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Abstract

Drawing inspiration from biology, the Psikharpax project aims at endowing a robot with a sensory-motor equipment and a
neural control architecture that will afford some of the capacities of autonomy and adaptation that are exhibited by real rats.
The paper summarizes the current state of achievement of the project. It successively describes the robot’s future sensors and
actuators, and several biomimetic models of the anatomy and physiology of structures in the rat’s brain, like the hippocampus
and the basal ganglia, which have already been at work on various robots, and that make navigation and action selection possible.
Preliminary results on the implementation of learning mechanisms in these structures are also presented. Finally, the article
discusses the potential benefits that a biologically inspired approach affords to traditional autonomous robotics.
©

K

1

t
a
o
r
c
n

con-
and
res-

y to
f this

an-
re-
, like
ing,
ili-
like
this

0

2004 Elsevier B.V. All rights reserved.

eywords:Artificial rat; Navigation; Action selection; Learning

. Introduction

Since the 2-month workshop in Dartmouth College
hat founded the field of artificial intelligence in 1956,
nd since the enthusiastic comments on the prospects
f the discipline that this event triggered[47,19], se-
ious doubts have been raised (e.g.,[16,17]) about the
hances that an artificial system might compete in the
ear future with the amazing capacities exhibited by
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the human brain. In particular, several researchers
sider that it is quite premature trying to understand
reproduce human intelligence – whatever this exp
sion really means – and that one should first tr
understand and reproduce the probable roots o
intelligence, i.e., the basic adaptive capacities of
imals [8,9]. In other words, before attempting to
produce unique capacities that characterize man
logical reasoning or natural language understand
it might be wise to concentrate first on simpler ab
ties that human beings share with other animals,
navigating, seeking food and avoiding dangers. In
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Fig. 1. The overall design of Psikharpax.

spirit, several research efforts are devoted to the de-
sign of so-calledanimats, i.e., simulated animals or
real robots whose sensors, actuators and control archi-
tectures are as closely inspired from those of animals
as possible, and that are able to “survive” or fulfill their
mission in changing and unpredictable environments
[38,39,30].

This article describes one such endeavor, the
Psikharpax1 project, which aims at designing an ar-
tificial rat that will exhibit at least some of the capac-
ities of autonomy and adaptation that characterize its
natural counterpart—the living creature for which the
product (brain complexity)× (biological knowledge)
is the highest. In particular, this robot will be endowed
with internal needs – such as hunger, rest, or curios-
ity – which it will try to satisfy in order to survive
within the challenging environment of a laboratory
populated with humans and, possibly, other robots.
To this end, it will sense and act on its environment
in pursuit of its own goals and in the service of its
needs, without help or interpretation from outside the
system.

This article summarizes the current state of this
project. In particular, it describes the robot’s future

1 Psikharpax was the king of the rats – i.e., an intelligent and adap-
tive character – in the Batrachomyomachy, a parody of Iliad written
in Greek verses and (falsely) attributed to Homer. The name means
“crumb robber”.

sensory-motor equipment and the major modules of its
control architecture. It also describes the behaviors that
the robot Psikharpax already exhibits in simulation.

2. Sensory-motor equipment

Psikharpax will be a 50 cm long robot (Fig. 1)
equipped with three sets of allothetic sensors: a two-
eyed visual system, an auditory system calling upon
two electronic cochleas, and a haptic system made of
32 whiskers on each side of its head. Sensor fusion will
be realized through the use of Generic Visual Percep-
tion Processor (GVPP), a biomimetic chip dedicated
to low-level real-time signal processing that already
serves robot vision[28].

Psikharpax will also be endowed with three sets of
idiothetic sensors: a vestibular system reacting to lin-
ear and angular accelerations of its head, an odometry
system monitoring the length and direction of its dis-
placements, and capacities to assess its current energy
level.

Psikharpax will be equipped with several motors
and actuators. In particular – despite the fact that such
a device is not really biomimetic – two wheels will
allow the robot to move at a maximum speed of 0.3 m/s.
Although it will usually lie flat on the ground, it will
also have the possibility of rearing, as well as of seizing
objects with two forelegs. Likewise, its head will be
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Fig. 2. An eye equipped with a camera and a log-polar sensor, which
is actuated by three motors.

able to rotate, and three pairs of motors will actuate
each of its eyes (Fig. 2).

Several low-level reflexes will connect Psikharpax’s
sensors to its actuators, thus making it possible, for
instance, to keep looking at an object even when its
head is moving, and to avoid an obstacle detected by
its whiskers or by its visual or auditory systems.

3. Control architecture

Likewise, several models of nervous circuits that
contribute to the adaptive capacities of the rat are
currently simulated or tested on real robots, and will
be implemented in the final control architecture of
Psikharpax. In particular, this artificial rat will be en-
dowed with the capacity of effecting visual or auditory
saccades towards salient objects, of relying on optical
flow to determine whether a given landmark is close or
distant, of merging visual and vestibular information to
permanently monitor its own orientation. Among such
circuits, those that afford capacities for navigation and
action selection have already been validated on pre-
liminary versions of the future Psikharpax. The corre-
sponding realizations will now be briefly described.

3.1. Navigation

Many simulation models – see[51] for a review
– call upon so-calledplace cellsandhead direction
c ired
f ruc-
t
p ts a

Fig. 3. While exploring the environment shown on the left, the robot
built the cognitive map shown on the right. This map is made of inter-
connected neurons (the corresponding links are not shown) whose
activation level depends upon what the robot perceives in its sur-
roundings. Thus, when the robot is situated in zone A of its envi-
ronment, according to the various landmarks it perceives from this
place, some neurons in its map become more activated than others,
thus affording the robot the capacity of locating itself.

multiple-hypothesis trackingnavigation strategy, main-
taining a set of hypotheses about the robot’s position
that are all updated in parallel[21,40]. It serves to build
a dense topological map[20], in which nodes store the
allothetic data that the robot can perceive at the cor-
responding places in the environment. A link between
two nodes memorizes how far off and in what direc-
tion the corresponding places are positioned relatively
to each other, as measured by the robot’s idiothetic sen-
sors. The robot’s position is represented by an activity
distribution over the nodes, the activity level of a given
node representing the probability that the robot is cur-
rently located at the corresponding position (Fig. 3).

As the robot moves in its environment, the activity
level of neurons in the map changes accordingly. Not
only is this activity propagation within the map coher-

Fig. 4. Activity updates within the map as the robot moves to suc-
cessive places in its environment. Labels a, b,. . ., e indicate both the
actual position of the robot and the corresponding map activity. The
g ang-
i dots
i

ellsto implement navigation systems that are insp
rom the anatomy and physiology of dedicated st
ures in the rat’s brain, like thehippocampusand the
ostsubiculum. The model described here implemen
rey level of each small node in a map indicates its activity, r
ng from 0 for white nodes to 1 for black nodes. Larger black
ndicate the robot’s most probable current localization.
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Fig. 5. Activity updates within the map after a translocation pro-
cess during which the robot has been moved passively from place
a to place b in the environment. After a few mistakenly recognized
positions (b–d), the robot correctly recognizes its actual position (e).

ent with the robot’s actual moves (Fig. 4), but it also
affords useful relocalization capacities when the robot
is passively moved from one place to the other (Fig. 5).

In [20,22], this navigation model has been imple-
mented on a Pioneer 2 mobile robot and proved to be
efficient in the unprepared environment of an ordinary
laboratory, notably for detour planning.

3.2. Action selection

To survive, the rat must be able to solve the so-called
action selection problem, i.e., it must be able to decide
at every moment what to do next in the service of its
needs. Some of the circuits involved in this task are
known to be located inbasal ganglia–thalamus–cortex
loops and have inspired theGPR modeldesigned by
Gurney et al.[31]. Basically, this model is implemented
as a network of leaky-integrator neurons, and assumes
that the numerous segregated channels observed in each
nuclei of the basal ganglia each correspond to a discrete
motor action (the granularity of which has still not been
deciphered) that is inhibited by default and thus pre-
vented from being executed (Fig. 6). Inputs to these
channels are so-calledsaliencesthat take into account
both internal and external perceptions to assess the rel-
evance of each action with respect to the robot’s needs.
A positive feedback loop involving the thalamus serves
to introduce some persistence in such assessments. Two
parallelselectionandcontrol circuits within the basal
g nels.

that
i wed
t

Fig. 6. A single channel within the basal ganglia in the GPR model.
D1 and D2: striatal neurons with different dopamine receptors; STN:
sub-thalamic nucleus; EP/SNr: entopeduncular nucleus and substan-
tia nigra reticula; GP: globus pallidus. Solid arrows represent exci-
tatory connections, dotted arrows represent inhibitory connections.

This model has been implemented in a Lego robot
whose task was to select efficiently between four ac-
tions – wandering, avoiding obstacles, “feeding” and
“resting” – in order to “survive” in an environment
where it could find “food” and “rest” places[25,26]
(Fig. 7).

Experimental results demonstrate the model’s abil-
ity to promote survival, in the sense that it permanently
keeps twoessential variables[4] above lethal levels:
Potential Energy(obtained via “feeding”) andEnergy
(converted from Potential Energy via “resting”). More-
over, the model ensures clean and efficient switching
between actions and, because it adds apersistence
loop to a classical winner-takes-all (WTA) architec-
ture, it maintains thePotential Energylevel at its max-
imum charge more often (25% of the time) than in
the absence of such loop (less than 10% of the time)
(Fig. 8).

However, the robot’s survival depends on its chances
of getting to the right place at the right moment, i.e., to
a food place when itsPotential Energylevel is low, or to
a rest place when it lacksEnergy. Obviously, additional
adaptive capacities would depend on the robot’s apti-
tude to record the position of such places on its map and
to use this map to reach such places when needed. This
anglia act to modulate interactions between chan
Finally, at the output of these circuits, the action

s the least inhibited by others is selected and allo
o be executed by the motor system.
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Fig. 7. Left: The environment showing “food” (A) and “rest” (B) places. Right: A Lego robot equipped with light sensors (A) and bumpers (B).

has been made possible thanks to a model combining
navigation and action selection capacities.

3.3. Navigation and action selection

The connection of the previously described nav-
igation and action selection models and their im-
plementation on a simulated robot were inspired
by recent hypotheses concerning the role of dedi-
cated structures within the basal ganglia – thenu-
cleus accumbensin particular – and the interaction of
basal ganglia–thalamus–cortexloops in the rat’s brain
[24,27]. The corresponding model (Fig. 9) basically
involves two such loops: aventral loopthat selects lo-
comotor actions, like moving north or east, and adorsal
loopthat selects non-locomotor actions, like feeding or
resting. Each of these loops has been modeled as a GPR
system like the one shown onFig. 6. The STN of the
dorsal loop provides the interconnection between them
because it sends excitatory projections to the output of
the ventral loop. Consequently, when the dorsal loop
is active and triggers some non-locomotor action, the
excitatory signal that is sent towards the ventral loop
raises the inhibition level of every locomotor action and

F ring
w e ab-
s

prevents it from being selected. Hence the robot cannot
move and eat at the same time.

As usual, saliences in both loops depend upon both
internal and external perceptions. However, saliences
in the ventral loop also depend upon four direction pro-
files (Fig. 10) that are generated by two different nav-
igation strategies, i.e., a simpleguidance(or taxon)
strategy, and a more elaboratetopological navigation
strategy[51]. This allows the robot to be attracted either
by an object that it directly perceives (guidance profile)
or to move towards a region where such an object is lo-
cated in its map (planning profile). The latter possibility
puts some constraints on action selection because the
robot is committed to regularly returning to previously
mapped areas in its environment in order to check the
accuracy of the current map (homing profile). This need

F asal
g l loop
s r.
ig. 8. Histogram showing the percentage of overall time du
hich Potential Energy is reloaded at the values shown on th
cissa.
ig. 9. Interconnection of the ventral and dorsal loops in the b
anglia. The ventral loop selects locomotor actions, the dorsa
elects non-locomotor actions. The latter subsumes the forme
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Fig. 10. Three direction profiles (right) — out of the four used by the
model — that call upon the current map of the environment (left).
According to the planning profile, the robot is motivated to move
in two broad directions that correspond to two resources recorded
in its map. According to the homing profile, the robot is motivated
to return to already explored regions of the environment. According
to the exploration profile, the robot is motivated to wander in as yet
unexplored regions of its environment.

is expressed by aDisorientationvariable managed by
the model, which increases when the robot enters un-
explored areas, and decreases when it returns to known
areas. When this variable is not too high, the robot is
motivated to explore its environment (exploration pro-
file). This model has been implemented in a version
that manages 36 locomotor actions, i.e., moving in each
of 36 possible directions, and two non-locomotor ac-
tions, i.e., reloading actions on food and rest places that
change the robot’sEnergyandPotential Energylevels.

In the simplified example described byFig. 11, only
locomotor actions are selected because external percep-
tions are not strong enough to suppress the inhibition
of reloading actions on resource spots A or B. Because
the level of the B battery is the lowest, the robot’s main
motivation is to move north, according to one of the
directions advocated by the current planning profile.
In all probability, the robot following this navigation
strategy will later turn east, then south. When it gets
close to the B object, this fact will be detected by its
sensors, a refueling action will be triggered, and an ex-

Fig. 11. The model integrating navigation and action selection calls
upon two basal ganglia–thalamus–cortex loops. Each loop is man-
aged by a GPR model, and the coordination between loops is provided
by the subthalamic nucleus of the dorsal loop, which is connected
to the ventral loop (connection not shown here). The dorsal loop
selects one of the two possible reloading actions, the ventral loop
selects one of the 36 directions of motion (simplified here to four
cardinal directions, whereas the homing and exploration input pro-
files are not shown). Inhibitory connections are represented by dotted
arrows, excitatory connections by solid arrows.

citatory signal will be sent to the ventral loop in order
to inhibit locomotor actions during this period.

Several experiments have been performed to test the
capacities of this control architecture to ensure survival
by maintaining the robot’s essential variables above
lethal levels. In particular, it has been shown that, in
the environment on the left ofFig. 12, a robot (robot
A) calling upon both topological navigation and guid-
ance strategies survived longer than another (robot B)

Fig. 12. Two environments used to test the connection of navigation
and action selection models. E: “rest” place, Ep: “food” place. Left:
In this environment, it is impossible to see one resource place from the
other. Right: The resource at Ep2 is not present during the elaboration
of the map.
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Table 1
Statistical comparison of survival times measured along 10 runs for
two robots tested in the environment on the left ofFig. 12over a 6-h
interval

Survival times (s)

Median Range

Robot A 14431.5 2531:17274
Robot B 4908.0 2518:8831
U Mann–Whitney U= 15 P< 0.01

relying on guidance only (Table 1). Hence, being able to
build a map of an unknown environment and to use this
map to navigate between placesE andEpwhereEn-
ergyandPotential Energycould be acquired enhanced
the robot’s survival. A new action being selected ev-
ery 0.87 s as a mean, survival times equal to 4 h – the
maximum simulation length – were attained. However,
in some occasions, premature deaths occurred because
of the difficulty of elaborating a map from scratch that
was precise enough to help the robot reach the right
resource before exhaustion.

Likewise, in the environment on the right ofFig. 12,
it has been shown that, if placeEp1 is the only one
previously encountered by the robot and recorded on
its map, the robot may decide to move towards that
place to reload itsPotential Energy.However, if on its
way it detects the proximity of another food place like
Ep2, it will occasionally give up navigating towards
Ep1and opportunistically divert viaEp2. Then, having
consumed the corresponding resource, it will register
the position ofEp2on its map. Thus, next time it needs
to reload itsPotential Energy, it will have the choice
of navigating towardsEp1or Ep2. Table 2shows that
such opportunistic behavior depends upon the respec-
tive weights that were assigned to topological naviga-
tion and guidance profiles and that served to compute

Table 2
Number of opportunistic detours towards Ep2 out of 15 runs in the
environment on the right ofFig. 12

N
E

1
2
2
2

T idance
t

Fig. 13. Two trajectories leading to “food” places (Ep). One is shorter
than the other, but entails passing through a dangerous place (Dan-
ger).

saliences, i.e., upon the respective attractiveness of a
resource perceived directly and one whose location is
recorded on the map.

In the environment onFig. 13, the robot has the
choice between two trajectories leading to a “food”
place. The first one is shorter but entails passing through
a “dangerous” place. The second one is longer, but
safer. Experience shows that the robot is able to de-
cide to navigate via the longer path when itsPotential
Energylevel is not so low that a long journey would
compromise its survival, but that otherwise it chooses
the shorter path risking having to face the potential
danger recorded on its map. Path choice depends on
the respective weights of two internal states respec-
tively related to the need ofPotential Energyand to
Fear (Table 3).

Finally, in the complex and challenging environ-
ment of Fig. 14, in which several possibilities exist
of getting lost, of encountering dangers, of discover-
ing newly created resources, and of reaching places
in which a given resource is no longer available, ex-
perience shows that the robot survives autonomously
for long periods, thanks to the many adaptive mecha-
nisms and behaviors that have just been described[24].

Table 3
Number of trips via the short and long paths out of 20 runs in the
Fig. 13environment

Fear level Potential Energy level Short path Long path

0
0

T short
p

umber of
p sources

Weight of
topological
navigation

Weight of
guidance

Opportunistic
detours towards
Ep2

0.65 0.55 0/15
0.65 0.55 2/15
0.55 0.55 8/15
0.45 0.55 13/15

hese numbers increase when greater weights are given to gu
han to topological navigation.
.2 0.1 13 7

.2 0.5 2 18

he greater the need for Potential Energy, the more often the
ath is preferred.
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Fig. 14. A complex environment with four “rest” places (E), four
“food” places (Ep) and two dangerous places (ZD). Resource E1
appears and disappears every 30 min.

The longest survival time thus obtained was 21 h of
simulated time. In this case, the major cause prevent-
ing indefinite survival does not seem to be the naviga-
tional issues mentioned above, but rather an intrinsic
drawback in the GPR model, which gets locked in par-
ticular circumstances, with no action being disinhibited
enough to be selected. Current work aims at suppress-
ing such limitations and at further enhancing the robot’s
lifetime.

3.4. Learning

In an unknown environment, a rat is able to explore
it and to incrementally build a map that describes its
topology. Suchassociative learning, which combines
both allothetic and idiothetic data, was implemented in
the navigation model described above.

However, a rat is also able to improve its behavior
over time throughreinforcement learning, i.e., thanks
to adaptive mechanisms that increase its chances of
exhibiting behaviors leading to rewards and that lower
those of behaviors leading to punishments. Concern-
ing action selection, a recently debated hypothesis
[6,34,46] postulates that such mechanisms could be
mediated by dopamine signals within so-calledactor-
critic architectures. According to this hypothesis, a

GPR module could play the role of an actor, while a
critic module could call upon a dopamine reinforce-
ment signalřt that is assumed to evaluate both the
episodic primary reward signal rt occasionally gen-
erated by the robot’s actions, and a secondary signal
computed as the differencegPt −Pt−1 between cur-
rently expected and future rewards (g being a discount
factor which determines how far in the future expected
rewards are taken into account). This reinforcement
signal would be used in the GPR module to adapt the
way saliences are computed in order to select the most
appropriate action, i.e., the action the most likely to
maximize the reward it will lead to (Fig. 15).

Several variants of this learning architecture[36]
have been implemented in a simulated robot that must
learn in a plus-maze, and through successive trials,
which action to perform in order to get to the end of a
corridor where a door may provide access to a reward

F ver-
s s in
t , with
s volv-
i actor
m d by
t acta.
ig. 15. An actor-critic model of reinforcement learning. In this
ion, the actor module is a GPR model (involving matrisome
he dorsal striatum) that is segregated into different channels
aliences as inputs and actions as outputs. The critic module (in

ng striosomes in the dorsal striatum) propagates towards the
odule an estimatěr of the instantaneous reinforcement triggere

he selected action. Th: Thalamus; SNc: substantia nigra comp
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Fig. 16. The plus-maze in which the robot has to learn which action
to perform in order to reach a rewarding resource that is delivered at
a given end. The doors at three such ends are colored dark-grey and
do not deliver any reward, whereas the fourth one is colored white
and leads to the resource. The center of the maze is characterized
by light-grey walls, corridors by black ones. The position of the
rewarding extremity is chosen at random at the beginning of each
new trial, when the robot succeeds in returning to its starting point,
i.e., at the intersection of the four corridors. The robot is equipped
with a visual system that serves to detect the colors, bearings and
distances of walls and doors, and with infrared sensors that trigger
low-level obstacle-avoidance reflexes.

(Fig. 16). This setting reproduces an experiment per-
formed with real rats[1] that must learn to reach the
center of the maze, to seek which door gets lighted by
an overhanging lamp, to move to that door and gain
access to a water dispenser, to return to the center, and
so on.

To learn this task, 12 variables describing the robot’s
visual input were used by the GPR to select among six
possible actions (drink, move forward, turn to white,
turn to light-grey, turn to dark-grey, do nothing—see
Fig. 15). Hence, instead of being hand-crafted as in
the experiments described in Sections3.2 and 3.3, the
saliences of the action selection module were self-
adapted so as to maximize the incoming rewards.

Experimental results demonstrate that the most ef-
fective learning architecture is obtained when the
whole maze is arbitrarily partitioned in several zones,
and when a specific actor-critic pair learns the right
action to be accomplished in each zone. This archi-
tecture, inspired by[48] and[14], yielded the learning
curve shown inFig. 17, which compares favorably with
the best hand-crafted action selection module that has
been able to be designed. As expected, after learning,
theturn to dark-greyanddo nothingactions were never
selected. Future work will aim at self-adapting the ar-
bitrary partition that has been used here.

Fig. 17. Evolution over successive trials of the number of actions
that the robot triggers before getting to the reward.

4. Discussion

It is clear from recent reviews[5,33,52] that, al-
though many research efforts have been devoted to the
design of biomimetic sensors or effectors for robots,
relatively little work has been done on control system
architectures, and what has been done has focused pri-
marily on invertebrate models. Only a few groups are
currently building biomimetic robot control architec-
tures modeled on mammalian nervous systems and,
moreover, their efforts are often centered on isolated
behaviors, like locomotion in cats[44] or feeding in
mice [29], which are not dealt with in an integrated
perspective. To the best of our knowledge, the scope
of the Psikharpax project is unique. First, it draws in-
spiration from a vertebrate instead of an invertebrate.
Second, it aims at designing both biomimetic sensors
and control architectures. Third, because it capitalizes
on a dedicated robotic platform, it will integrate a vari-
ety of sensors, actuators and control systems making it
possible to assess its adaptive capacities in much more
challenging circumstances than those that characterize
seemingly comparable biomimetic robotic approaches
[11,23,32,41,49].

However, from the point of view of biological re-
alism, several improvements could be made to the
models just described. In particular, the current nav-
igation model could be replaced by a version repro-
ducing more faithfully the anatomy and physiology
of the hippocampus and related areas (e.g.,[50,3]),
o mns
a g ca-
p e,
o ction
r several hypotheses about the way cortical colu
re connected to these areas and afford plannin
acities (e.g.,[10,37]) could be explored. Likewis
ther hypotheses about how the navigation and a
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selection models could be connected should be imple-
mented and compared to the control architecture de-
scribed herein. For instance, instead of selecting mere
locomotor actions from the saliences of several di-
rection profiles, the ventral loop in the basal ganglia
might play a higher-level role and use current internal
and external perceptions to select the most appropriate
among the possible navigation strategies[43]. Finally,
there are many possibilities for extending the results
obtained so far on learning. Actor-critic models call-
ing upon dopaminergic neurons should be compared
to concurrent hypotheses involving the role of gluta-
mate[45] in reinforcement learning. Also, useful dis-
tinctions are probably to be made between habit learn-
ing and goal-directed learning[12]. Finally, the role
of neuromodulators in the setting of learning meta-
parameters should be investigated, as suggested in
[15].

From an engineering point of view, the system de-
scribed above raises several important issues. Consid-
ering that living systems are the product of roughly
3.5 billions years of evolutionary tinkering[35], one
may wonder if there is the slightest chance that artifi-
cial systems exhibiting adaptive behaviors of a com-
parable efficiency might call upon simplistic neurons
(e.g., threshold-gate models) and homogeneous archi-
tectures (e.g., perceptrons). In other words, if nature has
invented the highly complex and still imperfectly un-
derstood processes at work in real neurons and, if it has
connected them in highly heterogeneous networks, it
i ike-
w tput
n , the
c asal
g As
d the
s with
r e. “I
t nd
t ms
o e’s
s ly-
i ties
t t far
t lus,
h he-
o
s tand-

ing which solution, the natural or the artificial, is better
adapted to which decision problem.

From the point of view of robotics, the Psikharpax
project substantially extends the scope of traditional
approaches to robot control because it will involve a
wide variety of behaviors, because it will implement
different learning mechanisms, and because it is not ex-
clusively devoted to tasks that serve humans. As noted
in [2], the majority of research conducted so far on
autonomous mobile robots has concentrated on devel-
oping vehicles that exhibit a single type of behavior
supporting the specific task of moving between two
positions in the environment while avoiding collisions
with obstacles. Clearly such limited capacities may not
afford the degree of autonomy required in situations
where human intervention is undesirable or impossi-
ble, and raises the question of how the concept of “self-
autonomy”, i.e., behavior which may be characterized
as supporting self survival differs from that of “imposed
autonomy”, i.e., behavior which does not benefit the
robot but fulfils some desired task which we impose
upon the system. In this perspective, being able to in-
tegrate the past (through its recorded map), the present
(through its sensors) and the future (through its plan-
ning capacities), Psikharpax will represent an embod-
ied example of amotivationally autonomous animat
whose control complexity may well challenge the pos-
sibilities of external control and, hence, its capacities
to withstand any imposed autonomy[18]. Conversely,
following Moravec[42], one may hope that its mobil-
i out
s will
p rrent
“ the
g an
b

5

rtifi-
c by
h ives:
b , im-
p pax
w that
a rve
t ture
s probably for good reasons, worth deciphering. L
ise, there are certainly good reasons why the ou
eurons of so many structures in the brain (e.g.
erebellum, the frontal and prefrontal cortex, the b
anglia, the striatum, etc.) play an inhibitory role.
escribed by Berthoz, decision in the brain is often
elective suppression of actions that are irrelevant
espect to the goal, to the context, to past experienc
hink, therefore I inhibit. [. . .] Whereas engineers te
o formalize the problem of action selection in ter
f probabilities of winning more than loosing, natur
olution is in terms of excitation/inhibition. Under
ng such competition, there is a wealth of possibili
hat we are a long way from understanding, but tha
ranscends the cold estimate of probability calcu
ow Bayesian it may be. A new neurocognitive t
ry of decision remains to be elaborated”[7]. Again,
uch considerations lead to the question of unders
ty, its sensor equipment, and its ability to carry
urvival-related tasks in a dynamic environment
rovide a necessary basis for surpassing the cu
reptile-stage” of robots and eventually reaching
eneral competence and “true” intelligence of hum
eings.

. Conclusion

The Psikharpax project aims at designing an a
ial rat able to “survive” in a laboratory populated
umans and other robots. It has two main object
etter understand the control mechanisms of rats
rove the autonomy of robots. The robot Psikhar
ill be endowed with many sensors and motors
re currently under development and that will se

o implement various reflexes. Its control architec
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has already been tested in simulation and implemented
on simpler versions of the future robot. In particular,
models for navigation and action selection – which af-
ford capacities of associative and reinforcement learn-
ing – have been successfully tested. It thus appears that
Psikharpax will be able to explore an unknown envi-
ronment, to build a topological map of it, and to plan
trajectories to places where it will fulfill various internal
needs, like “eating”, “resting”, “exploring” or “avoid-
ing danger”. The first version of such an efficient robot
is expected to be available at the end of year 2005: still
a long way to the “whole rat” that Dennett might have
advocated[13]. Even a longer way to the intelligence
of man.
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