: Time variations of the module’s m1
input (neuron 2) and output (neuron 3). Two
different behaviors are exhibited: a constant
maximum output when the input is saturated,
and a derivative-like behavior when the input is
not.

6. Discussion

In this work, evolution was provided with the
standard functionalities of linear control theory
- through P, I and D-like modules - and applied
to a challenging control problem, where a com-
plex non-linear dynamic system had to be con-
trolled in frequently perturbed conditions. The
evolutionary process kept some of these modules
as they were, diverted some others from their
initial functionalities, and merged them all in
augmented structures that proved to be able to
cope with non-linearities.

Although the possibility that better solutions
to this challenging problem will be produced via
some well-founded engineering approach to non-
linear control still needs to be assessed, the em-
pirical solutions that were discovered here by
an evolutionary approach turned out to perform
better than, at least, one traditional solution
based on linear PIDs alone. Likewise, the pos-
sibility that many such empirical approaches,
compared over many different application prob-
lems, might trigger the sort of generalizations
that could boost non-linear control theory must
be assessed. Conversely, any progress of this
theory might be useful for bootstrapping the
evolution with other and more efficient initial
modules.

Because the P, I and D-like modules that were
used in this application were composed of stan-
dard artificial neurons, their behavior was non-
linear and only approximated P, I or D function-
alities in the linear region of the neural transfer
functions. It has been shown here that these
non-linearities have been exploited by evolution
to implement different control strategies, like
bang-bang or continuous. Which one was ul-
timately implemented in a given controller de-
pended on mere chance, through the random ef-
fects of the genetic operators. Other exploita-
tions of the non-linearities of individual neurons
could probably be discovered in other experi-
ments and other contexts.

Providing neural network modules to evolu-
tion allows domain knowledge to be exploited,
while leaving evolution the choice of doing it or
not. It is an alternative to the incremental ap-
proach in the search for scalability. Another ad-
vantage is that we know what the modules pro-
vided are supposed to do and can exploit this
knowledge in our analysis of the networks gener-
ated. The breakdown into modules furthermore
provides information on the overall structure of

the network and makes it easier to understand,
as we can analyze the behavior of each module
separately before studying them together in the
whole network.

Finally, it should be stressed that evolution-
ary approaches, because they deal with a popu-
lation of solutions, are a priori well adapted to
the management of non-stationary control prob-
lems [14]. Thus, a given solution, although pos-
sibly less efficient than another at solving the
current version of a given problem, may well be
fit enough to be maintained in the population.
When circumstances change, and when a modi-
fied version of the problem has to be solved, this
solution may turn out to be the best one, or to
constitute a good stepping-stone on the route to
this optimal solution. An extension of this idea,
which manages a permanently updated model of
a given dynamic system, has been applied within
the framework of anytime learning [15]. It could
be implemented in the context of the evolution-
ary approach advocated here, thus extending to
non-stationary problems the range of solutions
that have been applied here to non-linear cases.

7. Conclusion

This work describes an empirical approach to
non-linear control problems that calls upon the
evolutionary generation of modular neural net-
works. This process may be bootstrapped with
modules that encode knowledge stemming from
linear or non-linear control theory, and it seems
to be applicable to non-stationary problems as
well. It has been applied here to the control of
a simulated lenticular blimp that was subjected
to several perturbations. Neural controllers that
efficiently solved the control task did capitalize
on P, I and D-like modules that they combined
in a more efficient way than the one that was
conceived by a human designer. Likewise, inter-
esting adaptive capacities were afforded to the
evolutionary process through the possibility of
exploiting the non-linear transfer function of in-
dividual neurons, some modules being able to
generate a given behavior in the linear domain
and another behavior in the non-linear domain.

References

[1] A. Isidori. Nonlinear Control Systems.
Springer-Verlag, Berlin, 2nd edition, 1989.

2]

3]

[4]

[5]

[6]

7]

18]

9]

[10]

[11]

[12]

J.-J. Slotine and W. Li. Applied Nonlinear
Control. Prentice Hall, 1990.

Sutton Miller and Werbos, editors. Neural
Networks for Control. MIT Press, 1990.

A. M. S. Zalzala. Neural Networks for
Robotic Control: Theory and Applications.
Ellis Horwood, 1996.

J.-A. Meyer. Evolutionary approaches to
neural control in mobile robots. In Pro-
ceedings of the IEEE International Con-
ference on Systems, Man and Cybernetics,
San Diego, 1998.

S. Landau, S. Doncieux, A. Drogoul, and
J.-A. Meyer. Sferes: un framework pour la
conception de systémes multi-agents adap-
tatifs. Technique et Science Informatique,
21(4), 2002.

S. Doncieux and J.-A. Meyer. Evolving
neural networks for the control of a lentic-
ular blimp. In G. R. Raidl et al., ed-
itor, Applications of Fvolutionary Com-
puting, EvoWorkshops2003: EvoBIO, Evo-
COP, EvolASP, EvoMUSART, EvoROB,
EvoSTIM. Springer Verlag, 2003.

S. Doncieux. Evolution de controleurs
neuronauxr pour animats volants
méthodologie et applications. PhD thesis,
LIP6/AnimatLab, Université Pierre et
Marie Curie, Paris, France, 2003.

S. Doncieux and J.-A. Meyer. Evolving
modular neural networks to solve challeng-
ing control problems. In Proceedings of
the Fourth International ICSC Symposium
on ENGINEERING OF INTELLIGENT
SYSTEMS (EIS 2004), 2004. (to appear).

W. R. Ashby. Design for a Brain: The Ori-
gin of Adaptive Behavior. Chapman and
Hall, 1952.

J.-A. Meyer and A. Guillot. Simulation
of adaptive behavior in animats: Review
and prospect. In Meyer and Wilson, edi-
tors, Proceedings of The First International

Conference on Simulation of Adaptive Be-
havior. The MIT Press, 1991.

T. Biack and H. P. Schwefel. Evo-
lution strategies i: Variants and their

[13]

[14]

[15]

computational implementation. In Ge-
netic Algorithms in Engineering and Com-
puter Science, Proc. First Short Course
EUROGEN-95. 1995.

H. P. Schwefel and T. Béck. Evolution
strategies ii: Theoretical aspects. In Ge-
netic Algorithms iEngineering and Com-

puter Science, Proc. First Short Course
EUROGEN-95. 1995.

D. E. Goldberg. Genetic Algorithms in
Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

A. C. Schultz and J. J. Grefenstette.
Continuous and embedded learning in
autonomous vehicles: Adapting to sen-
sor failures. In SPIE Int. Symposium
on Aerospace/Defense Sensing, Simulation
and Controls (AeroSense 2000), 2000.

